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Chapter 9
Modular Specification and Verification

Daniel Grahl, Richard Bubel, Wojciech Mostowski, Peter H. Schmitt, Mattias
Ulbrich, and Benjamin Weil}

Software systems can grow large and complex, and various programming disciplines
have been developed addressing the problem how programmers can cope with such
complex systems. We focus in this book on the paradigm of object-orientation which
seems to be the widely adopted mainstream approach.

In parallel to these development in software engineering, formal verification needs
complementary techniques for dealing with large software systems and increased
complexity. Yet, achieving complete functional verification of a complex piece of
software still poses a grand challenge to current research ([Leino, 1995, Hoare and
Misra, 2005, Leavens et al., 2006a, 2007, Klebanov et al., 2011, Huisman et al.,
2015]). In this chapter we will present which support the KeY system offers in this
direction and review the research background it is based on. In most subsections
we will come back to concepts already presented in earlier chapters, but now with
special emphasis on modularization. We will take extra pain to precisely delineate
these dependencies.

It is common wisdom that the keys to scale up a technique for large applications
are modularization and abstraction. In our case, the deductive verification of object-
oriented software, the central pillar for modularization and abstraction is the Design
by Contract principle as pioneered by Meyer [1992]. Once the contract for a method
has been separately verified we need not at every call to this method inspect its code
again but use its contract instead. In Chapter 7 method contracts have already been
introduced as a central concept of the behavioral specification language JML (Java
Modeling Language). Syntax and semantics of JML method contracts have been
thoroughly explained there. Chapter 8 explained how JML method contracts are
translated into proof obligations in JavaDL whose validity entails the correctness of
the method w.r.t. the contract. In this chapter, we explain what needs to be considered
when using a contract instead of the code of a method on the caller side and present
logical calculus rules implementing this. A separate subsection is devoted to recursive
methods. They are a special case since the contract to be verified is used itself at
every recursive call of the method.

Method contracts can only play out their advantages if they do not themselves
make use of implementation details. To achieve this it is necessary to have means
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290 9 Modular Specification and Verification

available that abstract away from the code. To this end JML offers model fields and
model methods, syntax elements that only occur in specifications and are not part
of the code. These have already been addressed Section 7.7.1. Here we present in
great detail the semantics of these concepts at the level of JavaDL and also show and
discuss calculus rules.

Object invariants have already been addressed in Section 7.4.1. Here we present
technical details, the representation of invariants as implicit model fields and how
they are handled in KeY. In modular specification and verification, knowing which
memory locations a method does not change is almost as important as knowing
the effects of it. How to formalize and utilize this information is known as the
frame problem. There is a long history of verification techniques that deal with the
frame problem. Our approach, see [Weil3, 2011], is inspired by the dynamic frames
technique from [Kassios, 2011] that aims at providing modular reasoning in the
presence of abstractions as they occur in object oriented programs. In Section 7.9 we
encountered already the assignable clause in JML specifications that provides a
set of locations that a method might at most assign to. In Section 8.2 we saw how
the JML assignable clause is translated into the mod part of a JavaDL loop or
method contract. The calculus rules for proving these contracts were already covered
in Section 3.7. In this chapter rules will be presented (1) for a more fine grained
treatment of anonymization in loop verification and (2) for using method contracts.

In a way complementary to the information which locations a method may write
to is the information which locations a method may read from. How this information
is formulated was already explained (1) on the JML level via accessible clauses
in Section 7.9, (2) as a JavaDL dependency contract in Definition 8.3 and, (3) as
a JavaDL proof obligation in Definition 8.5. In this chapter accessible clauses
for model methods are introduced. The previous proof obligation for dependency
contracts has to be revised to cover this extension.

Although we use Java and JML as technological basis in this chapter, we expect all
mentioned concepts to be adaptable to other object-oriented programming languages
and their associated specification languages.

Chapter Overview

We start off this chapter with introducing the basic concepts of modular specification
in Section 9.1. This will explain in general method contracts, behavioral subtyping,
and lead up to our formalization of modular code correctness. A running example that
will be used throughout this chapter will make its first appearance in Section 9.1.2.
The special case of unbounded recursion is discussed in Section 9.1.4.

We present model fields as they appear in standard JML and their role in the KeY
system in Section 9.2.1, as well as the more advanced concept of model methods in
Section 9.2.2. The frame problem is the topic of Section 9.3.

Section 9.4 takes us to the second theme in the title of this chapter—verification.
Building on the calculus for JavaDL from Section 3.5, we introduce additional
rules for modular reasoning. This includes 1. an improved loop invariant rule, that
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retains most of the execution context and that caters for unbounded recursion depth
(Section 9.4.2); 2. a rule for applying functional methods contracts (Section 9.4.3);
3. arule for dependency contracts, based on the dynamic frame theory (Section 9.4.4);
and 4. rules for inserting class invariants into the proof (Section 9.4.5).

In Section 9.5 we will verify the example from Section 9.1.2 putting to work the
techniques that will have been introduced by then.

In Section 9.6 we give a quick glimpse of related work and the chapter closes with
a summarizing look back on what has been covered in Section 9.7.

9.1 Modular Verification with Contracts

Method contracts are a central pillar of modular program verification. When com-
bined with behavioral subtyping, they provide means for both abstraction and mod-
ularization. In this section, we will, after a review of the general background and
the presentation of the chapter’s running example, discuss the notion of modularity
employed in JavaDL and how it can be used for the verification of recursive methods.

9.1.1 Historical and Conceptual Background

The concept of modules in programming languages can be traced back to early
examples such as Simula 67 [Nygaard and Dahl, 1981] or Modula [Wirth, 1977].
Single modules (i.e., method implementations or classes containing them) may be
added, removed, or changed with only minimal changes to their clients; programs can
be reused or evolved in a reliable way. Modular analysis of a module can be based on
the module itself in isolation—without a concrete representation of its environment.
This allows one to adapt modules to other environments without losing previously
established guarantees.

These ideas were put forth with the development of object-oriented programming:
“The cornerstone of object-oriented technology is reuse.” [Meyer, 1997] In object-
oriented programming (OOP), methods (or procedures) consist of declarations and
implementations. Declarations are visible to clients while implementations are hidden.
One important addition in OOP to the base concept of modularity is that classes
(i.e., modules) are meant to define types—and subclasses define subtypes. And, in
particular, different classes may implement a method in different ways (overriding),
including covariant and contravariant type refinement. A client never knows which
implementation is actually used. Any call to a (nonprivate) method is subject to
dynamic dispatch, i.e., the appropriate implementation is chosen at runtime from the
context. This concept is also known as virtual method invocation.

The concept of a contract between software modules was first proposed by
Lamport [1983] and later popularized by Meyer [1992] under the trademark Design
by Contract. It allows one to abstract from those concrete implementations and to
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approximately predict module behavior statically.! The metaphor of a legal contract
gives an intuition: A client (method caller) and a provider (method implementer)
agree on a contract that states that, under given resources (preconditions), a product
with certain properties (postconditions) is provided. This is a separation of duties;
the provider can rely on the preconditions, otherwise he or she is free to do anything.
Given the preconditions, he or she is only obliged to ensure the postconditions, no
matter how they are established. On the other hand side, the client is obliged to ensure
the preconditions and can only assume a product to the given specifications. In the
basic setup, a method contract just consists of such a pair of pre- and postcondition.
As it has already been explained in Chapter 7, state of the art specification languages
as JML feature contracts with several clauses (of which all can be seen as specialized,
functional or nonfunctional pre- or postconditions).

Contracts do not only play an important role in software design, but also in verifi-
cation. In verifying a method that calls another method, there are two possibilities
to deal with that case. Either, the implementation can be inserted or a contract can
be used. The former is intriguingly simple; this is what would happen in an actual
execution. But it carries three disadvantages:

1. It transgresses the concept of information hiding.

2. The concrete implementation of the callee must be known. This cannot always
guaranteed in static verification techniques as in many cases the actual type of
objects is not known at verification time. When verifying extensible programs,
the implementation code may not even be available at verification time.

3. In the case of recursive implementations (with an unbounded recursion depth),
inserting the same implementation again would let the proof run in circles.

This leaves contracts as a good choice to deal with method calls in most cases. In
Subsection 16.4 the reader is guided through a tutorial example of using simple
contracts.

Behavioral Subtyping

In a completely modular context, the concrete method implementations generally
are not known. Nevertheless, a client will assume that all implementations of a
common public interface (i.e., a method declaration) behave in a uniform way. This
concept is known as behavioral subtyping, Liskov’s substitution principle, or the
Liskov-Leavens-Wing principle [Liskov, 1988, Leavens, 1988, Liskov and Wing,
1993, 1994].2-3 It can be formulated as follows: A type T’ is a behavioral subtype
of a type T if instances of 7’ can be used in any context where an instance of T is
expected by an observer. In other words, behavioral “subtyping prevents surprising

! Note that contracts give semantical properties about modules and are in some sense orthogonal to
design documents such as class diagrams, that are mostly syntactical.

2 Liskov and Wing themselves use the term “constraint rule.”

3 Despite first appearing in Leavens’ thesis, it has been attributed to Liskov because of her widely
influential keynote talk at the OOPSLA conference 1988.
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behavior” [Leavens, 1988]. Note that this notion of a ‘type’ is different to both types
in logic (see Section 2.2) and types in Java (i.e., classes and interfaces).

Behavioral subtyping is a semantical property of implementations. Although
the concept is tightly associated with design by contract, it cannot be statically
enforced by programming languages. It is not uncommon to see—especially in
undergraduate exercises—that subclasses in object-oriented programs are misused in
a nonbehavioral way. Imagine, for instance, a class Rectangle being implemented
as a subclass of Square because it adds a length to Square’s width. This kind of
data-centric reuse is a typical pattern for modular programming languages without
inheritance. Not all rectangles are squares, so intuitively, this should not define a
behavioral subtype. But whether it actually does, depends on the public interface
(i.e., the possible observations). If the class signature of Square allows one to set
the width to a and to observe the area as a?, then the subclass Rectangle is not a
behavioral subtype.

For modular reasoning about programs, we may only assume contracts for a
dynamically dispatched method that are associated with the receiver’s static type,
since the precise dynamic type depends on the context. This technique is known as
supertype abstraction [Leavens and Weihl, 1995]. Behavioral subtyping is essential
to sound supertype abstraction.* To (partially) enforce it, in the Java Modeling Lan-
guage, method contracts are inherited to overriding implementations [Leavens and
Dhara, 2000]; see also Section 7.4.5. We can provide additional specifications in sub-
classes, which are conjoined with the inherited specification. This means, whatever
the subclass specification states locally, it can only refine the superclass specifica-
tion, effectively. This leads us to a slightly relaxed version of behavioral subtyping:
instead of congruence w.r.t. any observable behavior, we restrict it to the specified
behavior.? This relaxation renders behavioral subtyping more feasible in practice, as
it allows more freedom in implementing unspecified behavior, in particular regarding
exceptional cases. Consider, for instance, a class that implements a collection of
integers. Is a collection of nonnegative integers a behavioral subtype?—The correct
answer is ‘maybe;’ it depends on whether the operations that add members to the
collection are sufficiently abstract to be implemented differently.

This notion of behavioral subtyping w.r.t. specified behavior also enables us to
regard interfaces and abstract classes as behavioral supertypes of their implementa-
tions. While they do not provide a (complete) implementation themselves, they can
be given a specification that is inherited to the implementing classes.

# Leavens and Naumann [2006] present a language-independent formalization of behavioral subtyp-
ing and prove that it is actually equivalent to supertype abstraction.

3 Still, it is possible to explicitly specify the observable behavior in its entirety. On the other hand
side, specification is slightly more expressive than program constructs. The reason for this is that
specification can refer to the entire heap. For instance, the notions of weak purity and strong purity
differ in whether objects may be freshly allocated. This difference is not observable programmati-
cally. Yet, JML allows one to declare a method strictly pure o—more generally—to express the
number of created objects. While strict purity annotations may simplify modular verification, it
cannot be included in a behavioral interface specification since it reveals an implementation detail.
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9.1.2 Example: Implementing a List

Consider we want to implement a mutable list of integers in Java. It should support
the following operations: (i) adding an element at the front, (ii) removing the first
entry, (iii) indicating whether it is empty, (iv) returning its size, (v) retrieving an
element at a given position (random access).

<interface>> LinkedList
List <t--------

+ add (elem: int)
+ remFirst ()
+ empty (): bool
+ size (): int
+ get (idx: int): int LinkedListNonEmpty

# tail

Iy - head: int

1

ArrayList

-atint]]

Fig. 9.1 A list interface and its implementations

Figure 9.1 shows a UML class diagram with the interface List that provides the
intended signature as public methods. There are multiple ways to implement this
interface. The figure shows two possibilities attached via dashed triangle-headed
arrows: firstly simply as an ArrayList and secondly using a variant of the com-
posite design pattern by the classes LinkedList and LinkedListNonEmpty. The
annotation on the association from LinkedList to LinkedListNonEmpty signifies
that LinkedList contains a protected field of type LinkedListNonEmpty.

The list [1,2,3] is represented in this design as follows (with squares for instances of
class LinkedList and circles for instances of LinkedListNonEmpty):

tail tail tail tail

head head head
1 2 3

Note how the empty list is represented. This approach is called the sentinel pattern
and prevents the null reference to be exposed.

An common alternative pattern for linked lists uses two classes Nil and Cons,
where Nil is a singleton representing the empty list and Cons is a sentinel, that plays
the same role as LinkedListNonEmpty in our example. This pattern is appropriate
to implement immutable list objects. The disadvantage is that Nil and Cons are not
(behavioral) subtypes of one or another.
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Before looking at an implementation, let us briefly discuss contracts in natural
language. The operation ‘removing the first element’ only makes sense when there
is at least one element—this would make a precondition. Similarly, ‘retrieving an
element at position n’ only makes sense if n is nonnegative and there are at least
n elements in the list. Again, implementations are free to do anything if they are
called in a context where these preconditions do not hold. Listing 9.1 shows an
implementation of class LinkedList. Here, we see two different styles of method
implementations. In Lines 11ff., method remFirst () silently returns directly if it is
called on an empty list, i.e., the precondition is violated. Alternatively, we could first
check for such violations and then throw a more precise exception explicitly. This
style is known as defensive implementation, where the implementing code checks for
and handles abnormal situations. In lines 24ff., method get () is implemented in an
offensive manner. It does not check for abnormal situations, but optimistically calls
tail.get (idx) where tail may be a null reference. In case the precondition is
violated, an instance of NullPointerException will be thrown. Design by contract
itself does not advertise either style, but in practice the latter is usually preferred.

public class LinkedList implements List {
protected LinkedListNonEmpty tail;

public void add (int elem) {
LinkedListNonEmpty tmp = new LinkedListNonEmpty(elem) ;
tmp.tail = this.tail;
this.tail = tmp;

3

public void remFirst () {
if (empty()) return;
else tail = tail.tail;

3

public boolean empty () {
return tail == null;

3

public int size () {
return empty()? 0: tail.size();

3

public int get (int idx) {
return tail.get(idx);
¥
}

Listing 9.1 An implementation to the List interface using a linked data structure

It is instructive to observe that most methods in LinkedList delegate to an ele-
ment of the subclass LinkedListNonEmpty. This is possible since every (nonnull)
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object in LinkedListNonEmpty represents a non empty list, while objects in the
supertype LinkedList represent—possibly empty lists. This ensures that we have a
behavioral subtype relation here. A nonempty linked list exposes at least the expected
behavior of a possibly empty linked list. This allows for a maximum of reuse in class
LinkedListNonEmpty, which is shown in Listing 9.2; only three methods need to
be overridden.

Note that the default constructor of LinkedList returns a (nonunique) empty list.

class LinkedListNonEmpty extends LinkedList {
private int head;
LinkedListNonEmpty (int elem) { head = elem; }
public boolean empty () { return false; }

public int size () {
return 1+(tail==null? 0: tail.size());

}

public int get (int idx) {
if (idx == 0) return head;
else return tail.get(idx-1);

}
Listing 9.2 Nonempty lists is a behavioral subtype to lists

The implementation of size in lines 9ff in Figure 9.2 does not work for lists of
length greater than 23! — 1. We will live with this imperfection rather than resort to
using BigInteger.

