Formal Methods in Software Engineering

Dynamic Logic

Bernhard Beckert
/F

UNIVERSITAT KOBLENZ-LANDAU

Formal Methods in Software Engineering — p.1

WHILE: A Simple Programming Language

Logical basis
Typed first-order predicate logic

(Types, variables, terms, formulas, ...)

Formal Methods in Software Engineering - p.2

WHILE: A Simple Programming Language

Logical basis
Typed first-order predicate logic

(Types, variables, terms, formulas, ...)

Assumption for examples

The signature contains a type Nat and appropriate symbols:

o function symbols 0,s,+,*x (terms s(0),s(s(0)),... writtenas 1,2,...)

s predicate symbols =, <, <, >, >

NOTE: Thisis a “convenient assumption” not a definition

Formal Methods in Software Engineering - p.2

WHILE: A Simple Programming Language

Programs

»

Assignments:

Test:

Loop:

Composition:

X:=t X: variable, t: term

if Bthen « else 3 fi B: quantifier-free formula,
«, (3: programs

while B do « od B: quantifier-free formula,
Q. program
a; (3 «, (3 programs

WHILE is computationally complete

Formal Methods in Software Engineering - p.3

WHILE: Examples

Compute the square of X and storeitin Y

Y =XxX

Formal Methods in Software Engineering — p.4

WHILE: Examples

Compute the square of X and storeitin Y

Y =XxX

If X is positive then add one else subtract one
if X>0then X:=X+1else X:=X—-11i

Formal Methods in Software Engineering - p.4

WHILE: Example — Square of a Number

Compute the square of X (the complicated way)

Makinguse of: #n?>=14+34+5+---+2n—1)
N
I:=0;
Y :=0;
while [< X do
Y =Y+2xI+1;
[:=1+1
od

r (isquare

Formal Methods in Software Engineering - p.5

WHILE: Example — Multiplication

Russian multiplication
Z :=0;
while — (B = 0) do
if (B/2) %2 = B) then

A:=2%xA;
B:=B/2
else
=7+ A;
A:=2x%xA;
B:=B/2

) Qo lt

Formal Methods in Software Engineering - p.6

WHILE: Operational Semantics

Given

A (fixed) first-order structure 4 interpreting
the function and predicate symbols in the signature

State

s = (4,08 where

(3 a variable assignment (i.e. function interpreting the vari ables)

Formal Methods in Software Engineering - p.7

WHILE: Operational Semantics

State update

s[X/el = (a,pB[X/el)

with
(e ifY=X
BIX/el(Y) = A

\ B(Y) otherwise

Formal Methods in Software Engineering - p.8

WHILE: Operational Semantics

Define the relation s[Ja]ls’ as follows
s s[[X:=t]s" iff s =s[X/s(t)]

o sflif Bthen « else G fi]ls’ iff
s =Band sf[a]ls’ or s - Band s[G]s

s s[[while Bdo «vod]ls’ iff there are states s=ysg,...,s; = s’ s.t.

s;s=EBfor0<i<t—1 and s;=-B and

sollacllst, sillallsa, .- -, se—1llels:

o sfla; B]]s iff thereis astate s” such that

sffals” and s"[B]s

[«] is a partial function

Formal Methods in Software Engineering - p.9

A Different Approach to WHILE

Programs

s X:=t (atomic program)

s o (sequential composition)
s aUp (non-deterministic choice)
s of (non-deterministic iteration, # times for some n > 0)

s F? (test)
remains in initial state if F is true, does not terminate if F is false

Formal Methods in Software Engineering — p.10

A Different Approach to WHILE

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if Bthen « else 5 fi = (B?; a) U ((— B)?; 0)

while B do o od = (B?; o)*; (— B)?

