(Method) Contracts

(updated on July 22, 2008)

by Christoph Gladisch

The following open proof tree shows how to derive the method contract rule. Assume that p represents

the method that is “replaced” by the contract and ¢ is some program that follows p.

post, = (g)postyq
prepq = prep, (p)post, = (p)(q)postpq
Prepq = Prep, (p;)postyq (p)posty, prepq = (p)(q)postpg
pre, — (p)posty, prepq = (p)(q)postyq
pre, — (p)post, = prepq — () (q)postpq

Contract Proofobligation

The open proof branches are the the branches of the method contract rule:
Basic method contract rule withoud modifies clause
Here we assume that pre, — (p)postp is a correct contract.

prepq = prep post, = (q)postyq
pre, — (p)post, = pre,q — (p){q)postyq

In KeY the contract pre, — (p)post, is not explicit in the sequent but is extracted from the jml contracts
of the current java file where pre,q — (p)(g)postyq stemm from.

Invariant rule construction

The Invariant rule is similar to the method contract rule. We make no statement about termination there-
fore the box-operator “[|” is used.
postioop
prep,q = Inv Inv, ¢ = (q)postyq
Inv A ¢ — [b]Inv = pre,q — [while(e){b}](g)post,q

Preloop

Usually we don’t assume Inv A ¢ — [b]Inv is correct. Therefore, proving it yields the loop invariant rule:
prepq=Inv. InvAc=[blnv Inv,~c= (g)postyq
= Prep, — [While(c) {6} (4] postyy
In KeY without modifies clause:
I'={U}inv = inv— ([b=c](b=true) — |[body]inv) = inv — —c— Post
I'= {U }|while(c) {body}|Post

Note that I' (which has all the useful information that we migth need for a proof) is not present in the
second and third branch.

In KeY with modifies clause:

Here {M } represents a so-called “anonymous update” that is created from a modifier set M (in KeY these
updates look like this: “{ % := 1}”). The modifier set M is a set of all program variables (or non-rigid
function symbols) that may be modified by the loop body. {M} replaces all symbols that could be modi-
fied by new symbols (skolem functions). In this way modified symbols are not in “conflict” with symbols
that are constrained by I'. For instance assume that ¢ = 0 before loop execution and the body computes
i+ 4, then without {M} we get the “conflict” i =0 A i = 1. However if {M } represents, e.g., the anony-
mous update {i := igx}, where g is a new function symbol, then we get i =0 A {M}i =1 yields i = 0 A
isk = 1.

I'={U}inv T = {U}HM}(inv— ([b=c](b=true)— [bodylinv)) I = {U}H{M }(inv— —c— Post)

I' = {U }|while(c) {body}|Post