The above list example will be used throughout the rest of this chapter. Notable
other case studies covering single linked lists can be found in the literature [Zee et al.,
2008, Gladisch and Tyszberowicz, 2013]. In [Bruns, 2011] the more general data
type of maps is considered. Its specification uses model fields and dynamic frames
and its implementation is based on red/black trees. This has been proposed as one of
the challenges in [Leino and Moskal, 2010].

9.1.3 Modular Program Correctness

In this section we explain our understanding of modular program correctness in a
spirit similar to and inspired by Miiller [2002], Roth [2006]. Miiller [2002] defines
the concept of modular correctness by distinguishing open programs and closed
programs. Open programs are intended to be used in different (not a priori known)
contexts, like, for instance, library code. Closed programs are self-contained and not
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meant to be extended. When analyzing the correctness of a closed program, stronger
assumptions can be made than for the analysis open programs; in particular, every
object must be an instance of one of the types declared in the program under test
which may not be a safe assumption if the program is used in an extending context.

We will define modular correctness by the portability of correctness proofs to
program extensions. Before we can look at modular correctness, we need to fix the
notion of a program extension. Remember that for the purposes of this book, a Java
program is a collection of class and interface declarations.

Definition 9.1 (Program Extension). A Java program p’ is called an extension of
the Java program p, denoted by p’ D p, if

1. p' is obtained from p by adding new class or interface declarations, and
2. the declarations obtained from p are in no way modified.

We stress that in passing from p to p’ no field, method, extends or implements
declarations of existing classes or interfaces may be added, modified or removed. On
the other hand, classes in which are new in p’ may implement interfaces or extend
classes from p, and methods introduced in p may be overridden in new subclasses
in p.

The soundness of logical inferences in JavaDL may depend on the type system
and thus on the investigated program. For example: it is sound to deduce from
instancep(x) = TRUE that instancea (x) = TRUE if and only if the type hierarchy
contains B C A. However, there are also inference rules that are either independent
of the program or resilient to a program extension.

Definition 9.2 (Modular soundness). Let p be a Java program.

A logical inference rule is called modularly sound for p if it is a sound inference
rule for every program extension p’ with p’ D p.

A proof is called modularly correct for p if it has been conducted with only
modularly sound inference rules.

Most rules in the JavaDL sequent calculus in KeY are independent of the type
hierarchy of the program (rules of propositional logic, rules dealing with numbers,
sequences, ...). Some rules depend on the type hierarchy but are modularly sound
(like the removal of unnecessary type cast operations). Only very few rules of the
calculus are not modularly sound. In their core, all of them rely on the principle of
enumeration of all subtypes of a type declaration:

Let T be a type declaration in p and furthermore {Uj,...,Us} = {U | U C
T and U is not abstract.} denote the set of nonabstract class declarations which
extend T (directly or indirectly). The rule typeDist allows replacing an instance
predicate instancer (x) by the disjunction over all possible exact instance predicates
exactlnstancey,(x) of the subtypes.

instancer (x) ~ exactInstancey, (x) V ...V exactInstancey, (x) typeDist

In an extension, a new subclass Uy of T may be added rendering this rule unsound.
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The rule methodCall defined in Section 3.6.5.5 is another rule that is not modularly
sound based on the same principle of type enumeration. With it, a method call 0. m ()
can be replaced by a type distinction over the dynamic type of o during symbolic
execution, resulting in method-body statements o .m() QU; enumerating the different
overriding implementations of m(). Again a new subclass with a new implementation
breaks the rule’s soundness.

It is evident from Definition 9.2 that a proof which is modularly correct for p can
also be conducted in p’ O p without adaptation.

Definition 9.3 (Modular Correctness). Let p be a program and C a set of contracts
(functional or dependency) for the declarations in p.

A program p is called modular correct if there exists a proof modularly correct
for p for every proof obligation for ¢ € C.

Lemma 9.4. Let p,p’ D p be programs and C a set of contracts for p and C' O C a
set of contracts for p' with C' ,=C

If p is modularly correct and there exist proofs for all proof obligations in p' \ p
against C', then p' is correct.

This means that once a library has been proved modularly correct, it can be used
in any context, and it suffices to prove the context correct against its contracts and
the contracts of the library to obtain a correct composed program.

As a consequence of definition 9.3, modular correctness proofs may only contain
method inlining for private or final methods which cannot be overridden. For general
method inlining, it is up to the verifying person to decide if they want to conduct a
proof for an open or for a closed program.

9.1.4 Verification of Recursive Methods

We turn now to the verification of recursive methods. The simplest version of a
recursive method is a method that calls itself, a pattern often found in implementations
of divide-and-conquer algorithms. Method get () in Listing 9.2, which retrieves the
n-th element of a list, is a typical example.

The issue which sets recursive methods apart from normal methods is that when
verifying their correctness, we are confronted with a situation that results in a
circular proof dependency. Assume we are verifying the correctness of the previously
mentioned get () method. During the verification we end up at the recursive method
invocation tail.get (idx-1). How can we proceed now (and also maintain modular
correctness)? Obviously applying the contract for this call of get introduces a circular
proof dependency, we use a contract whose correctness depends on the contract
currently been proven. Closely related, but not identical, is the topic of termination.
Next to loops, recursive methods are the other source for nonterminating programs.

One note of caution, in KeY we are oblivious to the method frame stack size.
Hence, for instance, a partial correctness proof for a contract requiring a method not
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to terminate with an exception may succeed even though a StackOverflowError
would be thrown in real life. In other words, when verifying a Java program, we
are only correct under the assumption that no concrete run of the program causes a
StackOverflowError to be thrown by the virtual machine.

In case of partial correctness the introduced proof dependency does not pose any
problem and we can apply the contract for the method, as already observed by Hoare
[1971]. Intuitively, that is sound for the following reason: When symbolically exe-
cuting the method, we explore all paths that do not lead to a recursive call, i.e., all
base cases are covered. Paths with recursive calls can then simply use the contract
performing the step cases from n 4 1 recursive invocations to n invocations. The only
problem is when the recursion is not well-founded, which would lead to an infinite
recursion. But in case of partial correctness, the validity of the contract is then a
triviality.

Let us turn to the case of total correctness. Its solution is similar to the treatment
of termination in loops: the user has to supply an expression as part of the method
contract which we call a termination witness. A termination witness is always
nonnegative and strictly decreasing with each call. In JML a termination witness is
specified using the keyword measured_by, see also Section 8.2.

Example 9.5. A call get (idx) of the get () method from Listing 9.2 retrieves the
idx-th element of the list as follows: if the argument’s idx value is O then the value
at the current list element is returned otherwise the method recursively retrieves the
(idx-1)-th element of the tail of the list. A reasonable choice for the termination
witness is the argument itself, namely,

@ measured_by idx;

which is obviously strictly decreased at each recursive call together with the pre-
condition that the value of idx must be nonnegative it follows directly that at each
recursive call site the value is strictly decreased and nonnegative.

In the process of verifying a recursive method the value of the termination witness
is captured by an equation in the prestate. When we then apply the contract we are
just about to prove, we have as part of the precondition to show that the value of the
termination witness is nonnegative and less than the captured value of the prestate.
This additional preconditions ensures well-foundedness w.r.t. the proof dependencies.

When the user or the system applies a method contract it should be clear if it
is a recursive method or not. How is this checked? The detection is trivial for the
examples above as we have a direct recursion. But what about mutual recursions or
what if an extension adds an (indirect) recursion—how do we maintain correctness in
such situations? The solutions is to track the contracts used in a proof. When applying
the method contract rule, the system checks if there exists a proof for the contract
depending (directly or indirectly) on the proof obligation we are currently verifying.
If a dependency is detected, the system allows the application of the contract rule only
if the contract in question is equipped with a measured_by clause and upon contract
application we require to show that the value of that expression is strictly less than in
the initial state of the current method. Thus, circular reasoning is avoided: Either the
dependency is unidirectional or the termination witness guarantees well-foundedness.
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We conclude this section with some words on the expressiveness of termination
witnesses and loop variants. In the above examples the termination witnesses are
always strictly decreasing integer expressions with lower bound 0. The KeY system
also allows the declaration of termination witnesses and loop variants of other
data types. The binary JavaDL predicate symbol <: T x T used in termination
proofs is axiomatized as a well-founded (Noetherian) relation. Besides supporting
integers, KeY comes with built-in axioms for lexicographic ordering of pairs and finite
sequences. One may, e.g., use the declaration measured_by i, j; with integer
expressions i and j. This will be interpreted as the lexicographical ordering of pairs
(i,7). In this case the definition of < requires to show that either i has decreased
strictly (while remaining nonnegative) or that i did not change and instead j has been
strictly decreased, i.e., (i1, j1) < (iz, j2) iff i1 < i V (i1 = i2 A j1 < j2). The relation
< can be extended to other data types, but it is then the user’s responsibility that the
axiomatization guarantees that < is well-founded.

9.2 Abstract Specification

Specifications in JML are relatively close to the implementation in comparison to
other specification mechanisms like OCL or Z that operate on abstract data. But even
if specification refer to implementation entities at source code level, abstraction and
modularization are indispensable for handling larger programs. Consider, for instance,
the interface List again. We have not yet stated specifications for its methods. Our
goal is to provide an interface specification that is amenable to modular specification
and verification, i.e., one which is robust to extensions of the implementation. This
puts us in a dilemma since such a specification must speak for parts of the software
which are not yet there but may be added in an extension. Therefore, it must not
expose implementation details.

A common approach is to use pure methods in specifications, see [Gladisch and
Tyszberowicz, 2013]. Listing 9.3 shows the example of the List interface, specified
using pure query methods. We can specify the behavior of all methods using the
two pure methods size () and get (). The query empty () checks is a list is empty,
which is true if its size (returned by the query size()) is zero. In the same way,
the specification of add () uses the pure method get (): The observable effect of
adding an element is that it can be retrieved again at the last position of the list, and
that the elements at all other positions of the list remain unchanged. Using queries
in specifications requires that every impure method lists the changes to all relevant
queries in its postcondition. The abstract value of a List object is thus ‘distributed’
over the two queries get () and size ().

Often it is more convenient for the specifier, however, if the abstract object state
is not only available through these methods but as an explicit artifact that can be
handled effectively.

To this end, JML offers model fields and model methods as specification-only
abstract representations of concrete implementation data; they have already been
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public interface List {
//@ public invariant size() >= 0;

/*@ public normal_behavior

@ ensures size() == \old(size()) + 1;

@ ensures get(\old(size)) == elem;

@ ensures (\forall int i; 1 <= i && i < size()-1;

@ get (i) == \old(get(i-1)));
@x/

public void add (int elem);

/%@ public normal_behavior
@ requires !empty();

@ ensures size() == \old(size()) - 1;

@ ensures (\forall int i; 0 <= i && i < size();

e get (i) == \old(get(i+1)));
@x/

public void remFirst ();

/*@ public normal_behavior
@ ensures \result == (size() == 0);
Qx/

public /*@ pure @*/ boolean empty ();

/*@ public normal_behavior
@ requires 0 <= idx && idx < size();
Q@x/

public /*Q@ pure @*/ int get (int idx);

public /*@ pure @*/ int size ();
}

Listing 9.3 Java interface List specified using pure methods

introduced briefly in Section 7.7.1, These mechanisms enable implementation hiding:
the requirement specification only refers to model fields while the abstraction relation
is part of the (hidden) implementation details. We will discuss model fields in
Section 9.2.1 and the more general concept of model methods in Section 9.2.2 below
in depth. Both concepts are deliberately close to actual Java (both syntactically and
semantically), which makes them more comprehensible for Java programmers.

It is natural to represent the abstract state of an instance of the interface List
as a finite sequence, and we will use the abstract data type (ADT) \seq introduced
in Section 8.1.3 for this purpose. \seq is an algebraic data type (a primitive data
type in Java terms). It comprises constructors for 1. empty sequence, 2. singleton
sequences, 3. sequence concatenation, 4. subsequences, and 5. comprehension, and
has random access and length observer functions. See Section 5.2 for details on the
corresponding theory in JavaDL.
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Example 9.6. Assume that the contents of a list can be abstracted to a \seq rep-
resentation of the list and that the entity theList holds this abstract value. Then
we can describe the addition of an element (as new first element of the list) as a
concatenation of a singleton sequence and the prestate sequence:

—JML

/*@ public normal_behavior
@ ensures thelist ==
@ \seq_concat (\seq_singleton(elem),\old(thelList));
ox/

public void add (int elem);

JML —

Analogously, the other modification methods can be specified using sequence
operations. The remaining question is: what type of program entity does the identifier
theList refer to in this example? Or, how does this ADT representation integrate
into the specification? One solution is to use model fields, as explained in the
following.

9.2.1 Model Fields

Based on the idea of abstract variables by Hoare [1972], JML provides model fields
[Leino and Nelson, 2002] as a means of abstraction from the concrete program state
in a syntactically convenient form (i.e., as fields in a class; see also Section 7.7.1).
Together with modeling-only types such as sequences, model fields allow us to give
abstract interface specifications.

It is not possible to assign values to model fields, they do not have a proper,
modifiable state space of their own, but they observe the state space spanned by
heap memory by computing a value from values on the heap. The relation between a
model field and the state, i.e., the abstraction relation, is specified through represents
clauses. A model field can be defined by a functional relation where the field’s name
is followed by the assignment operator = and an expression compatible with the
type of the model field. A more general relational form is also available and uses
the keyword \such_that followed by a Boolean expression. Model field definitions
may refer to Java entities as well as to other specification-only entities like other
model fields. In general, the abstraction relation needs not be total, i.e., not every
concrete object needs to possess an abstract value. For instance, the model field x
defined via represents x = x+1 has an empty abstraction relation; no instance
has an abstract value.

We will use the term concrete field to denote both Java fields and JML ghost
fields (see Section 7.7.2) in order to distinguish them from model fields. Even
though model fields syntactically resemble concrete fields, their semantics is closer
to methods. The model field declaration corresponds to a method declaration as
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the public interface and the represents clause corresponds to an implementation. If
model fields have publicly observable properties, they need to be specified in class
invariants. In contrast, ghost fields behave like ‘real” Java fields that can only be used
within the specification.

9.2.1.1 Example: List Specification with Model Fields

To specify the abstract behavior of the List interface, we introduce a model field
theList as shown in Listing 9.4. It is a member of this interface and can be referred
to in specifications like a concrete Java field Model fields declared in classes are
instance members by default as for concrete fields. Model fields declared in interfaces
are class members by default. This can be overridden by the modifier instance.

Now all operations declared on lists can be specified in terms of this model field.
For instance, the postcondition to method add () on line 4 in Listing 9.4 states that
an element is added to the front of the sequence, or more precisely that the sequence
in the poststate is a concatenation of the singleton sequence containing the element
with the sequence in the prestate.

Note that the two queries get () and size () which were basic operations in the
query-based specification in Listing 9.3 are now also specified in terms of the model
field. Thanks to the abstract data type, this specification is very concise and intuitive.

In the concrete implementations of the interface, a represents clause specifies
the abstraction relation. Listing 9.5 shows an implementation of ArrayList, which
internally uses an array to store the list elements. The add and remFirst methods
increase/decrease the size every time and copy all elements one place to the right/left.
This is not very efficient, but serves its demonstrative purpose here. The model field
is represented by the elements of the array (as a sequence):

represents thelList = (\seq_def int i; 0; size; alil);

Now that we have a working implementation for List, we can verify the methods
in ArrayList against the abstract contracts given in List and linked through the
represents clause for theList. Given adequate loop invariants for add/remFirst,
all method implementations can be verified completely automatically with KeY. We
turn our attention to the second implementation of the List interface through the
class LinkedList in Listing 9.1. Here we need a recursive represents clause i.e., a
represents clause that refers to the same model field theList again.