Formal Methods in Software Engineering - p.11

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Formal Methods in Software Engineering — p.12

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)
{P} a{Q}

Meaning:

If o is started in a state satisfying P and terminates,
then its final state satisfies

Formally:

{P} a {Q} is valid iff

for all states s,s’, if s =P and s[[a]ls’, then s’ = Q

Formal Methods in Software Engineering — p.12

Expressing Program Properties: Examples

{true} X :=X+1{X>1}
{even(X)} X := X + 2 {even(X)} where even(X) =372 (X =2 % 7)

{true } asquare {Y — X S X}

Formal Methods in Software Engineering — p.13

An Annotated Program

Z = 0;
assert X=A ANY = B;
while — (B = 0) do
assert AxB+7Z=XxY;
it ((B/2)*2 = B) then

A:=2x%xA;

B:=B/2
else

Z =7+ A;

A:=2%xA;

B:=B/2

fi
od
assert B=20

assert Z=XxxY

Note

X, Y are “external” variables

Formal Methods in Software Engineering — p.14

Dynamic Logic

The idea of dynamic logic

& Annotated programs use formulas within programs
& Dynamic Logic uses programs within formulas

& Instead of “assert F” after program segment «, write: [« F

Formal Methods in Software Engineering — p.15

Dynamic Logic

The idea of dynamic logic

& Annotated programs use formulas within programs
& Dynamic Logic uses programs within formulas

& Instead of “assert F” after program segment «, write: [« F

A multi-modal logic

& the states are the possible worlds
s two modalities [a] and () for each program «

o state s’ is a-reachable from state s iff sf[a]s’

Formal Methods in Software Engineering — p.15

Dynamic Logic: Semantics

Semantics

o [a]F true in a state s iff
F is true in all states that are «-reachable from s
(partial correctness)

s (o) Ftruein astate s iff
F is true in some state thatis «-reachable from s
(total correctness)

& A formula is valid iff it is valid in all states

Formal Methods in Software Engineering — p.16

Dynamic Logic: Examples

Example formulas (validity depends on «,(3)
() X=Y) < ((B)X=Y)
11X () true

Formal Methods in Software Engineering - p.17

Dynamic Logic: Examples

Example formulas (validity depends on «,(3)
() X=Y) < ((B)X=Y)
11X () true

Valid formulas

(X :=1]X=1

[while true do X := X od]false
(a")F — (FV (a*)(= F A (a)F))

Formal Methods in Software Engineering — p.17

Dynamic Logic: Examples

Example formulas (validity depends on «,(3)
() X=Y) < ((B)X=Y)
11X () true

Valid formulas

(X :=1]X=1

[while true do X := X od]false
(a")F — (FV (a*)(= F A (a)F))

Multiplication example
VAB, X, Y Z(X=ANY =B — o] Z=Xx*Y)

Formal Methods in Software Engineering - p.17

Dynamic Logic: More Examples

Hoare formulas

{P} a{Q} thesameas P —[a]Q

Formal Methods in Software Engineering — p.18

Dynamic Logic: More Examples

Hoare formulas

{P} a{Q} thesameas P —[a]Q

Duality of the modal operators

[a]P < = (a)— P

Formal Methods in Software Engineering — p.18

Some DL-Tautologies

Assumption: X does not occurin

(EX (r)F)
(VX [x]F)

(3X [7]F)
([7]3X F)
((m)V X F)

(VX (m)F)

({m)(F N G))
(({m)F) A {m)G)

<

<

() IXF)
([r]VXF)
([r]3XF)
(X |[m]F) provided 7 is deterministic
(VX (m)F)
((m) VX F) provided m is deterministic

(((m)F) A (m)G)
(m)(F N\ G)) provided 7 is deterministic

Formal Methods in Software Engineering — p.19

A Sequent Calculus for Dynamic Logic

Sequent

[= A

Meaning
AT logically implies \/A

(for all variable assignments, i.e.,
free variables in the sequent are implicitly universally qu antified)

Formal Methods in Software Engineering — p.20

Sequent Rules

Form of sequent rules

[= o M =A =40

[=N [=N

(rules can also have more than two premisses)

Formal Methods in Software Engineering - p.21

Sequent Rules

Form of sequent rules

[= o M =A =40

[=N [=N

(rules can also have more than two premisses)

Meaning

The conclusion is true in a state
whenever all premisses are true in that state

In particular:

The conclusion is valid whenever all premisses are valid

Formal Methods in Software Engineering - p.21

Sequent Calculus for First-order Logic

AxXioms

F.T = F A false, [= A [= true, A

Formal Methods in Software Engineering — p.22

Sequent Calculus for First-order Logic

AxXioms

F.T = F A false, [= A [= true, A

Negation [= F, A [LF = A

N -F = A r - —F A

Formal Methods in Software Engineering — p.22

Sequent Calculus for First-order Logic

Axioms
F,.T' = F A false, [= A [= true, A
Negation [= F, A [LF = A
[, -F = A [= —-F A
Implication [= F, A G = A [LF = G, A

[,F—-G = A [= F—-G, A

Formal Methods in Software Engineering — p.22

Sequent Calculus for First-order Logic

Conjunction [LFE,G = A [= F, A [= G, A

M FAG = A [= FAG, A

Formal Methods in Software Engineering — p.23

Sequent Calculus for First-order Logic

Conjunction [LFE,G = A [= F, A [= G, A
[LEANG = A [= FAG, A
Disjunction LF = A G = A [= F, G, A

M FVG = A r = FVG, A

Formal Methods in Software Engineering — p.23

Sequent Calculus for First-order Logic

Universal quantification

[, VXF, F{X—t} = A = FH{X—Z},A
M VXF = A [= VXF, A
t an arbitrary term, Z a new variable

{X < t} admissible for F

Formal Methods in Software Engineering — p.24

Sequent Calculus for First-order Logic

Universal quantification

[, VXF, F{X—t} = A = FH{X—Z},A
M VXF = A [= VXF, A
t an arbitrary term, Z a new variable

{X < t} admissible for F

Existential quantification

[= dXF, F{X—t}, A L F{X—Z} = A
[= dXF, A dXF = A
t an arbitrary term, Z a new variable

{X « t} admissible for F

Formal Methods in Software Engineering — p.24

Example Proof

6 p(V), p) = p(U), VYp(Y)
‘ Impl-right
5 p(V) = pl), p(lU) — VYp(Y)
ex-right
4 p(vV) = p(l), IX{pX) = VYp(Y))
‘ all-right
3 p(V) = VYp(Y), IX(pX) = VY p(Y))
‘ Impl-right
2 = p(V) = VYp(®Y), IX(p(X) — VY p(Y))
ex-right

1 = JX(EX) = VYp((Y))

Formal Methods in Software Engineering — p.25

Admissibility of Substitutions

Motivation

We want to have that

VXF — Fo
Fo — dXF

is valid for all formulas F and substitutions o

Formal Methods in Software Engineering — p.26

Admissibility of Substitutions

Definition
A substitution
{X—t}
is admissible for a formula F iff

there is no variable Y such that

& Yoccursin t
o thereis a quantificaton VY or dYin F

& there is a free occurrencence of X in the scope of that quantification

Formal Methods in Software Engineering — p.27

Sequent Calculus for Dynamic Logic

Cut rule r—- FA FT = A

[= A

Formal Methods in Software Engineering — p.28

Sequent Calculus for Dynamic Logic

Cut rule r - FA FET = A

[= A

Equality rules

= t=t A

s=t, M {s—t} = Als—t} t=s, M{s«—t} = Afs—t}

s=t T = A t=s, [= A

Formal Methods in Software Engineering — p.28

Sequent Calculus for Dynamic Logic

Oracle for first-order logic

[= A
if no programs occurin ''/A and 2 =Al - VA

Only of theoretical use! Not computable!

Formal Methods in Software Engineering — p.29

A Sequent Calculus for Dynamic Logic

Composition rule

= [o][B]F, A

= [o; B]F, A

Formal Methods in Software Engineering — p.30

A Sequent Calculus for Dynamic Logic

Composition rule

= [a]lB]F, A

= [o; B]F, A

Assignment rule

M{X— X}, X=HX <X} = F,AX— X}
X' a new variable

[= [X:=t]F, A

Example:

even(X'), X=X'+2 = ceven(X)

even(X) = [X:= X+ 2]even(X)

Formal Methods in Software Engineering — p.30

A Sequent Calculus for Dynamic Logic

Conditional rule
LB = [«a]F, A =B = [B]F, A

[= [if Bthen aelse G fi]F, A

Formal Methods in Software Engineering - p.31

Reasoning about Loops

To prove

[while B do body od] F

find an (arbitrary) formula Inv such that
1. Inv s true before execution of the loop
2. Inv \ B — [body]Inv s true