A list’s abstract value is defined by the tail’s model field’s value—or the empty
sequence if tail is a null reference. This leads to the following represents clause in
class LinkedList

represents thelList = tail==null? \seq_empty: tail.thelist;
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public interface List {
//@ public instance model \seq thelist;

/*@ public normal_behavior {}

@ ensures thelList == \seq_concat(\seq_singleton(elem),
¢ \old(theList));
@x/

public void add (int elem);

/*@ public normal_behavior
@ requires !empty();
@ ensures thelList == \old(theList[1..theList.lengthl);
@x/

public void remFirst Q;

/*@ public normal_behavior
@ ensures \result == (size() == 0);
@x/

public /*@ pure @*/ boolean empty ();

/*@ public normal_behavior
@ ensures \result == thelList.length;
@x/

public /*@ pure @/ int size ();

/*@ public normal_behavior
@ requires 0 <= idx && idx < size();
@ ensures \result == (int)theList[idx];
Qx*/
public /*@ pure @/ int get (int idx);
}

Listing 9.4 Interface specification using a model field

This is overridden by
—Java+ JML
class LinkedListNonEmpty {

/*Q@ private represents thelist =

@ \seq_concat( \seq_singleton(head),
@ tail==null? \seq_empty: tail.thelist);
@x/

Java + JML —
in the subclass LinkedListNonEmpty. It is here that the head attribute is available.
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public final class ArraylList implements List {

private int[] a = new int[0];

/*@ private represents theList =
@ (\seq_def int i; 0; a.length; alil);
@x/

public void add (int elem) {

int[] tmp = new int[a.length+1];

/*@ maintaining O <= i && i <= a.length;
@ maintaining (\forall int j; i < j && j <= a.length;
@ tmp[j] == \old(alj-11));
Q@ decreasing i;
@ assignable tmp[*];
@x/

for (int i= a.length; i > 0; i--)

tmp[i] = al[i-1];
a = tmp;
a[0] = elem;

}

public void remFirst () {

int[] tmp = new int[a.length-1];

/*@ maintaining 0 < i && i <= a.length;
@ maintaining (\forall int j; 0 < j && j < i;
@ tmp[j-1] == \old(al[jl));
@ decreasing a.length - i;
@ assignable tmp[*];
@x/

for (int i= 1; i < a.length; i++)

tmp[i-1] = alil;
a = tmp;

}

public boolean empty ()
return size() == 0;

3

public int size () {
return a.length;

3

public int get (int idx) {
return alidx];
}
¥

Listing 9.5 ArrayList implementation of the List interface

305
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9.2.1.2 Semantics of Model Fields

The semantics of model field is given by a set of logical axioms that arise canonically
from the represents clauses [Weif3, 2011]. In JavaDL terms, model fields (as well as
calls to pure methods) are represented by observer symbols (called location dependent
symbols by Beckert et al. [2007], Bubel [2007]). The intuition is that they ‘observe’
a set of locations on the heap and compute a value from them. The parameters differ
between the different kinds of observer symbols; model fields have the heap and the
receiver object as sole arguments®. Boolean model fields are translated to observer
predicates, model fields of all other types become observer functions.

Definition 9.7 (Observer symbol). An observer symbol is either a function symbol
f:Heap* x T x Ay x --- x A, — A’ € FSym or a predicate symbol p : Heap* x T x
A| X --- XA, € PSym where T C Objectand k,n € N, k > 1.

Observer symbols formalize heap-dependent functions, hence, all have in common
that they take one or more parameters of type Heap .

The fundamental difference between regular Java fields and JML model fields
becomes apparent when their translations to JavaDL are compared; which will be
done here by an illustrative example:

Example 9.8. Consider the class fragment

—— Java + JML
class C {
int f;
//@ model int mf;
}

Java + JIML —

in which a regular Java field f and a model field mf are declared. If c is a variable of
type C, then the field references are translated to JavaDL as follows (remember from
Section 8.1 that |- | is the translation from JML to JavaDL):

|c.f]| = select;y (heap, |c|,C::f)
|c.mf | = C:mf(heap, |c])

While the one access c . £ becomes a heap read access, the other c .mf is translated
into an application of the according observer symbol. We silently omit the class prefix
from the verbose symbol names C::f and C::mf and use f and mf in the following if
the context is clear.

Do not confuse concrete fields and model fields: To make proof obligations more
legible in KeY, the pretty printing mechanisms are the same for both expressions,
yielding the seemingly structurally equal terms c.f and c.mf in the logic. If the heap
in which the fields are evaluated is not the default heap, but a term /4, then the accesses
read c.f @h and c.mf @h.

6 Without loss of generality, we only cover instance observers here.The static case is similar, only
lacking the receiver object parameter.
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Observer symbols are the entities that carry the value of model fields, however the
value returned by them is not constrained yet. It is the represents clause for the model
field which provides this constraint on the side of JML. Two types of represents clau-
ses were introduced in Section 9.2.1, functional and relational. To ease the presenta-
tion in this section, we regard a functional clause represents mf = def as a short-
hand for the general relational form represents mf \such_that mf == def.
The defining represents clauses give rise to JavaDL axioms thus fixing the meaning
of the observer symbols.

Definition 9.9 (Represents axiom). Let m : Heap x C — A € FSym be an ob-
server function’ symbol representing a model field m defined in type 7. Let
represents m \such_that rep be the definition of m in type T’ C T. The repre-
sents axiom is the formula

VHeap h;NT' o; (exact[nstanceT/(o) = TRUE —
{self := o/ heap := h}(inRange, (m(h,0)) A [rep])) (9.1)

where self € PVar is the program variable to which this is translated in JavaDL.

The type restriction inRange, (m(h,0)) ensures that the model field’s value is always
valid and not an unallocated object or an integer out of range.

Example 9.10. Consider the class fragment of Example 9.8; now augmented by the
JML clause

//@ represents mf = f;

which binds the value of the model field mf directly to that of the Java field f.
Whenever c. f changes for an object ¢ of type C, the value c.mf silently changes as
well. In the logic, this coupling is fixed in a represents axiom which is equivalent to

VHeap h;¥C c; exactlnstancec(c) = TRUE — mf (h,c) = selectin(h,c,£) .

This axiom cannot compromise consistency of the logic since it provides a definition
for the symbol mf in form of a conservative extension.

In general, represents axioms need not be conservative extensions and may intro-
duce inconsistencies. Keep in mind that with an unsatisfiable axiom any statement—
even ‘“false”—can be proved valid.

KeY provides some measures to prevent the introduction of most obvious con-
tradictory represent axioms. As a first measure against unsatisfiability, Weil3 [2011]
proposes to restrict the represent axiom to situations where |rep| is satisfiable, i.e.,
axiom (9.1) is replaced by the conditional formula

7 If m is a Boolean model field, it is represented by a observer predicate symbol m : Heap x T € PSym
instead of a function symbol. The definition remains the same.
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VHeap h;VT' o; (exactlnstancew (0) = TRUE N\
(3R r;{self := o| heap := h}|rep[self .m/r]]) —
{self :=o||heap := h}(inRange, (m(h,0)) Am(h,0) = |rep])) (9.2)

in which rep[self.m/r] denotes the represents clause in which every occurrence
of the model field m is replaced by the quantified variable r of type R which
is the value type of the model field. This prevents that represents clauses like
represents m \such_that m!=m lead to immediate inconsistencies. The value
of m(h,o0) is defined only if the represents clause is satisfiable—and it remains
underspecified if rep is not satisfiable.

Not only relational represents clauses can be unsatisfiable, also a functional
clause can be unsatisfiable if it employs nonprimitive recursion, like, e.g., in
represents m = m+1. However, the guard introduced in (9.2) can only guarantee
local satisfiability for individual clauses. It may still occur that multiple repre-
sents clauses contradict each other. In particular, a contradiction may arise from
mutually recursive represents clauses. Consider, e.g., a case with two int fields x
and y with the two represents clauses represents x \such_that x > y and
represents y \such_that y > x, in which the values of x and y mutually de-
pend on each other. Both are obviously satisfiable on their own, but their conjunction
is not. Later in this chapter, we will explain how to deal with recursive represents
clauses in order to further mitigate the issue of unsatisfiability.

If inconsistencies are brought into the system through represents clauses, this is
not a soundness issue of the calculus. The axioms are part of the specification and
thus reflect the intention of the specifier to whom it is up to account for his or her
axioms. This is a very liberal view on the matter with one important consequence:
When reviewing the specification of a program, it is vital to inspect all represents
clauses annotated to the program since they may introduce inconsistencies into the
specification rendering it entirely worthless. As we will see later in Section 9.2.2.3 a
different decision has been taken for the semantics of model methods: Their (possible
recursive) computation must always terminate, the functions they define are thus
always consistent conservative extensions.

9.2.1.3 A Model Field for Class Invariants

There is one model field which receives special treatment and is considered “built
in” by the KeY system: It is called \inv, of type boolean, and declared in class
Object. This model field is used to model class invariants (also called object invari-
ants, see also Section 7.4.1 on how to use them in JML). The KeY dialect of JML
deliberately deviates from standard JML semantics in this respect because the model
field formalization integrates better with the dynamic frames approach taken by KeY
(which is explained in the upcoming Section 9.3).

Standard JML implements the visible state semantics for class invariants which
requires that the invariants of an object 0 must hold in a state s if s is a poststate of a
constructor call on o, if s is a pre- or poststate of a method call on o, or if no call on
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o is in progress. This allows invariants to be broken temporarily, as long as a method
is in the process of being executed on the object for which the invariant is broken.

The problem with this definition is that the set of methods being executed when
entering m is not a property of m itself, or the current heap state. Rather, it is a property
of a particular call to m. A modular verification attempt of m independently of the
rest of the program is not able to know which other methods are already on the call
stack when entering m. Thus, the only invariants that can safely be assumed to hold
in the beginning are the invariants of the receiver object this which is a very weak,
often insufficient assumption. This problem can be mitigated by means of combining
visible states with ownership approaches, a few of which are listed in Section 9.6.

In KeY-JML specifications have to state explicitly which object invariants are
expected to be satisfied using the (standard JML) keyword \invariant_for. Only
the invariant for the receiver object this of a method is by default implied by both
precondition and postcondition of a method (see Section 8.2.1.2).

Note that, to formulate that the invariant of object o holds, two equivalent notations
can be used: o.\inv is the same as \invariant_for (o) (while only the latter is
defined in standard JML).

All calculus rules which are applicable to model field apply to \inv as well.
However, the definition of invariants works differently and this allows more modular
inference rules. Both advanced aspects are explained in Section 9.4.5.

9.2.1.4 Calculus Rules for Model Fields

Like the other kinds of axiom, the axioms generated from represents clauses can
also be expressed as rules instead of as formulas. For every class D that declares a
represents clause rep for a model field m the following rule repp ,, is available.

I', exactlnstancep(d) = TRUE, {heap :=h| self :=d}rep = A

, repp,m
I, exactlnstancep(d) = TRUE = A

Even though rule repp ,, can be applied to any sequents with exactInstancep(d) =
TRUE in the antecedent, the application in KeY is triggered by an occurrence of an
application m(h,d) of the observer symbol m on either side of the sequent. Because
the rule matches against d being an exact instance of class D, there is at most one
applicable rule. The rule is an obvious adaptation of the represents axiom (9.3) in
Definition 9.9.

For functional clauses of the form represents m = def, we can also use the
conditional rewriting rule repSimplep ;,

m(h,d) ~ {heap := h|| self := d}def
if exactinstancep(d) = TRUE = on the sequent.
The rule repSimplep , allows replacing references to a model field by its defini-

tion def directly. This is more efficient in practice than adding an equation to the
antecedent. Applying repSimplep ,, repeatedly to a recursively defined model field
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would result in a infinite expansion of the proof sequent. The proof strategy in KeY
is designed to apply recursive definitions very sparsely and only up to a certain depth
to avoid infinite recursion expansion.

The type restriction from Definition 9.9 is not represented in these rules. Instead,
there is a separate rule

I',inRange, (m(h,d)) = A
I'=A
that can be applied whenever the observer symbol m(%,d) of type A appears in the
sequent ' = A.

KeY offers a taclet option modelFields : showSatisfiability (see p. 530 for details
on taclet options) to control whether local satisfiability is to be checked upon us-
ing a represents clause. If this option is activated, the rules rep/repSimple have an
additional premiss implementing the existential quantifier from (9.2). Proving lo-
cal satisfiability usually makes proofs more complicated. Moreover, as mentioned
earlier, local satisfiability is only an heuristic measure that cannot always guarantee
consistency.

OnlyCreatedObjectsObserved

9.2.1.5 Discussion

Model fields are a powerful and often welcome specification instrument. It is however
debatable whether general nonfunctional model fields may not create more problems
than they solve.

For consistency one would have to prove simultaneous satisfiability of all repre-
sents clauses in the system. This is currently not enforced in KeY, it is not modular,
and one may doubt whether that will ever be practical. Thus, the responsibility to
work with a consistent set of axioms rests on the specifier. A theoretical alternative is
presented in [Beckert and Bruns, 2012] that evaluates all model fields simultaneously
and checks for global satisfiability of represents clauses. It avoids inconsistencies
in the logic through underspecification. The practicality of this approach is under
investigation. For model methods consistency must always be shown by means of
termination witnesses (see Section 9.2.2.3).

In case of generalized relational \such_that represent clauses, there may be
more than one possible value. But, since model fields are represented by functions in
the logic, evaluation is deterministic and only depends on the heap and the receiver. to
a model field. When the model field is evaluated several times in the same heap, it has
the same value. In particular, classical logic equations like m(heap,o0) = m(heap, o)
are still valid. If the heap changes slightly, the model field value may be different.
Dependency contract rules (see Section 9.4.4) can be used to prove that its value
stays the same if it does not depend on the changed fields.

Using objects of reference type for abstract object states is problematic since they
must point to objects that exist on the concrete heap. This means that represents
axioms may postulate the existence of such object, which is another source of
potential inconsistency.

From our experience, we recommend to use functional represents clauses only.
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9.2.2 Model Methods

In JML expressions, one can not only refer to fields but also to invocations of pure
methods. Moreover, JML allows the definition of model methods which are—quite
analogous to model fields—method declarations to be used in specifications only.
Like model fields, model methods do not reside in locations on the heap but compute
a value which depends on the values of locations on the heap—they are observer
symbols.

As pointed out by Mostowski and Ulbrich [2015, 2016], JML model methods are
a generalization of JML model fields and go beyond them in several respects:

1. They are parametric, i.e., they can take arguments like Java methods.

2. Method contracts can be specified for model methods like for Java methods.

3. Model methods can be used to abstract from expressions which are evaluated in
more than one state (so called two-state predicates).

4. Model methods always define conservative extensions. Their definition is given
by a constructive method body, and they are required to always terminate
(diverges false). This implies that their definitions are well-founded and
no inconsistencies are introduced.

A JML model method and its contract are stated like all other JML constructs
within special JML comments. A model method definition in KeY follows the
following general schema (all clauses in [. . .] are optional)

class C {
/*@ model_behavior
@ [requires pre;]
[ensures post;]
[accessible acc;]
[measured_by mby;]
[two_state] [no_state]
model R m(Ty p1, ..., Tn pn) {
return exp;

8

©@ 0 0 b o 0

}
/

)

*
}

This pattern allows only for those model methods whose body consists of a single
return statement, a restriction which simplifies the treatment of a model method in
the logical context as it avoids the evaluation of the method body using a JavaDL
modality. Later in this section, we will see that the concept of model methods can
be generalized to method bodies with real control flow, but the presentation in this
section and the implementation in KeY follow the above pattern.

As for pure Java methods and for JML model fields, a model method declaration
gives rise to an observer symbol (see Definition 9.7) in JavaDL. For the above
declaration, a observer function symbol C::m is introduced to represent the model

8 The keyword model_behavior is not strictly required but the specifier is encouraged to use it.
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method in JavaDL. Leaving aside the two-state modifier for the moment, its signature
isCim: Heap xCx Ty x...xT, —R.

Semantically, the evaluation of a model method invocation is coupled to the
expression exp in the return statement by the following definition axiom which
refines the general represents axiom (9.1) for observer symbols from Definition 9.9:

VHeap heap,C self, Ty pi,..., Ty pn;
exactlnstancec(self) = TRUE A |pre| —
C::m(heap,self,pi,...,py) = lexp]) (9.3)

The formula, as shown, violates the JavaDL restriction that program variables, in
this case heap and self, cannot be quantified. But, to make formulas in this section
more readable, we take the liberty to write VHeap heap; ¢ as an abbreviation for the
formula VHeap h;{heap := h}¢.

The function symbol C::m is determined by the class (or interface) C in which
the method m has been first declared. All method definitions overriding that initial
declaration refer to the same function symbol (and not to a new symbol). Constraining
the same function symbol thus realizes the dynamic dispatch of model methods. That
is, the function symbol is always the same, while its meaning is implied by the exact
type of self changes.

For a subclass C’ of C overriding m, another axiom of shape (9.3) is added for
C::m, with the typing guard changed to exactlnstancec:(c) = TRUE. If C' chooses not
to override m, an axiom is added as if the definition with the body of the superclass-
method had been repeated, which matches programmers’ expectations as it is the
same behavior as for Java method declarations. The guards exactlnstancec (self) =
TRUE ensure that the definition only applies if the receiver object self is exactly
of the defining type. These typing guards make sure that (possibly contradicting)
definitions of C::m constrain different parts of its domain and that definitions are
not automatically inherited. Unlike model fields, the definition of model methods
may be additionally constrained by a precondition. It is not strictly necessary to
restrict the domain in which C::m can be applied, but we decided that it is better
to allow a specifier to say when a model method is defined. Also to deal with the
well-definedness and well-foundedness (see Section 9.2.2.3), it is important to limit
the definition to those situations for which it is well-defined.

Since our model method body (see above) consists only of a single side-effect-
free return statement, definition (9.3) can make use of its expression directly. If a
one-state model method did have a nontrivial method body, the above axiom would
need to involve a dynamic logic operator and read

VHeap heap,C self, T pi,...,T, pn;
(exactinstancec(self) = TRUE A | pre] —
[res = self.m(pl,...,pn);} (C:m(heap,self,pi,...,py) = res)) ,
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ensuring that the value of the function symbol is the same as the result value of
the method call. This formula points out a crucial advantage of dynamic logic in
comparison to other program logics like wp-calculus or Hoare calculus: dynamic
logic is closed under all its operators which allows us to state the quantified program
formula directly in JavaDL, and not on a meta-level. The dynamic logic thus also
allows us to seamlessly extend the presented approach to nonmodel queries.

Besides its method body, a model method may also have a functional contract (in
its postcondition). Unlike the body which defines the value of the function symbol,
the contract describes a property of the symbol and is not an axiom, but a theorem.
To establish the correctness of the contract theorem, it suffices to prove that the
definition makes the postcondition true, i.e., that

VHeap heap,C self, T\ pi,..., T, pn;
(exactInstancec(self) = TRUE A | pre| —
{res:=C:m(heap,self,pi,...,pn) }|post]) . (9.4)

follows from axiom (9.3). If (9.4) is shown for every class C’ extending C (with a
corresponding type guard), the statement is shown for all conceivable instances of
C. Therefore, when using the proved contract as additional assumption, it is save
to omit the type guard exactlnstancec(self) = TRUE from (9.4). This approach is
still modular, however: The verification of C happens independently of that of its
subclasses. At the time of verification, one can even be oblivious to the existence of
subtypes.

The properties of model fields cannot be specified in contracts, they need to be
captured in class invariants. Model method contracts have one crucial modularization
advantage over formalizing properties in invariants: While the former are proved
once and for all in a separate proof obligation, the latter need to be reproved whenever
the invariant needs to be reestablished.

9.2.2.1 Two-State Model Methods

As has been mentioned before, the expressive power of model methods goes beyond
that of Java methods and model fields in that more than one state can be referred to
from a method body or contract. The number of accessible heaps is not limited in
theory, but in practice three types of model methods have proved useful:

* No-state model methods can be used to formalize mathematical statements which
are not heap-dependent at all. A query which checks if a sequence (of type \seq)
is duplicate-free would be an example for a no-state model method. In KeY the
JML modifier no_state can be used to mark a model method heap-independent.

e One-state model methods are like regular Java methods or model fields bound to
a single evaluation context. This is the default if no state modifier is annotated to
the method
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* Two-state model methods are evaluated in two evaluation contexts. They are
valuable where two-state predicates need to be specified which formalize the
relationship between the before- and the after-state of an operation. In KeY-JML,
two state. methods are annotated with the modifier two_state.

No-state model methods are not really observer functions since they do explicitly
not dependent on the heap. Two-state model methods, however, are observers that
receive two heap arguments (k = 2 in Definition 9.7). We show how the representation
axiom (9.3) needs to be adapted to the two-state case; the other conditions are
analogous.

VHeap heap, Heap heap,,C self,Ti pi1,..., T, pu;
(exactInstancec(self) = TRUE A |pre| —
C::m(heap,heap,,self,pi,...,p,) = {heap”” :=heap, }|exp|) (9.5)

The second heap heap, is thus automatically mapped to the prestate heap which is
accessed from JML via the \old operator.

The translation of a reference to a two-state model method in JML to JavaDL
remains to be defined. This extends the translation outlined in Section 8.1.2.4 such
that we have for a one-state model method osm and a two-state model method zsm
defined in class C that

lo.osm(pi,...,pn)] = C::osm(heap, |o], |pi],---, | Pn])
lo:tsn(p1,..., pa)] = Ciitsm(heap,heap”™, [o], [p1),--, [pl) -

Note how the heap arguments need not be specified in the JML specification but are
added during the translation. The second heap heap, is automatically mapped to the
prestate heap heap””.

Example 9.11. Consider the program given in Listing 9.4 once more. To showcase
a very simple application scenario for two-state model methods, assume that the
specifier wants to capture the difference in the length of the abstraction between
before and after an operation into a model method sizeDiff ():

—JML

/*@ model two_state int sizeDiff() {
@ return theList.length - \old(theList.length);
Q }
@x/

/*@ normal_behavior
@ ensures sizeDiff() == 1;
ex/

void add(Object o);

JML —
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class Cell { class Recell extends Cell {
int val; int oval;
/*@ ensures \result == val; @*/ /*@ ensures val == oval; @x/
int /*@ pure @/ get() { void undo() {
return val; val = oval;
} }
/*@ ensures val == v; @*/ /*@ ensures oval==\old(val); @x/
void set(int v) { void set(int v) {
val = v; oval = val;
} super.set(v) ;
} }
}
class Client {
/*@ ensures c.val == v; @*/
static void callSet(Cell c,int v){
c.set(v);
}

}

Fig. 9.2 Listings of Cell/Recell example

Note how \o1d is used to refer canonically to the second heap.

Using such two-state model methods makes obviously only sense when the model
method is only invoked (referred to) in places where two states are imminently
present: for instance in postconditions of method contracts (but also signals clauses
or history constraints)

9.2.2.2 Dynamic Dispatch for Contracts using Model Methods

The possibility to override the implementation of a method defined in a super-
type is the essential polymorphism feature of the object orientation paradigm. The
mechanism which chooses at runtime the implementation to be taken for a method
invocation is called dynamic dispatch. Also in the context of design-by-contractand
behavioral subtyping, different implementations for the same operation can coexist—
if they adhere to a common specification. It is most natural that not only the imple-
mentations but also the specifications vary from subtype to subtype, for instance
by adding implementation-dependent aspects. This dynamic dispatch mechanism
should, hence, also be available for the formulation of formal specifications in an
equally flexible way.

Instead of spelling out the definition of this specification element, it should be
possible to refer to it symbolically. Only when the dynamic type of the object is
known, one also knows the actual contract definition.
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We motivate and explain our specification approach by means of a small Java
example, shown in the listings in Figure 9.2. Another example (modeling the visitor
pattern) and a larger case study (modeling symbolic permissions) can be found in
[Mostowski and Ulbrich, 2015].

The challenge presented here has originally been proposed by Distefano and
Parkinson [2008] and has been dealt with by Bengtson et al. [2011] using a higher-
order separation logic. The listings in Figure 9.2 show the program annotated with
traditional specification means. Cell objects encapsulate integer values which can
be set using a method set and be retrieved using get. The class Recell, which
extends Cell, allows an additional one level undo operation which restores the cell
value to the state before the most recent call to set. The class Client provides a
method callSet which indirectly calls the set method of the Cell argument it
receives. This particular indirection may seem artificial, but indirection is a very
natural phenomenon in object orientation, e.g., in a situation where this operation is
done only conditionally or after some locks have been acquired or in combination
with other operations.

The contract of callSet copies the postcondition of Cell.set literally. It does
not guarantee the stronger postcondition of Recell. set if the argument is of type
Recell. The present contract does not suffice to verify the following test case:

— Java
Recell rc = new Recell();
rc.set(4);
Client.callSet(rc, 5);
rc.undo();
assert rc.get() == 4;

Java—

While this program would not fail its assertion, the proof for that would not succeed
as the abstraction of callSet by its contract neglects the additional postcondition
oval == \old(val) introduced in Recell and only ensures the weaker postcondi-
tion of Cell.

This could be amended by introducing case distinctions on the type of the argu-
ment in the postcondition of Cell.set. This could be achieved by an additional
clause ¢ instanceof Recell ==> ((Recell)c).oval ==\old(c.val)s. How-
ever, it has significant limitations regarding the modularity of the specification:
(1) Details on the implementation of Recell are revealed where it is not necessary
and should be kept under the hood and, more severely, (2) the implementation of
Recell might not yet be known at the time that Cell is implemented or speci-
fied. Assume Cell and Client are part of a library and Recell is a user-written
extension. How can the library account for all potential extensions?

This is precisely where abstract predicates in the form of model methods can be
used to solve the issue. In the listings of Figure 9.3, the example has been reformulated
using a model method post_set (lines 4-8) formalizing the postcondition of the
method set (used in line 15). The model method has a body which defines its value.
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class Cell { class Recell extends Cell {
int val; int oval;
/*@ ensures \result ==> get()==x; /*@ model two_state
@ model two_state boolean post_set(int x) {
boolean post_set(int x) { return super.post_set(x) &&
return val == x; oval == \old(get());
} ex/ } ex/
/*@ ensures \result == val; @*/ /*@ ensures get()==\old(oval); @x*/
int /*@ pure @x/ get() { void undo() {
return val; val = oval;
} }
/*@ ensures post_set(v); @x/ void set(int x) {
void set(int v) { oval = get(); super.set(x);
val = v; ¥
} }
}

Fig. 9.3 Listings of Cel1l/Recell example annotated with model methods

In this case, it returns true if and only if its argument x is equal to the value stored in
field val. Looking at class Cell alone, no semantic change has been done.

Things change when the class Recell is again added to the scenario. In Recell,
the model method post_set is overridden and adds a condition to the result obtained
by Cell.post_set. By redefining the predicate locally for all instances of class
Recell, the semantics of the contract Cell.set has now also changed, although
syntactically it is the same. As the contract refers to the postcondition only sym-
bolically, its semantics is left open and can be redefined by an implementing class.
Furthermore, post_set makes use of its two_state declaration in class Recell as
the definition relates values from two execution states, namely \old(get()) and
oval. The two states that this definition refers to are the pre- and poststate of the
method set.

The redefinition of post_set in Recell cannot be arbitrary, however. The model
method has got a contract (line 4) saying that whenever its result is true, the condition
val == x needs to hold. All overriding implementations need to obey that contract,
but may add to it. This ensures behavioral subtyping.

The above example test case can be proved correct if the model method invocation
c.post_set (v) is used as postcondition for Client.callSet abstracting away
from the actual definition of the postcondition.

Model methods can also be used to modularly specify framing conditions (using
dynamic frames, which will be discussed in Section 9.3.2 below). Listing 9.6 shows
the scenario including frame conditions where the frame has been abstracted by a
single state model method footprint ().

Note how this method is used to specify the part of the heap on which the cell
operates. The actual shape of this set of locations is different in the two classes; this
can be addressed by giving the exact definition for footprint () in the correspond-
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ing classes. To provide global constraints on the footprint we can specify a contract
for this model method. In the example we added an upper and a lower bound for the
location set.

class Cell {
int val;

/%@ accessible \nothing;
@ ensures \subset(\result, this.x) &&
\subset (\singleton(this.val), \result);
model \locset footprint() {
return \singleton(this.val);

} ex/

/*@ accessible footprint();
@ ensures \result ==> get()==x;
model two_state boolean post_set(int x) {
return get() == x;

} ex/

/*@ accessible footprint();
@ ensures \result == val; @*/
int /*@ pure @x/ get() { return val; }

/*@ ensures post_set(v);
@ assignable footprint(); @*/
void set(int v) { val = v; }

}

class Recell extends Cell {
int oval;

/*@ model \locset footprint() {
return \set_union(this.val, this.oval);

} ex/

/*@ model two_state
boolean post_set(int x) {
return super.post_set(x) &&
oval == \old(get());
} ex/

/*@ ensures get() == \old(oval);
@ assignable footprint(); @*/
void undo() { val = oval; }

void set(int x) {
oval = get(); super.set(x);
}
}

Listing 9.6 Cell/Recell annotated with footprint specifications
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9.2.2.3 Model Methods and Termination

Showing termination for programs is optional; analyzing the partial correctness
problem alone can be a challenge already. For the definition of model methods,
however, termination is a central point that must not be omitted. A model method
definition gives rise to a universally quantified axiom claiming that the function
has certain properties even if it may be unsatisfiable. Consider for instance the
problematic declaration

class X { /*@ model int bad() { return this.bad() + 1; } @x/ }
for which the model method would be translated into the axiom

VHeap heap, X self;(exactlnstancex(self) —
X::bad(h,self) = X:bad(h,self)+1),

which is obviously inconsistent. Consistency can be guaranteed if termination
(or well-foundedness) of all recursive method references is checked. Here, the
measured_by clauses are employed to avoid such unsatisfiable recursive defini-
tions. We require that all definitions are primitive recursive. The termination witness
mby specifies for each method a termination measurement which must be decreased
in all referenced (model) method invocations in exp. To this end, an additional proof
obligation per model method is generated to ensure this. Assuming that the termi-
nation witness of a model method referenced in exp is mby', it has to be shown that
mby' is a strict nonnegative predecessor of mby, i.e., 0 < mby < mby.

In practice, one may also encounter mutually recursive definitions of model meth-
ods. In this case simple integer expressions as termination clauses are in general not
sufficient. For that reason, we additionally allow tuples of integer expressions with a
standard lexicographic order to serve as termination clauses and the above mecha-
nism is modified accordingly to check the lexicographic ordering of the expressions
instead, see also the last paragraph of Section 9.1.4 on page 300. Furthermore, to
weaken the resulting proof obligations, we use left-to-right evaluation similar to that
of well-definedness checking described in Section 8.3.2. Thus, expressions in return
statements only need to decrease the termination witness if a prefixing guard is true.

9.3 The Frame Problem

For modular static verification, where we assume that the program may be extended,
even the goal to check the correctness of individual program parts locally—that
is, without considering the program as a whole—puts higher demands both on
specifications and on the specification language itself than for approaches working
under a closed program assumption. This sets modular verification apart from runtime
checking. JML pledged to satisfy the additional demands of modular verification,
but the classical static frame annotations fall short of this goal. Weif3 [2011] presents
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a solution with an extension to the framing concept of JML, based on the dynamic
frames approach by Kassios [2006, 2011]. Dynamic frames is a flexible approach for
framing in the presence of dynamic data structures and data abstraction. Compared
with alternative solutions, such as data groups [Leino, 1998], the advantages of this
approach are its simplicity and generality.

9.3.1 Motivation

In object-oriented programming, data is organized in pointer-based data structures
in which references from one object reach out to other objects in the memory, thus
combining individual parts of the memory to complex compound data networks.
The structure built up by the references is usually not limited by the programming
language. In particular, the Java programming language does not pose any restrictions
(other than by its type system) on how objects may refer to one another. There are
many reasons to employ references between objects: They may point to objects
which constitute a separate subpart of a larger structure. References may be used
for efficiency reasons like in caches, to point into areas which are shared between
various components. One direct consequence of the ability to have arbitrary pointer
chains leading from one to another object is that effects of a piece of code cannot be
assumed to be local to some object. The code may follow references on the heap and
may potentially modify parts of the memory which are seemingly ‘far away’ from
the original starting point. If an item is added to a collection that is kept as a heap
data structure, for instance, it seems natural to assume that the content of a second,
different list, would not be affected by such an action. But there are implementations
which deliberately share data between collection instances to save memory. A glitch
in such an implementation may indeed result in the modification of more objects
than intended and their independence may not always silently be assumed.

It is thus an obligation of formal specification and verification to name the places
in memory to which a piece of code has read or write access. An alternative to stating
which part of the memory a program may look at or modify is to explicitly state what
a program must not touch. While this seems like a viable alternative at first glance, it
bears many issues concerning modularity: A specification cannot be local since it
would have to include that a very distant part of the memory remains unchanged by
the code. It may also not be open to extensions of the program because a specification
cannot possibly talk about memory entities which are only to be included in an
extension of the program.

We will now demonstrate these general concerns by an example. We consider in
Listing 9.7 a simple client to our running List class example. A client object holds
references to two list instances. The m() method adds an element to one of them.
The question is how to prove the postcondition that states that the other list has not
changed in size. We have to add the precondition that a and b do not alias, otherwise
the postcondition could never be valid.
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class Client {
List a, b;

//@ requires a != b;
//@ ensures b.size() == \old(b.size());
void m() { a.add(23); }

}

Listing 9.7 Client code using two instances of the List interface (from Listing 9.9)

As we have seen above in Section 9.1.2, a correct implementation of add () must
satisfy the postcondition that the passed element has been added to the list. This
is an impartial description of the method’s behavior. For our particular situation
here, however, we aim for the property that a.add () does not do anything harmful
to b—that, besides the given functional property, “nothing else changes” [Borgida
et al., 1995]. Such a property is usually expressed as a set of locations to which the
method may write at most, called the frame of the method and a set of locations on
which the result of a query depends at most, called the footprint.

Listing 9.8 shows the client specification with framing. One problem we encounter
when trying to specify its frame, is that we need to address the concrete locations on
which the method depends and to which it writes. This means that we have to expose
the nature of the contained list, i.e., which implementation of the List interface
is used. Here, we chose the LinkedList implementation and fixed it using a class
invariant. Its accessible clause defines the footprint, i.e., the program locations it
reads and on which its functionality depends. The accessible clause defines the
locations that might be changed by the method.

class Client {
List a, b;
//@ invariant a instanceof LinkedList && b instanceof LinkedList;

//@ requires a != b;
//@ requires ((LinkedList)a).tail != ((LinkedList)b).tail;
//@ ensures b.size() == \old(b.size());
//@ accessible a, ((LinkedList)a).tail;
//@ assignable ((LinkedList)a).tail;
void m() { a.add(23); }
¥

Listing 9.8 Client code using framing (exposing implementation details)

But what if we do want to keep the nature of the used list open? We answer this
question in the following section by providing a solution on how to frames elegantly
and without exposing (or even fixing) implementation details.
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9.3.2 Dynamic Frames

The dynamic frame theory [Kassios, 2011] aims at solving the frame problem in
the presence of data abstraction. The essence of the dynamic frames approach is to
leverage the ubiquitous location sets to first-class citizens of the specification lan-
guage: specification expressions are enabled to talk about such location sets directly.
In particular, this allows us to explicitly specify that two such sets do not overlap, or
that a particular concrete location is not part of a particular set. This is an important
property for pointer-based programs, which is called the absence of abstract aliasing
(also known as deep aliasing) [Leino and Nelson, 2002, Kassios, 2006]. For example,
this property is what is missing in the specification of Listing 9.7. The knowledge
that the location sets represented by a.footprint and b.footprint are disjoint
allows us to conclude that the postcondition is actually satisfied.

What is called a dynamic frame is an abstract set of locations. A dynamic frame
is ‘dynamic’ in the sense that the set of locations to which it evaluates can change
during program execution, just like the value of a model field can change.

Dynamic Frames in JML

Weil} [2011] presented an implementation of the dynamic frames approach in KeY,
using an extension of JML that includes high-level specification elements for location
set expressions. The type \locset has already been briefly introduced in Chapter 8,
with the underlying JavaDL data type introduced in Section 2.4. Semantically, expres-
sions of type \locset stand for sets of memory locations. These expressions replace
the store ref expressions from the JML reference manual [Leavens et al., 2013]as
the expressions that are used to write assignable and accessible clauses. The
primary difference between store ref expressions and \locset expressions is that
\locset is a proper type. This for example allows us to declare model and ghost
fields of this type.

The singleton set consisting of the (Java or ghost) field f of the reference expres-
sion o can be denoted in JML as \singleton(o.f), and the singleton set consisting
of the i-th component of the array reference a as \singleton(al[i]). The set con-
sisting of a range of array components and the set consisting of all components of an
array are written as a[i. . j] and a[*], and the set of all fields of an object is written
as o.*. The keywords \nothing and \everything refer to the empty set and the
set of all locations, respectively.More precisely, \everything refers to the set of
all locations belonging to created objects. In the same spirit, \nothing is used to
denote the set of locations that belong to freshly allocated objects. Intuitively, they
denote the set of ‘observably all’ locations and ‘observably none.” The actual empty
set (in the mathematical sense) is denoted by \strictly_nothing similar to the
difference between the pure and strictly_pure annotations.

In addition, JML features the following basic set operations on expressions of type
\locset, with the standard mathematical meaning: the set intersection \intersect,
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the set difference \set_minus, the set union \set_union, the subset predicate
\subset, and the disjointness predicate \disjoint.

The notations o.f and a[i] can be used as short-hands for the singleton sets
\singleton(o.f) and \singleton(a[i]), butonly in contexts where understand-
ing them as representing the value of o.f or a[i] is syntactically forbidden. For
example, on the top level of a modifies clause, the expression o.f is equivalent to
\singleton(o.f) if f is a Java or ghost field of type int, but it denotes the value
of the field if the £ is of type \locset. As another familiar shorthand, a comma sepa-
rated list 51, ..., s, can be used to abbreviate the union of the \locset expressions
s; where this does not lead to syntactical ambiguity.

Frames and Dependencies

Depend clauses have already been the topic of Subsection 8.3.2 and Definition 8.3
with the emphasis on their representation in JavaDL and the translation from JML.
Here, we place dependency contracts in the context of modular verification.

While depends clauses for pure methods are already part of standard JML, we
generalize the mechanism of depends clauses to model fields here. A depends clause
for a model field is declared as a class member, using the syntax accessible m: f;
where m is a model field (defined for the class containing the depends clause) and
where £ is an expression of type \locset. Such a depends clause means that m
may depend at most on the locations in £ (in other words, ‘f frames m’), pro-
vided that the invariants of the this object hold in the current state. More formally,
accessible m: f is true in a state s if any state change (starting in s) that pre-
serves the values of the locations in the evaluation of f in s also preserves the value
of m. This is a contract that all represents clauses for m must satisfy (in the cur-
rent class or interface and in its subclasses), just like a depends clause for a pure
method is a contractual obligation on all implementations of the method. As dynamic
frames may be model fields themselves, they may also occur on the right hand side
of a depends clause. It is a common pattern for a dynamic frame to frame itself:
accessible f: f means that, if the values of the locations in the value of f are
not changed, then the value of £ itself also remains the same.

We extend the \fresh operator so that it can be applied to location sets, in addition
to applying it to objects. An expression \fresh(f), where f is an expression of type
\locset, is satisfied in a postcondition if and only if all the locations in the poststate
interpretation of f belong to an object that was not yet allocated in the prestate. More
formally, it is |\fresh(f) | = subset(| f |, unusedLocs(heap’™)); see Figure 2.11
for the semantics of unusedLocs.

The so-called swinging pivots operator \new_elems_fresh can be applied to a
dynamic frame f within a postcondition. The meaning of \new_elems_fresh(f)
is that if there are any locations in the set f in the poststate that have not been
there in the prestate, then these must belong to objects that have been freshly al-
located in between (in the sense of \fresh). It is thus equivalent to the expres-
sion \fresh(\set_minus (f,\old(f))). Intuitively, a swinging pivot indicates a
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change on the heap that is benign—in the sense that no previous separation properties
can be invalidated. In combination with assignable and accessible clauses, the
swinging pivots operator is useful to specify preservation of the absence of abstract
aliasing. For example, if for some method execution we know that

1. the dynamic frames f and g do not contain any unallocated locations in the
prestate,

2. f and g are disjoint in the prestate,

3. g frames itself in the prestate (accessible g:g),

4. only the values of the locations in f may be different in the poststate (i.e.,
assignable f), and that

5. the modification respects \new_elems_fresh(f),

then we can conclude that f and g are still disjoint in the poststate. The reasoning
behind this is as follows: assignable f and the disjointness of f and g together
imply that the values of the locations in g are not changed. Combined with g being
self-framing, this implies that the location set referred to by g itself also remains
the same. The set f may change, but \new_elems_fresh(f) guarantees that if
this change adds to f any additional locations, then these locations were previously
unallocated. As the set g is unchanged and did not contain any unallocated locations
in the prestate, the locations added to f cannot be members of g, and so the sets
must still be disjoint. We see a concrete application of this chain of reasoning in
Section 9.3.4.

9.3.3 Proof Obligations for Dynamic Frames Specifications

Section 8.3.2 presented a proof obligation which, if proven valid, ensures that the
dependency contract of a pure method is correct. The formula presented in Defini-
tion 8.5 uses modalities for the evaluation of the method under examination.

In the previous section, we showed how to specify dynamic frames for model
fields using accessible clauses, and Section 9.2.2 showed that model methods can
also be specified with such clauses. But the proof obligation in Definition 8.5 from
Chapter 8 cannot be applied in this situation: The rule embeds the method call into a
JavaDL modality which is not possible for model fields and model methods.

To this end, we generalize this proof obligation to one which applies to arbitrary
observer symbols.

Definition 9.12 (Proof obligation for dependency contracts of observers). Given
an observer symbol obs : Heap X E x Tj x ... x T, together with its dependency
contract (pre,term,dep). The definition of obs is called correct w.r.t. the dependency
contract if the following JavaDL formula

pre AfreePre A\ wellFormed(h) Amby = term

— obs(heap,self,p(,...,p,)
= obs(anon(heap, setMinus(allLocs,dep),h),self,p,,...,p,)
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is valid for the fresh constant & : Heap and parameter variables p; : 71, ..., p, : Tn.
The symbol = is interpreted as = if obs is a function symbol and as < if it is a
predicate symbol.

For a model field, there are no arguments to the observer (i.e., n = 0), but a model
method may possess additional arguments besides the receiver self.

9.3.4 Example Specification with Dynamic Frames

A version of the List interface from Section 9.1.2 this time specified using dynamic
frames, is shown in Listing 9.9. As in Listing 9.3, the specification of the interface
is based on the pure methods get () and size (). It also includes a dynamic frame
footprint, that abstracts from the concrete memory locations that represent the
list in possible subclasses. This dynamic frame is used in the modifies clause of the
add () method, and in the depends clauses of the pure methods of List. In lines 3
and 6 of Listing 9.9, depends clauses are additionally given for the model fields
footprint and (implicitly) \inv: their values, too, may depend at most on the
locations in footprint.

As none of the methods of List are annotated as helper methods, all contracts
contain implicit pre- and postconditions that assert that \invariant_for (this)
is true before and after method execution. No other objects have to satisfy their
invariants before calling the methods of the interface.

The additional postcondition for add () in line 12 demands that, even though
the set footprint may change, all locations that are added to it must be fresh.
This grants an implementation of add () the license to discard old data structures
in footprint and to add fresh ones as needed. The same holds for remFirst (),
where the footprint is even strictly smaller in the poststate. For the other methods of
List, there is no need for a postcondition that describes their effect on footprint.
Roughly, this is because these methods are pure, and thus we expect that they cannot
affect footprint at all. This expectation is correct, but the precise justification for
this is more complex than it may seem at first sight, because pure methods are allowed
to allocate and initialize new objects, and because without further knowledge, such
a state change might affect the interpretation of a model field such as footprint.
Fortunately, the semantics of JML guarantees that dynamic frames like footprint
never contain any unallocated locations. We know from the depends clause in line 6
that footprint frames itself, i.e., that a change to locations that are not in the value
of footprint cannot affect the value of footprint. Thus, any change to previously
unallocated locations in a pure method is guaranteed to leave the value of footprint
untouched.
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public interface List {
//@ public model instance \locset footprint;
//@ public accessible footprint: footprint;

//@ public instance invariant size() >= 0;
//@ public instance accessible \inv: footprint;

/*@ public normal_behavior
@ ensures size() == \old(size()) + 1 && get(size()-1) == elem;
@ ensures (\forall int i;0 <= i &&
@ i < size()-1;get(i) == \old(get(i)));
@ ensures \new_elems_fresh(footprint);
Q@ assignable footprint;
Q@x/
public void add (int elem);

/*@ public normal_behavior

requires !empty();

ensures size() == \old(size()) - 1;
ensures (\forall int i;0 <= i &&

i < size();get(i) == \old(get(i+1)));
ensures \new_elems_fresh(footprint);
assignable footprint;

@x/
public void remFirst ();

@
@
@
@
@
@

/*@ public normal_behavior

@ ensures \result == (size() == 0);
@ accessible footprint;
@x*/

public /*@ pure Q@*/ boolean empty ();

/*@ public normal_behavior

@ ensures \result == size();
@ accessible footprint;
@x*/

public /*@ pure @*/ int size ();

/*@ public normal_behavior
@ requires 0 <= idx && idx < size();

@ ensures \result == get(idx);
@ accessible footprint;
ox/

public /*@ pure @*/ int get (int idx);
}

Listing 9.9 Interface List specification using pure methods and a dynamic frame footprint
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9.3.4.1 Specifying the List Client

Listing 9.10 shows the Client class from Listing 9.7 with dynamic frame spec-
ifications. We have only inserted the additional preconditions in lines 7f.: when
entering method m () of class Client, the invariants of a and b must hold, and there
must not be abstract aliasing between a.footprint and b.footprint. Given this
specification, we are now able to conclude that the postcondition in Line 9 holds, by
using only the code and specifications in Listings 9.9 and 9.10.

class Client {
List a, b;
static int x;

/*@ normal_behavior
@ requires a != b;
@ requires \invariant_for(a) && \invariant_for(b);
@ requires \disjoint(a.footprint, b.footprint);
@ ensures b.size() == \old(b.size());
@ ensures \invariant_for(a) && \invariant_for(b);
Qx*/

void m() { a.add(23); }

}

Listing 9.10 The client from Listing 9.9 specified with dynamic frames

We reach this conclusion as follows. The disjointness of a.footprint and
b.footprint implies that there is no abstract aliasing between a and b before
calling a.add (). Thus, the depends clause of size () guarantees that changing the
locations in the prestate value of a.footprint would not affect b.size (). But
calling a.add () may have an effect on the model field a.footprint itself. But
we know that a.footprint is only changed in an benign way; this is what the
swinging pivots predicate states in line 12 of Listing 9.9. From this we can deduce
that both footprints are still disjoint in the poststate. Overall, we can conclude that
the postcondition in line 9 holds.

Analogously, the depends clause for the class invariant in List guarantees that
\invariant_for (b) still holds after the change, as asserted in line 10. Listing 9.10.
This property holds independently of the concrete implementations of List that may
occur as the dynamic type of List, as long as all these implementations satisfy the
specifications given in the interface.

9.3.4.2 Specifying the ArrayList Implementation
A particular implementation of the List interface is shown in Listing 9.11, which

already appeared earlier. We have now added specifications based on dynamic
frames and made the default constructor explicit. The contents of the dynamic
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frame footprint are defined for objects of dynamic type ArrayList through the
represents clause in line 3. This represents clause satisfies the depends clause for
footprint in Listing 9.9, because all locations that its right hand side depends on
are themselves part of the right hand side. If we would omit a in the represents clause,
then the depends clause would be violated: the location this.a would then not be a
member of the value of this.footprint, but changing the value of this location
would still affect the value of the expression this.a[*] and thereby the value of
this.footprint.

The invariant declarations of ArrayList (the implicit clause this.a!=null
plus the one inherited from List) define the represents clause for the implicit mode
field \inv. This represents clause satisfies the depends clause for \inv specified in
Listing 9.9, because it only accesses locations that are part of footprint as defined
in the applicable represents clause for footprint. We do not consider a.length to
be a location here, because it is unmodifiable.

Line 9 of Listing 9.11 gives a postcondition \fresh(footprint) for the con-
structor of ArrayList. This postcondition is satisfied by the implementation of the
constructor: in deviation from the JML reference manual [Leavens et al., 2013],
the this object is considered to be fresh in the postcondition of a constructor,’
and consequently the location this.a is also fresh. By the represents clause of
footprint, its other members are the locations of the array that is stored in a. This
array is freshly allocated.

9.4 Calculus Rules for Modular Reasoning

In Chapter 3, an extensive sequent calculus for JavaDL has been introduced, and
Section 3.7 gives a brief introduction to the concept of abstraction and presents
rules that deal with the two kinds of abstraction relevant for our purposes, loop
invariants and method contracts. In this section, we present advanced rules that
go beyond those shown in Chapter 3. We begin with invariant rules for loops in
Section 9.4.2 and a contract-rule for method calls in Section 9.4.3. These rules
incorporate the concept of dynamic frames outlined in Section 9.3.2. Another central
rule for frame-aware reasoning are dependency rules which allow deducing if two
applications of an observer symbol have the same value by inspection of their
footprints. JavaDL dependency contracts have been introduced in Section 8.2.4,
according proof obligations in Section 8.3.2. This chapter will present in Section 9.4.4
rules that use proved dependency contracts to infer that observer invocations must
have the same value. Finally rules will be stated that allow the expansion of model
field and method definitions in Section 9.4.5.

9 This means, the constructor contract is considered a contract for the entire new call, that includes
object allocation, initialization, and the constructor; see Section 3.6.6.
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1
2
3
4
5
6
7
8
9

a1}

public final class ArraylList implements List {

//@ private represents footprint = a, a[*];
private int[] a;

/*@ public normal_behavior
@ ensures size() == 0;
@ ensures \fresh(footprint);
Qx/
public /*@ pure @x/ ArrayList() {
a = new int[0];

}

public void add (int elem) {
int[] tmp = new int[a.length+1];
for (int i= a.length; i > 0; i--)
tmp[i] = ali-1];
a = tmp;
a[0] = elem;

}

public void remFirst () {
int[] tmp = new int[a.length-1];
for (int i= 1; i < a.length; i++)
tmp[i-1] = a[il;
a = tmp;

}

public /*@ strictly_pure @*/ boolean empty () {
return size() == 0;

}

public /*@ strictly_pure @*/ int size () {
return a.length;

}

public /*@ strictly_pure @+/ int get (int idx) {
return alidx];

3

Listing 9.11 Java class ArrayList implementing the List interface of Listing 9.9

9.4.1 Anonymizing Updates

When modeling abstraction, it is important that the concrete memory state at a point
during execution can be replaced with a fresh unconstrained state. This is needed in
particular when dealing with unbounded loops or with method invocations—both of
which are abstraction by means of an overapproximation (the contract or the loop
invariant).
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In order to be able to continue execution with “any value for x satisfying the
invariant,” for instance, we need to forget the value of x and assume then the invariant
holds. This is done by assigning an unconstrained new value to x in an update. Harel
et al. [2000] suggest to incorporate the notation x :=? into dynamic logic with the
semantics [x :=?]@ <> Vx; ¢ for such a forgetting assignment. In JavaDL, we employ
updates and assign to x a fresh unconstrained Skolem constant x’ (of the same type
as x) that may hold any value. We call such updates anonymizing updates. They are
also called random assignment or wildcard assignments in literature.

Heap anonymization, i.e., anonymization of the program variable heap is particu-
larly interesting in the face of dynamic frames: In the abstraction rules in Chapter 3,
we treated heap like any other program variable and anonymized it with a fresh
Skolem variable /. But having dynamic frames at hand, we can do better now and
only assign fresh values to those locations inside a frame, leaving all locations outside
the frame untouched.

To this end, we use the function anon : Heap x LocSet x Heap — Heap (whose
semantics was introduced in Figure 2.11 in Section 2.4.5) which does precisely that.
The heap update

{heap := anon(heap,mod,h’)}

ensures that in its scope, the heap coincides with 4’ : Heap on all locations in mod
and all not yet created locations and coincides with heap before the update elsewhere.

9.4.2 An Improved Loop Invariant Rule

Other parts of this book describe how a JavaDL loop specification is obtained: Sec-
tion 16.3 provides guidelines for the user to find useful loop invariants, Section 7.9.2
explains how loop specifications can be formulated in JML and Section 8.2.5 de-
scribes how JavaDL loop specification are obtained from the JML specifications.

Here, we assume that a JavaDL loop specification (inv, mod, term) according to
Definition 3.23 is given with loop invariant inv, modifier set mod and termination
witness term. A first rule for dealing with JavaDL loop specification has already been
presented in Section 3.7.2 ignoring the mod and term parts. Here we will remedy
this omission.

The general structure of a loop invariant rule looks like this:

Invariant Initially Valid (INIT)
Body Preserves Invariant (STEP)
Use Case (USE)

I' = % |rwhile(se)p; 0]@, A

We assume that the loop condition se is a simple expression and that the loop body
p always terminates normally. How to deal with the general case, that se may not be
simple and p may contain return, continue, or break statements if explained in
Subsections 3.7.2.3 and 3.7.2.4.
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We will comment in detail on the three premisses:

1. In the base case INIT, it is to be proved that the invariant holds in the initial state
of the loop execution;

2. in the step case STEP, it is to be proven that execution of the loop body p in
a state which satisfies the loop invariant reestablishes the invariant; if term #
PARTIAL then it has also to be shown that the termination witness ferm strictly
decreases;

3. in the use case USE we may assume that the invariant holds after the loop has
finished and continue symbolic execution with the remainder program ®.

and end up with the rules looplnvariant and termLooplnvariant in Definitions 9.13
and 9.14.
The base case requires that the invariant is true in the current context spanned by
I'Aand % .
I' = %imw, A (INIT)

The information about the execution context encoded in the update % and the
formula sets I" and A is retrieved by matching the calculus rule against the a sequent
it is applied to.

The step and use cases are to be proved in symbolic states where an arbitrary
number of loop iterations have already been executed, potentially invalidating all
information in the context. The necessary masking of the context can be formalized
by anonymizing as introduced in the last section. This led to the introduction of the
anonymizing update ¥ in the simple loop invariant rule in Section 3.7.2. For the
convenience of the reader we repeat its step case

I' = %V (inv \se = TRUE — [plinv),A . (STEPy)

In this condition, ¥ anonymizes the variable heap and all local variables which
are potentially modified in the loop body p. As far as the heap is concerned, this
is a very coarse approximation because all locations on the heap are assigned a
fresh unconstrained value. This implies a burden for the specifying person as he or
she must encode into the loop invariant which memory locations the loop does not
change. Therefore, we will now go one step further and incorporate the modifier set
of the loop specification into the rule to limit the anonymization of the heap.

Remember that the loop specification contains a modifier set term mod : LocSet U
{STRICTLYNOTHING} which models the locations which can be modified by the
loop. If mod # STRICTLYNOTHING, we replace the coarse anonymizing update ¥
in (STEPy) by the more precise anonymizing update

# .= {heap := anon(heap,mod,h’) ||by := b} || ... ||b, := b} 9.6)
in which by,...,b, enumerate the local variables that can be modified by the loop
body, and b, ..., b, are fresh anonymization constants of appropriate type. The heap

is partially anonymized with the fresh values taken from a fresh unconstrained heap
object i’ : Heap.
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The set of locations affected by the anonymizing update cannot be statically
determined, it is the value of the term mod which determines the extension of the
location set. This is why the frames featuring in this approach are called dynamic
frames: The location sets may differ between different states.

Let us have a closer look at the case mod = 0. Unraveling the semantics definition
of anon from Figure 2.11, we see that (despite mod being empty) all fields of objects
not yet created in heap are anonymized. This models that in the code block abstracted
by the anonymization, new objects may be created. This may put a considerable
burden on the verification. In case it is known that the code block does not change
anything and does not create new objects, the according assignable clause of the
method contract or loop specification may be set to \strictly_nothing which will
be translated to the special indicator mod = STRICTLYNOTHING. The corresponding
update then is

W= {b;:=b\] ... |0, =0}

which is (9.6) without the assignment to heap.

On the other hand, no matter what locations occur in mod the semantics definition
of anon guarantees that no created object may be deleted.

The loop specification (inv, mod, term) guarantees that after an arbitrary number
of loop iterations at most the locations in mod have changed. We have exploited this
fact in the anonymizing update % just described. On the other hand, we have to prove
that after the next loop iteration still at most the location in mod may change. To this
end, we add the formula frame to the postcondition in the step case premiss. We have
encountered frame already in (8.5) in Section 8.3.1 when the method contract proof
obligation was presented. It serves the same purpose there and here: to ensure that at
most the locations in M are modified:

frame(M) :=YoVf; o.created@heap’ = FALSE
Vo.f =o.f @heap”” 9.7)
Vo, f)eM

Since the modifies clause mod is to be evaluated in the state before the loop execution
and not in the current state, mod cannot be used directly. Instead, a new program
variable M : LocSet is introduced that captures the modifies set in the prestate by
means of an update .# := {M := mod}

At this intermediate point the step case thus reads:

I' = % W (inv \se = TRUE — [p|(inv A frame(M))), A (STEP))

The corresponding use case that goes with this step case is the same as the one already
introduced with the simple rule in Chapter 3—but with the refined anonymizing
update % that only masks out mod.

I' = %W (inv Ase = FALSE — [1 ©]¢@), A (USEy)
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One more addition is needed, concerning what we might call free invariants in par-
allel to the free preconditions explained in Section 8.2.4. These are well-formedness
statements that we need not verify since they are automatically maintained by the
semantics of the Java language. But it is helpful, and in many cases vital, to have them
explicitly available at the beginning of each loop iteration. For the local variables
at,...,a, in whose scopes the loop lies we define:

a; =nullV a.created = TRUE
if a; is of reference type
inlnt(a;)  if a; is of type int

m | inByte(a;) if a; is of type byte
locVarlnRange := /\ . 9.8)
i—=1 : likewise for short, long, char

disjoint(a;,unusedLocs(heap))
if a; is a ghost variable of type LocSet
true otherwise

This definition of locVarInRange parallels (8.3) where the same is assumed about
method arguments in a method invocation.

locVarInRange formalizes that all variables a; must have reachable values, i.e.,
they must not refer to noncreated objects, their value must be in range, and they must
not hold location sets that contain locations belonging to noncreated objects. We add
locVarInRange to the INIT premiss to be shown next to the invariant. If this property
holds in the initial state of the loop, then the semantics of Java guarantees that it is
preserved by arbitrary loop iterations. It may thus be used as an assumption in the
second and third premiss.

We have now assembled all we need to formulate the loop invariant rules. We
mention once again that the rules are presented under the assumption that the loop
condition is a simple expression, and that loop body does not throw exceptions and
does not use return, break and continue statements. The rule can be extended to
handle these technicalities in the same way as in Section 3.7.2.

Since the sequent context (I",A,%/) is maintained by this invariant rule, we omit
it in the following rule schema as explained in Section 3.5.1.

Definition 9.13 (Rule looplnvariant without Termination). Let (inv, mod, term) be

a loop specification (see Definition 3.23) with ferm = PARTIAL, se a simple expres-

sion (see Table 3.2) and p,,rm a program fragment (see Definition 3.2) that does

never throw an exception and does not contain break, continue, return statements.
The rule looplnvariant is defined as

= inv A wellFormed(heap) A locVarInRange
= MW (inv AwellFormed(h') A locVarInRange N\ se = TRUE —

[Prorm) (inv A frame))
= W (inv AwellFormed(h') A locVarInRange A se = FALSE — [Tt @] @)

= [7‘[ while(se) { puorm } (O](P
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where:
* locVarInRange is defined in (9.8),
* frame is defined in (9.7),
*ajy,...,a;, € ProgVSym are the local program variables in whose scopes the
loop lies (except for heap),
* by,...,b, € ProgVSym are the program variables that are potentially modified
by the loop body p (except for heap),

o I, b),...,b) are fresh constant symbols of appropriate type,
o M ={M :=mod},
oy - {{bl =0b\|...||by:=by} if mod=STRICTLYNOTHING
{heap := anon(heap,mod, ') || by := b/ || ... ||b, := b],} otherwise.

For the heap, assuming wellFormed(heap) in the scope of the update % would
amount to assuming wellFormed(anon(heap, mod, h)). Assuming wellFormed(h')
is shorter and simpler, in particular because this term does not depend on heap.

We have not considered termination so far. Rule looplnvariant is one for the ‘box’
modality. In the corresponding invariant rule for the ‘diamond’ modality, we are
required to ensure that the loop terminates. This incorporates two things: (1) every
loop iteration terminates, and (2) there is no program execution with infinitely many
loop iterations. The first goal can be ensures by using the diamond modality in the
step case and the second is established through a well-founded relation and the
term component of the loop specification. The well-founded relation <: Any x Any
has already been introduced in Section 9.1.4 and can be reused here. If every loop
iteration makes the variant term smaller, no infinite repetitions are possible.

Definition 9.14 (Rule termLooplnvariant). Let (inv, mod, term) be a loop specifica-
tion (see Definition 3.23) with term # PARTIAL, se a simple expression (see Table 3.2)
and py,rm a program fragment (see Definition 3.2) that does never throw an exception
and does not contain break, continue, return statements.

The rule termLooplnvariant is defined as

= inv AwellFormed(heap) A locVarInRange

= T MW (inv AwellFormed(h') A locVarInRange N\ se = TRUE —
(Dnorm) (inv A frame A term < termpre))

= W (inv AwellFormed(h') A locVarInRange A se = FALSE — (Tt @) @)

— <7'L' while(se) { Pnorm } (D>(P

where:
* all conditions from Definition 6 apply,
* termP™ : Any is a fresh program variable,
* J = {termP™ := term} is the update that stores the value of term before the
loop body into variable termP™.

One may wonder why in Definitions 9.13 and 9.14 wellFormed(heap) has been
added to the proof obligations in the INIT case. After all this can never be violated by
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a Java program. The explanation is that a user might inadvertently produce a proof
state e.g., by the cut rule, where wellFormed(heap) might not hold.

Lemma 9.15 below establishes a formal connection between the two framing
formalisms using frame and anon respectively. This connection is the reason why
it is admissible to use anon for anonymizing the locations in the modifies clause,
while using frame in the proof obligation for verifying the correctness of the modifies
clause in the second premiss.

Lemma 9.15 (Connection between frame and anon). Let mod € Trmp,cs.; and
frame be as in (9.7).
Let furthermore noDeallocs(hy,hy) be the formula

unusedLocs(hy) C unusedLocs(hy)
A selectany(hy,null, created) = selectany(hy,null, created) .

Then the following holds:

E  (frame(mod) A noDeallocs(heap”™ heap))
<+ heap = anon(heap””, {heap := heap”’”}mod, heap)

A proof of Lemma 9.15, an easy comparison of the semantic definition of anon
and the frame formula—though with many case distinctions—can be found in [WeiS,
2011, Appendix A.5]. Roughly speaking, the lemma gives a necessary and sufficient
condition for the equation hy = anon(h;,M, h;). This equation describes a situation
where for all locations that 4, does not overwrite /i and 4 coincide.

The formula noDeallocs(heap”’® heap) expresses that all objects created in the
prestate heap array are still created in the current heap array (and that createdness
of null does not change). Obviously, this is a very essential property of the Java
memory model. The impossibility of deallocating created objects is also built into the
semantics definition of anon, see Figure 2.11. Lemma 9.15 is a main ingredient in
the proof of Theorem 9.17, which establishes that the loop invariant rules are sound.

But why are there two mechanisms for formalizing the framing condition in the
first place? One is used where framing needs to be shown, and the other one is used
in the use case. The loop invariant rules uses both mechanisms. The reason is that
having an explicit function symbol to refer to the updated state allows us to formulate
heap anonymization as an update.

The following lemma shows that both notions are semantically equivalent: heap
anonymization using anon is as good as total anonymization together with assuming
the condition frame.

Lemma 9.16. Let noDeallocs be like in Lemma 9.15, frame as defined in (9.7) and
¢ € DLFml a formula in which M does not occur. Then the following formula is
universally valid.
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(YHeap h; (noDeallocs(heap, h) —
{heap””* :=heap || heap := anon(heap,mod, h)}))
< (VHeap h;(noDeallocs(heap,h) —
{heap”™ := heap | heap := h||M := mod}(frame(M) — ¢)))

We have formalized this lemma as a JavaDL formula and proved it using the KeY
system.

Theorem 9.17. Rule termLooplnvariant is sound.

A variant of Theorem 9.17 for the ‘box’ modality is proven by Weif3 [2011, Appen-
dix A.6].

9.4.3 A Rule for Method Contracts

In Section 8.3.1 we came across proof obligation formulas whose validity implies the
correctness of a method contract. In this section, we will encounter rules which make
use of method contracts essentially by abstracting away from the method invocation
by assuming its contract’s postcondition instead.

These two concepts go hand in glove: The rule useMethodContract shown in the
following is sound if the corresponding method contract proof obligation is a valid
formula.

A rule that makes use of a functional method contract is defined in Definition 9.18
below. We show the general case of a nonstatic method whose return type is not
void. The rules for void or static methods are similar, but lack the assignment to x
or the references to self and se, respectively. The presented rule is a refinement
of the rule simpleContract presented in Section 3.7.1. It incorporates the issues of
framing and termination which had been factored out in Chapter 3.

Like there, the rule makes a few assumptions about the receiver and the arguments
of the method call: They are assumed to be simple expressions (see Table 3.2 for
a listing of simple expressions), requiring no further symbolic execution. The sym-
bolic execution rules methodCallUnfoldTarget and methodCallUnfoldArguments
establishing this property have been presented in Section 3.6.5.4.

Definition 9.18 (Rule useMethodContract). LetR m(Ty p1, ..., T, p,) bea
method defined in class or interface C, se € DLTrm¢ a simple expression of type C’,
a) € DLTrmy,,...,a, € DLTrmz, simple expressions, x : R a program variable. Let
(pre, post,mod, term) be a functional method contract for m stated in a class C” such
that C' E C” C C with term # PARTIAL.

The rule useMethodContractTotal is defined as follows:



9.4. Calculus Rules for Modular Reasoning 337

= ¥ (pre AwellFormed(heap) A paramsInRange)

= ¥ (term < mby)

= ¥ (self # null Aself.created = TRUE)

= VW (post ANwellFormed(h) A reachableRes N\ exc =null —
(m x=res; ®)Q)

= VW (post NwellFormed(h) A reachableRes \ exc # null —
(m throw exc; ®)Q)

= (mx = se.may,...,an); @)@

where:

* paramsInRange € DLFml is defined in (8.3),

* reachableRes = inRangeg (res) A inRangery . ouap1e (€XC),

o ¥V ={self:=se|p;:=ail...||p, :=an}

* # = {heap”” := heap || heap := anon(heap,mod, h) ||res := r| exc :=¢) is
an anoymizing update with /2 : Heap,r : R,e : Throwable € FSym fresh symbols.
If mod = STRICTLYNOTHING, then the heap content is not modified by the
method, and the assignment to heap is removed.

The formulas paramsInRange and reachableRes play the same roles as the for-
mula locVarInRange in the looplnvariant rule of Definition 9.13. Similar to that, the
update # anonymizes the locations that may be changed by the call to m by setting
them to unknown values with the help of the fresh constant symbol 4. It also sets the
variables res and exc to unknown values denoted by the fresh constant symbols r
and e, respectively. As before, an empty modifies clause still gives rise to anonymiza-
tion. Specifying the method as strictly pure, however, leads to the update %" leaving
the heap untouched. The update ¥ instantiates the variables used in the contract with
the corresponding terms in the method call statement.

In the first premiss, the precondition has to be established. According to our
understanding of a contract this is a necessary requirement to use the postcon-
dition as an approximation of the method call. In addition the proof obligations
wellFormed(heap) and paramsInRange have to been dispatched. The reason is the
same as in Rule 9.13: to save-guard against inadvertent violation of these conditions
by the user, e.g., by the cut rule.

Termination is addressed in the second premiss; the termination witness of the
called method must be smaller than the termination witness of the current method
context stored in the program variable mby (which is set in the correctness proof
obligations, see Definition 8.4). The next premiss requires establishing that the
receiver object se is created and different from null.

Unlike the rule methodContractPartial presented in Figure 3.7 in Section 3.7.1
handling the case of a null receiver by throwing an exception, this rule strictly
requires nonnull receiver and is thus weaker but proves way more efficient in practice.
There is a taclet option to control which behavior is taken.

The last two cases effect that method invocation is replaced by using the postcon-
dition. In the fourth premiss, the method call is replaced by an assignment of the
result to x, under the assumption that no exception has been thrown (exc = null).
If the call raises an exception (exc # null) in the last premiss, the control flow of
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the program continues with raising this exception (see Section 3.6.7). In both cases,
the control flow continues in the context of 7...@. Unlike the postcondition post the
formulas wellFormed(h) and reachableRes need not be proved. The semantics of
Java guarantees that they are true after termination of any program.

In the KeY implementation, the first two premisses have been combined into one.

Theorem 9.19. Rule useMethodContract is sound, provided that for all subtypes
C' E C of the type C in which method m has been declared, the proof obligation for
functional correctness from Definition 8.4 is valid.

A proof of Theorem 9.19 can be found in [WeiB}, 2011, Appendix A.7]. The proof is
similar to the proof of Theorem 9.17 in many respects. In particular, it also makes
use of Lemma 9.15, which states that the heap is unaffected in all locations outside
mod if and only if frame condition (9.7) is valid for mod.

Using contracts for constructors works essentially the same as in Definition 9.18,
except that (1) the first active statement in the conclusion is a constructor invocation
of the form x = new C(d},...,d,,); (2) the propositions about self in the first
premiss are omitted, (3) in the update ¥ the subupdate self := se is replaced with
self :=x, and (4) the second premiss contains an additional assumption besides
post ANwellFormed(h) N reachableRes, namely the formula (9.9) below, which states
(i) that the dynamic type of the created object is C, (ii) that the object was not created
previously, and (iii) that it is created in the current heap.

exactlnstancec(x) = TRUE
AX.created@heap” = FALSE (9.9)
Ax.created = TRUE

When a method contract is attached to a constructor, the subject of this constructor
contract is the entire object allocation and initialization, see Section 3.6.6. This means,
it refers to an allocation statement of the form new C(...). It does not constrain
the behavior of nested constructor invocations via this(...); nor super(...);
statements. For this reason, there are no contracts available for calls to this () or
super ().

Using the contract of a recursive method myr is in no way different from using the
contract of a nonrecursive method. This is, however, not true when in the course of
proving the contract of mr this contract is used for one of the recursive calls. The
KeY system will detect this circularity and only allow it if the contract contains a
measured_by clause. See Section 9.1.4 for details on dealing with recursion.

Traditionally, the concept of a contract applies to methods (and constructors)
only, which represent natural software modules. However, the concept can be used
to modularize the target program further by providing a contract to an arbitrary
code block within a method body. Rule useBlockContract in Section 13.5.1.3 is an
adaptation of the method contract rule.
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9.4.4 A Rule for Dependency Contracts

Dually to method contracts which describe the effects of a method, dependency
contracts describe what affects the value of observer expressions. The concept
of a JavaDL dependency contract (pre,term,dep) has already been introduced in
Definition 8.3, its associated correctness proof obligation in Section 8.3.2. Intuitively,
this formula establishes that under assumption of a precondition pre, the value of
an observer depends at most on the locations in the location set dep. Recursive
definitions for dep are allowed. In this case the termination witness term is used to
provide well-foundedness of the definition.

In this section, we show how dependency contracts can be used to show that
observer terms are equal even if examined in different heap contexts. In contrast
to useMethodContract, the rule useDependencyContract is applied on a term or
formula in the logic, not on a program modality with a method call as the active
statement.

The underlying logical idea behind the dependency contract boils down to the
following implication which should give you an intuition of its semantics.

frame(dep) N {heap := heap”™}pre Awell A noDeallocs(heap””® heap) —
obs(heap”*,p,...,p,) = obs(heap,py,...,p,)
(9.10)
The implication states that an observer symbol obs yields the same value if evaluated
in two heaps heap”” and heap if the two heaps and the arguments p; of the observer
satisfy the following conditions in the premiss of (9.10):

heap”” and heap must coincide on the dependency set dep, see (9.11) below,
the precondition pre of the observer must be satisfied,

the two heaps and all arguments must be well-formed, see (9.12) below,

there is no deallocation; all objects allocated in heap”” are still allocated in
heap.

bl

We have encountered the formula frame which captures the equality of the lo-
cations in dep already in (9.7). We need to formalize here that everything but the
locations in dep may change, hence we use the complement dep of dep:

frame(dep) =VoVf;( o.created@heap”® = FALSE
Vo.f =o.f@heap”™ 9.11)
V=(o, f) € {heap := heap”*}dep)

The well-formedness condition well includes the two heaps and all parameters and
reuses the predicate paramsinRange introduced in (8.3):

well = wellFormed(heap”™) A wellFormed(heap) A paramsInRange ~ (9.12)

The property noDeallocs that no objects are ever deleted from the heap has been
introduced in Lemma 9.15.
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We now introduce the rule useDependencyContract which formalizes the infor-
mal semantics explanation outlined in (9.10). It adds an assumption to the sequent that
is itself an implication with left-hand side guard. The right-hand side relates the value
of an observer symbol obs for the heaps denoted by the terms A7, h"*" € Trmpeqp,
where hP?" results from hP" through a cascade of applications of the function sym-
bols store, create, and anon. Such cascades are the result of symbolic execution of
heap manipulating programs with successive update simplification. It is instructive
to compare the rule useDependencyContract with the proof obligation of Defini-
tion 8.5.

Definition 9.20 (Rule useDependencyContract).
', guard — obs(WP™,0,ay,...,a,) = obs(h"* 0,ay,...,a,) = A
I'=A

where:
* obs € FSym (or obs € PSym) is an observer symbol obs : Heap X E x Ti X ... X
T, — T (or obs : Heap X E x T1 x ... x T,, respectively) withn € N
* (pre,dep,term) is a dependency contract for obs,
* 0 € Trmg,a; € Trmyy, ..., a, € Trmy, are valid arguments for obs.
o Pt = fi(feo1 (.. (fi(RP"e,..)))) with fi,..., fx € {store,create,anon}
* = stands for = if obs € FSym and for < if obs € PSym
* guard is the formula

P{heap!™ := h"’* | heap := h"**'}frame(dep)
A P{heap := " }pre
AwellFormed(h'™) A wellFormed(h"*™")
A & paramsInRange N o # null A o.created = TRUE

in which the update &2 = {p, :==ay || ... || p, := an} assigns the concrete argu-
ments to the formal parameters of 0bs.

Besides the property that only certain locations change, the equality of the observer
applications in (9.10) requires the heap evolution does not deallocate previously
created objects; as for instance formalized in Lemma 9.15. For the state change from
K" to hP%', the absence of deallocations is guaranteed by the fact that the latter
is derived from the former by invocations of the function store, create and anon.
Their semantics ensure that no object is ever deallocated. This is formalized in the
following lemma.

Lemma 9.21 (No deallocations). Let iP%*! ¢ Trmgreqp with

W = filfer (- (Ai(RP0)))

for some fi,..., fi € {store,create,anon} with 1 < k and for some h’"® € Trmgeqp.
Then the following holds:

= noDeallocs(h"" | iP*°")
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The lemma—is also needed for the proof of Theorem 9.22 below—is the reason
why noDeallocs can be excluded from the condition guard in Definition 9.20.

Theorem 9.22. Rule useDependencyContract is sound, provided that for all sub-
types E' C E of the static receiver type E of obs, the proof obligation for dependency
contracts from Definition 8.5 for pure methods and the obligation from Definition 9.12
for general observer symbols, respectively, is valid.

Proofs for this theorem and for Lemma 9.21 can be found in [WeiB}, 2011, Appen-
dix A].

This is plausible since the proof obligation for dependency contracts (Defini-
tion 8.5) expresses that the observer obs does not depend on locations outside dep.
If the formula guard in (9.12) is valid, i.e., the difference between the heaps A’™
and /7" lies only in dep, then we can conclude that the value of obs is the same for
both heaps.

Automatic application of the useDependencyContract rule is not as straightfor-
ward as for other rules. The rule can be applied to many different combinations
of #P"® and HP?*" which increases the search space considerably. To avoid a large
number of ‘unsuccessful’ applications where guard cannot be proven and where the
application thus does not contribute to the proof, a strategy that proves to work well
in practice is to apply the rule only lazily (once all other means of advancing the
proof have been exhausted), and only for choices of 47 that already occur on the
sequent. Best results for an automatic rule application are obtained whenever A"’ is
a constant and appears in an equation together with #7%* in the antecedent.

An application of the useDependencyContract rule will be demonstrated in the
course of verifying the List example in Section 9.5.

9.4.5 Rules for Class Invariants

As outlined in Section 9.2.1.3, in JavaDL, class invariants are realized by means
of a special model field \inv whose counterpart in JavaDL is the implicit observer
symbol Object::inv € PSym.

The definition of the class invariant of a type T collects all class invariant declara-
tions in 7" and the public invariants of 7”’s supertypes, their combination is essentially
the represents clauses for the model field \inv. If more than one object invariant
declaration is relevant, e.g., invariant e;; ... invariant e,, the collection of
the individual invariant declarations stands for a single represents clause

represents \inv = e; && ... && e, . (9.13)

This represents clause defines the meaning of the observer Object::inv : Heap X
Object for objects exactly of type T. The rules for expanding represents clauses
(repp,m from Section 9.2.1.4) and for dependency contracts (useDependencyContract
from the last section) can be used in proofs like for any other model field.

One property sets class invariants aside from arbitrary model fields: While for
general model fields, the definition may change arbitrarily in subclasses, public class



342 9 Modular Specification and Verification

invariants are inherited to subtypes according to the principle of behavioral subtyping.
The invariant can only be changed by adding further clauses. The implicit represents
clause from (9.13) thus enumerates all clauses in the current class and all clauses
inherited from its super types.

The following classInv/. rule allows inferring an individual invariant clause
invariant e; present in type 7 if the invariant Object::inv(h,0) is known to
hold for the object 0 € Trmr.

Object:inv(h,0), {heap := h||self :=o}|e;] =
Object::inv(h,0) =

J
classInvy,

Note that this rule'” can only be applied if Object::inv(h,0) occurs in the antecedent,
i.e., under the assumption that the invariant holds. It can be applied for any object
o € Trmy of type T also if it belongs to one of 7”’s subtypes. Unlike the represents
axiom repp ,,, it does not require that o is exactly of type T'.

Rule classInvy. only adds a consequence of the invariant to the sequent, not its
definition. The entire invariant can only be soundly added when the dynamic type T
of the ‘receiver’ object o is known. In these cases, the rewrite rule repSimplep ,, for
represents clauses can be used to replace an invariant by its definition:

n
Object::inv(h,0) ~ A |e;]
j=1
if exactInstancer (o) = TRUE occurs in the antecedent

In many cases, in particular when conducting modular proofs, the definition of
the invariant cannot be fully expanded because its actual definition is unknown
to the current context. When modularly reasoning that an invariant still holds af-
ter a modification of the heap, dependency contracts can be valuable. When both
the formulas Object::inv(h,0) and Object::inv(k’,0) appear in the sequent, rule
useDependencyContract can be applied to reduce one to the other.

Example 9.23. Let us turn back to the List interface outline in Listing 9.9 whose
sole class invariant in line 5 states that the size of a list is nonnegative. Assume we
have a program variable al of type ArrayList (Listing 9.11), and we know that the
invariant for the list al is satisfied, i.e., that Object::inv(heap,al) is true.

Then the rule classinv};, allows us to deduce that List::size(heap,al) > 0
since the invariant clause is inherited from List to ArrayList.

However, to establish that the invariant for al holds, it does not suffice to show this
property. The array list class has an additional (implicit) invariant —self.a =null
which also needs to be proved. If exactinstanceprrayrist(al) = TRUE is known,
then these two properties make up the definition of the invariant.

When reasoning modularly, on the other hand, there might exist a further subtype
of ArrayList (which is not declared final) which has an invariant definition which

10 The actual rule name used in the KeY prover fits the template
Partial_inv_axiom_for_JML_class_invariant_nr_j_in_T.
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differs from the one in ArrayList. This prohibits the calculus from replacing the
invariant symbol by the collection of known invariant clauses—there might be more,
yet unknown, clauses.

There are few situations in which a specifier wants to constrain implementation
details to the enclosing class. In such cases, a class invariant declaration intentionally
should not be inherited by the refining subclasses. To distinguish between class
invariant declarations subject to inheritance and local declarations, the former can be
declared as public invariant and the latter as private invariant. By default,
class invariants are private.

9.5 Verifying the List Example

This section is a continuation of Section 9.3.4. We assume a list implementation
according to the structure shown in the class diagram in Figure 9.1. The program that
we consider contains the interface List from Listing 9.9 annotated with dynamic
frames and a class Client. In this modular proof scenario, we do not consider
specific implementations of the List interface, such as LinkedList or ArrayList,
that were presented above. All reasoning can be based on the interface specification
alone. As an example for the verification of JML specifications with dynamic frames,
we consider a proof for the method m of the Client class:

/*@ normal_behavior
@ requires \invariant_for(list);
@ requires \disjoint(list.footprint, ((Client)null).x*);
@ requires 0 < list.size();
@x/
static void m(List list) {
X++;
list.get(0);
}
The JML method contract is translated to a JavaDL method contract where the
precondition pre, the postcondition post and the modifies clause mod are:

pre = list.inv Adisjoint(1ist .footprint,allFields((Client)null))
A0 < list.size() Alist #null
post = exc =null

mod = allLocs \ unusedLocs(heap)

To ease the presentation of the more bulky formulas of the concrete example, we
employ a few self-explanatory abbreviations in this subsection and write €,N,\, ...
instead of elementOf ,union, setMinus, . . . .

The corresponding proof obligation from Definition 8.4 is:
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list.inv Adisjoint(1ist.footprint,allFields((Client)null))
A0 < list.size() Alist #null
AwellFormed(heap) A (list =nullV1list.created = TRUE)
— {heap”” := heap}(exc = null;
try { self.m(list); }
catch(Exception e) { exc = e; }) (9.14)
(exc =null
AV Objecto;VField f;
((0,f) € {heap:=heap”*}(allLocs\ unusedLocs(heap))
U unusedLocs(heap’™)

V selectany(heap,o, ) = selectany(heap’™, 0, f))))

Note that the method does not return a value, and that thus the assignment of the
returned value to the program variable res is omitted. The following invariant axiom
rule of Section 9.4.5 is visible when proving the validity of formula (9.14)

* The object invariant declaration ‘public invariant 0 <= size()’inList
gives rise to an inv axiom for inv on objects of type List, as discussed in
Section 9.4.5 and in particular in Example 9.23:

I, inv(h,list), {heap :=h||self :=list}(0 < self.size()) = A
I, inv(h,list) = A
where [ist is a placeholder for a term of type List (or of a subtype). The axiom

is visible in the context of Client because of the public visibility of the
underlying invariant declaration.

The structure of a proof for the proof obligation is shown in Figure 9.4. Starting
from the root sequent ‘== formula(9.14), the first steps are simplifying the sequent
and applying nonsplitting first-order rules (indicated as ‘FOL’ in the figure), which
leads to the following sequent:

list.inv,

allFields(null) N1list.footprint = empty,
0<1list.sizeQ),

wellFormed(heap),

list.created = TRUE,

self.created = TRUE

=
list =null,

(exc = null;
try { Client.m(list); }

catch(Exception e) { exc = e; })(exc =null)
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root

FOL

method call

useMethodContract (1ist.get (0))

l pre ‘ l post ‘ SE
FOL

l 0<1list.size ‘ l list.inv ‘ l well-formed ‘

luDC (1ist.size) luDC (list.inv) lFOL *
”

| |FoL ‘ |FoL

* *

Fig. 9.4 Structure of proof for the method contract of method m in class Client

The formula disjoint(1ist.footprint,allFields(self)) has been reduced to the

formula allFields(null) N1ist.footprint = empty.The negated occurrence of
the formula 1ist = null in the antecedent has been replaced by the nonnegated
occurrence in the succedent via the notlLeft rule. The formula frame below the
modality has vanished entirely, because it holds trivially due to the modifies clause
being everything. Subsequently, the update heap”” := heap has been eliminated
using the dropUpdate, rule of Table 3.1, because heap”’ no longer occurred in its
scope.

Next, we start symbolic execution of the program inside the diamond modality,
indicated as ‘SE’ in Figure 9.4. As one of the first steps of symbolic execution,
the body of the method m being verified is inlined as described in Section 3.6.5.
Eventually, symbolic execution reaches the method call ‘1ist.get (0)’ insidem().
This call is dispatched using its normal_behavior JML contract by applying the
useMethodContract rule of Section 9.4.3. The application of useMethodContract
splits the proof into four branches. We consider here only the two branches for
1. proving the precondition (‘pre’ branch) valid and 2. continuing after normal
termination using the method’s postcondition (‘post’ branch). The other branches
close trivially.

» After applying the update w to the formula below it, the ‘pre’ branch is:

I' =
list =null,
{exc :=null| heap := store(heap,null,Client: :$x,Client.x+ 1)}
(0<0A0<1list.size() Alist.invAwellFormed(heap)
Alist #null Alist.created = TRUE)
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where I' is the same antecedent as before. Closing the ‘pre’ branch requires
showing that the six conjuncts below update hold. The first conjunct 0 < 0 holds
trivially. For the other conjuncts, we consider a further split of the proof tree into
three subbranches, where the first one corresponds to ‘0 < list.size(), the
second one to ‘list.inv, and the third one to ‘wellFormed(heap) A list #
null Alist.created = TRUE):

— “0< 1list.size().” This branch is:

I =
list =null,
0< size (store(heap,null,Client: :$x,Client.x+ 1)},1ist)

The sequent now contains both the term size(heap,list) (inside I")
and the term size (store(heap,self,x,self.x+ 1),1ist). This triggers
an application of the useDependencyContract rule of Section 9.4.4 (indi-
cated as uDC in Figure 9.4), where we choose #’"¢ = heap and W% =
store(heap,null,Client: :$x,Client.x + 1)}. The rule uses the de-
pendency contract for size generated out of the JML depends clause
‘accessible footprint’ in line 9 of Listing 9.9. It adds the formula
guard — equal to antecedent, where the subformula guard (after some sim-
plification) is:

wellFormed(heap)

A wellFormed(store(heap7 null,Client::$x,Client.x+1 ))

Alist.invAlist #null Alist.created = TRUE

A (allFields(null) N1ist.footprint = empty)
All conjuncts of guard follow directly from the rest of the sequent. The
formula equal is:

size(heap,list) =
size(store(heap,null,Client: :$x,Client.x+1),1ist)

Because I demands that 0 < size(heap,list) and the succedent con-
tains 0 < size (store(heap,null, Client::$x,Client.x+1), list), the

information given by equal is enough to close this branch of the proof.
— “list.inv.” The branch is:

I =
list =null,
inv(store(heap,null,Client ::$x,Client.x+ 1), list)



9.6. Related Methodologies for Modular Verification 347

The sequent now contains the formulas inv(heap,list) (inside I") and
inv (store(heap,null, Client::$x,Client.x+1), list). The proof con-
tinues as on the “0 < 1ist.size()” branch above, except that we apply
the useDependencyContract rule for inv instead of for size ().

— ‘wellFormed(heap) Alist # null Alist.created = TRUE. This branch
is easy to close, using propositional reasoning only.

» After some simplification, the “post” branch is:

I —
list =null,
{exc :=null| heap := store(heap,null,Client: :$x,Client.x+ 1)}
{heap := anon(heap, ,h) || exc’ := e}
(exc’ =null A (exc’ =null — list.inv)
A (instanceException(exc’) — (false N1ist.inv))
AwellFormed(h)
— (try { method-frame(source=m(List)@Client):{} 2}
catch(Exception e) { exc = e; })(exc =null))

where exc’:Exception € ProgVSym is the variable used in the applied contract
for get, and where the constant symbol e: Exception € FSym are fresh. The
remaining program is basically a try-catch with an empty try body. Symbolic
execution finishes without entering the catch block, and hence, excis still null
afterwards, which allows us to close the branch.

This concludes the example proof for the method contract mcty. The proof shows
that the implementation of method m in Client satisfies the contract mcty,, provided
that all implementations of get in subclasses of List satisfy the normal_behavior
method contract for get, and provided that all implementations of size () and inv
in subclasses of List satisfy the respective dependency contracts.

9.6 Related Methodologies for Modular Verification

Data Groups

KeY’s dialect of JML uses dynamic frames whereas standard JML supports data
groups. Data groups enable the specification of modifies and depends clauses while
leaving a certain amount of freedom to implementations about the actual locations
that are modified or read. Inclusion of a location into a data group can either be static
(using data group inclusions [Leino, 1998] via in) or dynamic (viamaps ... \into
clauses). Static inclusion of a field adds the locations of the field of all instances to
the data group. This makes membership checking easy, but is little suited for dynamic
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structures. Dynamic inclusion allows a data group of an object to contain locations
of other objects and is suitable for dynamic data structures.

Due to dynamic inclusion, the usage of JML’s data groups is unsuitable for
modular verification as it cannot be known locally whether a location belongs to a
data group or not. This may depend on the subclasses. Solutions by imposing global
restrictions on the usage of data groups in programs have been proposed by Leino
et al. [2002], but are not part of the standard.

Techniques Related to Dynamic Frames

KeY-JML has been inspired by and is very closely related to the dynamic frames
based version of the Spec# specification language [Barnett et al., 2005a] that has
been proposed by Smans, Jacobs, Piessens, and Schulte [2008]. The main difference
is that their language operates on pure functions (and does not support model fields).
The advantage is uniformity, but pure method bodies are not allowed to contain
specification-only features like quantifiers.

As an extension of their language, Smans et al. propose an implicit framing field
footprint which is used as default value in modifies and depends clauses. This
approach could be adopted in KeY and JML as well.

Another relative of dynamic frames in JML is the programming and verification
language Dafny by Leino [2010]. In Dafny specifications, dynamic frame footprints
usually occur as ghost fields of type ‘set of objects’. Frame specifications in Dafny are
thus coarser (all locations of an object are considered), but reasoning is simpler than
with arbitrary location sets. Much like with the model field \inv in KeY-JML, Dafny
specifications encode invariants by introducing a Boolean pure function Valid.

Ownership

Miiller et al. [2003] describe a version of JML that features abstraction dependencies
in place of data groups. Ownership types [Clarke et al., 1998], more precisely, the uni-
verse types of Miiller [2002], can be used to make dependency specifications modular.
Roughly, the idea of ownership is to structure the domain of objects hierarchically
into a tree of disjoint contexts. An ownership fype system guarantees statically that,
at run-time, every object is only ever referenced from within its context or from its
owner object. Ownership can thus prevent unwanted aliasing and abstract aliasing.

A widely used ownership based approach to object invariants is the Spec# method-
ology of Barnett et al. [2004], also known as the Boogie methodology. Here, objects
are furnished with a ghost field st representing their state concerning the invariants.
The value of st is either ‘valid’ or ‘invalid’. If an object o is valid, all objects owned
by o are valid, and the invariants of o is guaranteed to hold. If it is invalid, its owner
must have been invalidated, too. Invariants may refer only to locations of this and
of owned objects, and object fields can only be modified when the object has been
put in the ‘invalid’ state.
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The methodology also addresses the frame problem: Code cannot compromise
the invariant of valid objects. Even if classes may be unknown at verification time,
objects are guaranteed to be valid unless they are in the process of being worked on.

A more recent development is the ownership-related invariant protocol semantic
collaboration by [Polikarpova et al., 2014]. It is a generalization which weakens the
hierarchical principle of ownership and allows for more liberal structures. This is
achieved by introducing new relationships subjects and observers: the objects
in subjects may be used in invariants even if they are not strictly below in the
ownership hierarchy. Conversely, the subjects must require that all its observers
are invalidated when modified. Semantic collaboration can be used to specify and
verify design patterns like the observer or visitor pattern which are difficult to treat
with ownership alone.

The authors of Spec# report that the Spec# methodology proved too restrictive for
some programs they encountered [Barnett et al., 2011]. On the other hand, the VCC
project turned back to an ownership based approach, after reportedly encountering
limiting performance problems with an approach based on dynamic frames [Cohen
et al., 2009].

An advantage of ownership based specification and verification techniques over
the very liberal technique of dynamic frames is that the framework clearly fixes
which invariants can be expected to hold and need to be established. This results
in clearer and shorter specifications. Dynamic frames, on the other hand, are not
restricted to strictly hierarchical structures but their liberal framework allows for any
kind of interaction and interdependencies between objects and their invariants. While
this relieves a burden as far as the layout of data structures is concerned, it requires
the specifier to write more extensive specifications.

Separation Logic

Separation logic [Reynolds, 2002, O’Hearn et al., 2001, 2009] is a nonclassical
extension to Hoare logic. Similar to the dynamic frames approach, it allows ex-
plicit reasoning about the heap, which makes it suitable for reasoning about pointer
programs and about concurrent programs. Separation properties are however not
formulated explicitly using location sets. They are rather blended with functional
specifications, using special ‘separating’ logical connectives. Instead of modifies
clauses and depends clauses, framing information is inferred from a method’s precon-
dition: only locations mentioned by the precondition may be read or written by the
method. This leads to specifications that tend to be shorter, but perhaps less intuitive,
than dynamic frames specifications.

Abstraction in separation logic is achieved by abstraction predicates [Parkinson
and Bierman, 2005] which serve a similar purpose as object invariants with model
fields. Parkinson [2007] makes the case that class invariants may be obsolete as
a fundamental concept in specifying object-oriented programs, pointing out the
restrictions of the existing modular global invariant protocols and arguing that a
concept like abstract predicates can provide a more flexible foundation for expressing
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consistency properties of object structures. A defense of invariants as an independent
concept controlled by a global invariant protocol has been put forward by Summers
et al. [2009].

The VerCors system by Amighi et al. [2014a] features a high-level specification
language inspired by JML. It uses separating conjunctions and implications, a built-in
permission predicate, and abstract specification predicates [Parkinson and Bierman,
2005] (which are similar to Boolean model methods). Programs and specifications
are translated to the Chalice tool [Leino et al., 2009] for verification.

Implicit Dynamic Frames

Implicit dynamic frames [Smans et al., 2012] is an approach inspired both by dynamic
frames and by separation logic. Instead of using location sets explicitly, the technique
centers around a concept of permissions: a method may read or write a location only
if it has acquired the permission to do so, and these permissions are passed around
between method calls by mentioning them in pre- and postconditions. The C and
Java verifier VeriFast [Jacobs et al., 2011c] is based on implicit dynamic frames.

Region Logic

Specifications in region logic [Banerjee et al., 2008b] are closely related to dynamic
frames specifications, more so than specifications in the implicit dynamic frames
approach. There, modifies and depends clauses are expressed with the help of regions,
that are expressions that evaluate to sets of object references. Region logic is an
extension of Hoare logic for reasoning about such specifications [Banerjee et al.,
2008a, Rosenberg et al., 2012].

Model Fields

Although model fields are an important element of specifications in JML, there is
not yet a common understanding of their semantics. There are several proposed
semantics implicitly given through their implementation in actual verification and
runtime checking tools. These are sometimes restricted to ‘functional’ represents
clauses [Miiller, 2002, Cok, 2005], to model fields of a primitive type, or by restricting
the syntax of represents clauses [Breunesse and Poll, 2003, Leino and Miiller, 2006].
A detailed discussion can be found in [Bruns, 2009, Sect. 3.1.5].
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9.7 Conclusion

This chapter presented a framework for composing and verifying modular design-
by-contract specifications. One of its core features is the introduction of a type
\locset, elevating sets of memory locations to first-class citizens of the language,
thus allowing the specification of memory dependency constraints using dynamic
frames. A feature of this framework is the flexibility in writing specifications without
assumptions on the heap structure: Almost any memory dependency pattern can
be formulated using dynamic frames, and it allows for a remarkably simple and
uniform treatment of model fields and methods, pure methods, and class invariants.
Specifications can not only determine the dependencies of methods but also of
model fields. The absence of abstract aliasing can be specified explicitly in contracts
and invariants, using operators such as \disjoint and \new_elems_fresh. The
downside of this simplicity is that specifications may get more verbose, and that their
verification may be computationally more expensive.

Furthermore, modularity is also achieved by means of abstraction. The framework
has a variety of means for abstraction in specifications which can be used to formulate
and verify specifications modularly; modular correctness proofs are still valid if the
program is extended.

To achieve these modularity goals in the verification system addressed in this
book, the chapter presented advanced calculus rules.

Outlook

KeY’s contributions to specification and verification of concurrent programs have not
reached a state to warrant inclusion in this book. One of the most promising lines
of attack is the use of permissions as outlined in Section 10.7.2. There is ongoing
research also with respect to modularity. Grahl [2015] describes a modular approach
to the verification of concurrent programs based on the rely/guarantee technique
from [Jones, 1983]. Grahl extends the specification concepts by dynamic frames. The
classical rely/guarantee approach is not entirely modular since it considers programs
that are closed under parallel composition. This issue is solved by Grahl [2015]
through the addition of frame annotations.
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