3. IntAN—B— F istrue

Note

Inv is a loop invariant

Formal Methods in Software Engineering — p.32

Sequent Calculus for Dynamic Logic

Loop rule

[= Inv, A Inv,B = |«a]lInv Inv,~B = F

[= [while Bdo a od]F,A

Formal Methods in Software Engineering — p.33

Example

- [asquare] Y=Xx*xX

B: I<X
a Y =Y+2x[+1;, [:=1+1

Formal Methods in Software Engineering — p.34

Example

= [[:=0;, Y:=0;, while Bdo aod]Y =XxX

- [asquare] Y=Xx*xX

B: I<X
a Y =Y+2x[+1;, [:=1+1

Formal Methods in Software Engineering — p.34

Example

\

[:=0][Y :=0][while Bdo v od]Y = X x X
[:=0;, Y:=0;, while Bdo vod]Y =Xx%xX

g :asquare] Y =X*xX

|

B: I<X
a Y =Y+2xI+1, I:=1+1

Formal Methods in Software Engineering — p.34

Example

[=0 -> Y := 0] [while Bdo cvod]Y =X %X
- [:=0][Y :=0][while Bdo aaod]Y =Xx*xX
= [[:=0;, Y:=0; while Bdo aod]Y =X=x*X
- :asquare]YiX*X
B: I<X

o Y =Y+2xI+1, I:=1+1

Formal Methods in Software Engineering — p.34

Example

[=0,Y=0 = [while Bdo aod]Y=XxX
=0 = [Y:=0][while Bdo aod]Y =X=x*xX
= [I:=0][Y:=0]][while Bdo aaod]Y =X *x X
= [[:=0; Y:=0; while Bdo aod]Y =XxX
= |asquare]l Y = X% X
B: I<X

a Y =Y+2xI+1, I:=1+1

Formal Methods in Software Engineering — p.34

Example

Invariant Inv: [< X AN Y =1x]

[=0,Y=0= Inv Inv, B=> [a]lnv Inv, =B = Y=XxX

[=0,Y=0 = [while Bdo aod]Y=XxX
[=0 = [Y:=0][while Bdo aod]Y =XxX
= [I:=0][Y:=0][while Bdo aaod]Y =X *x X
= [[:=0; Y:=0; while Bdo aod]Y =X=xX
= |asquare]l Y = X% X
B: I<X

o Y =Y+2xI+1, I:=1+1

Formal Methods in Software Engineering — p.34

Example

Left branch (pre-condition implies invariant)

[=0,Y=0 = I<XAY=IxI

Formal Methods in Software Engineering — p.35

Example

Left branch (pre-condition implies invariant)

I=0,Y=0 = 0<XAY=0x0

[=0,Y=0 = I<XAY=IxI

Formal Methods in Software Engineering — p.35

Example

Left branch (pre-condition implies invariant)

[=0,Y=0 = 0<X [=0,Y=0 = Y=0x0

I=0,Y=0 = 0<XAY=0x0

[=0,Y=0 = I<XAY=IxI

Formal Methods in Software Engineering — p.35

Example

Middle branch (invariant is indeed invariant)

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Middle branch (invariant is indeed invariant)

I<X, Y=Ix],I<X = [Y=Y4+2xI4+1, I:=1+1]Inv

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Middle branch (invariant is indeed invariant)

I<X, Y=Ix[,I<X = [Y=Y42x]I+1]|[[:=1+1]Inv
I<X, Y=Ix[,I<X = [Y=Y+2xI+1, [:=1+1]Inv

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Middle branch (invariant is indeed invariant)

I<X, Y =I«1I<X, Y=Y +2x]I+1 = [[:=1+1]Inv
I<X, Y=Ix[,I<X = [Y=Y4+2x]I+1][[:=1+1]Inv
I<X, Y=Ix],I<X = [Y=Y42xI+4+1, I:=1+1]Inv

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Middle branch (invariant is indeed invariant)

F<X, Y=I+«I <X, Y=Y+2+I+1,I=I'+1 = Imw
<X, Y =I«[I<X, Y=Y +2xI+1 = [[:=I+1]Inv
<X, Y=Ix[,I<X = [Yi=Y+2%I[+1][I:=1+1]Inv
<X, Y=I«[,I<X = [Yi=Y+2%I+1; [:=1+1]Imw

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Middle branch (invariant is indeed invariant)
I'<X, I=I'+1 = I<X

Y =TI'sxI', Y=Y +2«I'+1, I=I'+1 = Y =1Ix]I
<X Y=« <X, Y=Y +2«I'+1,I=I'+1 = Inv
<X, Y=I«x,I<X, Y=Y +2x][+1 = [[:=1+1]Inv
[I<X, Y=Ix[LI<X = |[Y=Y+2x[+1][[:=1+1]Inv
[I<X, Y=Ix[LI<X = |[Y:=Y4+2xI4+1, I:=1+1]Inv

Inv, B = |a]lnv

Formal Methods in Software Engineering — p.36

Example

Right branch
(invariant and negated loop condition imply post-conditio n)

InoAN—-B = QO

Formal Methods in Software Engineering - p.37

Example

Right branch
(invariant and negated loop condition imply post-conditio n)

I<X, Y=Ix],-(I<X) = Y=XxX

InonN—-B = QO

Formal Methods in Software Engineering - p.37

Example

Right branch
(invariant and negated loop condition imply post-conditio n)

[<X, Y=Ix[, -(I<X) = I=X,Y=X=xX
[<X, Y=I«[, -(I<X) = Y=X=xX

InoAN—-B = QO

Formal Methods in Software Engineering - p.37

Example

Right branch
(invariant and negated loop condition imply post-conditio n)

I<SX, Y=I+, -(I<X) = I=X Y=IxI
I<X, Y=Ix], -(I<X) = I=X Y=XxX
[<X, Y=Ix], -(I<X) = Y=XxX

InoAN—-B = QO

Formal Methods in Software Engineering — p.37

Example II: Multiplication

X=A,Y=B = [ouulZ=XxY

Formal Methods in Software Engineering — p.38

Example II: Multiplication

X=A,Y=B = |[Z:=0;, ayjelZ=Xx*xY
X=A,Y=B = J|Ja,ulZ=XxY

Formal Methods in Software Engineering — p.38

Example II: Multiplication

X=A,Y=B,Z=0 = J|oawiplZ=XxY
X=A,Y=B = |[Z:=0, awyjplZ=Xx*xY
X=A,Y=B = J|Joa,ulZ=XxY

Formal Methods in Software Engineering — p.38

Example II: Multiplication

Invariant Inv: AxB+7=XxY

X=A,Y=B,Z=0 = Inv
Inv, - B=0 =

[Qtpoay] Inv
Inv, B=0 —= Z=X

:awhile] Z=Xx*xY
Z:=0; aupielZ=Xx*Y

o] Z = X * Y

Formal Methods in Software Engineering — p.38

Example II: Multiplication

Left branch (pre-condition implies invariant)

X=A,Y=B,Z=0 = A*xB4+Z=X=xY

Formal Methods in Software Engineering — p.39

Example II: Multiplication

Left branch (pre-condition implies invariant)

X=A,Y=B,Z=0 = A*xB4+Z=X=xY

Middle branch (invariant is indeed invariant)

AxB+Z=XxY, 2B=0 = |apgylA*B+Z=XxY

Formal Methods in Software Engineering — p.39

Example II: Multiplication

Left branch (pre-condition implies invariant)

X=A,Y=B,Z=0 = A*xB4+Z=X=xY

Middle branch (invariant is indeed invariant)

AxB+Z=XxY, 2B=0 = |apgylA*B+Z=XxY

Right branch
(invariant and negated loop condition imply post-conditio n)

A*B+Z=X*xY, B=0 = Z=XxY

Formal Methods in Software Engineering — p.39

Induction Rule

Purpose

& Needed to prove first-order theorems on natural numbers
(oracle not available in practice)

s Handling loops in (-) modality

Formal Methods in Software Engineering — p.40

Induction Rule

Purpose

& Needed to prove first-order theorems on natural numbers
(oracle not available in practice)

s Handling loops in (-) modality

r—- r{N—0,A TI,F—=> FN—N+1},A T,¥YNF = A

[= A

N not occurringin [, A
N not occurring in any program in F

Formal Methods in Software Engineering — p.40

Induction Rule: Example

= ceven(2 x0), even(2 x 3)
even(2xN) => even(2* (N + 1)), even(2 *3)

VN (even(2x N)) = even(2*3)

= ceven(2 x 3)

Formal Methods in Software Engineering - p.41

Loop Unwind Rule

Rule
=B = F,A B = (a)(while Bdo «od)F,A

[= (while Bdo avod)F,A

Formal Methods in Software Engineering — p.42

Loop Unwind Rule

Rule
=B = F,A r,B = (a)(while Bdo «od)F,A
[= (while Bdo o od)F,A
Note
Only useful

& In connection with induction rule, or

& If number of loop iterations has a (small) known upper bound

Formal Methods in Software Engineering — p.42

Loop Unwind Rule / Induction Rule: Example

Proof goal

— (while I >0dol:=I—10d)I=0

Induction hypothesis

F(N) = VII<N — (while I >0doI:=I1—10d)I=0)

Formal Methods in Software Engineering — p.43

Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
IS not sufficient if formulas contain programs

Example

F = J=K—[I:=0]J=K) valid

Formal Methods in Software Engineering — p.44

Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
IS not sufficient if formulas contain programs

Example

F
F{I —]}

J=K—[I:=0]J=K) valid

J=K—=][]:=0](J =K) not valid

Formal Methods in Software Engineering — p.44

Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
IS not sufficient if formulas contain programs

Example
F = J=K—=[[:=0]0=K) valid
F{l—]} = J=K—[J:=01(J=K) notvalid
F{J—I} = I=K—[[:=0]0=K) notvald

Formal Methods in Software Engineering — p.44

Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility

IS not sufficient if formulas contain programs

Example
Fll—J} = J=K—[:=
F{J<—I} = [I=K—][l:=
F{I—1} =

1(J =K)
1 =K)
1(I =K)

J=K—[1:=0](J=K)

valid
not valid
not valid

not a formula

Formal Methods in Software Engineering — p.44

Admissibility of Substitutions Revisited

Revised definition

A substitution {X«—t} isadmissible for aformula F iff
1. t=X, or
2. tis avariable not occurringin F, or

3. there is no variable Y in t such that
a free occurrence of X in F is in the scope of

(a) a quantification VY or Y, or

(b) a modality containing an assignment of the form Y:=s

Formal Methods in Software Engineering — p.45

	
	WHILE: A Simple Programming Language
	WHILE: A Simple Programming Language
	WHILE: Examples
	WHILE: Example -- Square of a Number
	WHILE: Example -- Multiplication
	WHILE: Operational Semantics
	WHILE: Operational Semantics
	WHILE: Operational Semantics
	A Different Approach to WHILE
	A Different Approach to WHILE
	Expressing Program Properties
	Expressing Program Properties: Examples
	An Annotated Program
	Dynamic Logic
	Dynamic Logic: Semantics
	Dynamic Logic: Examples
	Dynamic Logic: More Examples
	Some DL-Tautologies
	A Sequent Calculus for Dynamic Logic
	Sequent Rules
	Sequent Calculus for First-order Logic
	Sequent Calculus for First-order Logic
	Sequent Calculus for First-order Logic
	Example Proof
	Admissibility of Substitutions
	Admissibility of Substitutions
	Sequent Calculus for Dynamic Logic
	Sequent Calculus for Dynamic Logic
	A Sequent Calculus for Dynamic Logic
	A Sequent Calculus for Dynamic Logic
	Reasoning about Loops
	Sequent Calculus for Dynamic Logic
	Example
	Example
	Example
	Example
	Example II: Multiplication
	Example II: Multiplication
	Induction Rule
	Induction Rule: Example
	Loop Unwind Rule
	Loop Unwind Rule / Induction Rule: Example
	Admissibility of Substitutions Revisited
	Admissibility of Substitutions Revisited

