
(Method) Contracts

(updated on July 22, 2008)

by Christoph Gladisch

The following open proof tree shows how to derive the method contract rule. Assume that p represents
the method that is “replaced” by the contract and q is some program that follows p.

prepq ⇒ prep

prepq ⇒ prep, 〈p; q〉postpq

postp⇒〈q〉postpq
〈p〉postp⇒〈p〉〈q〉postpq

〈p〉postp, prepq ⇒〈p〉〈q〉postpq

prep→〈p〉postp, prepq ⇒〈p〉〈q〉postpq

prep→〈p〉postp�
Contract

⇒ prepq →〈p〉〈q〉postpq�
Proof obligation

The open proof branches are the the branches of the method contract rule:

Basic method contract rule withoud modifies clause

Here we assume that prep→〈p〉postp is a correct contract.

prepq ⇒ prep postp⇒〈q〉postpq
prep→〈p〉postp⇒ prepq →〈p〉〈q〉postpq

In KeY the contract prep → 〈p〉postp is not explicit in the sequent but is extracted from the jml contracts
of the current java file where prepq →〈p〉〈q〉postpq stemm from.

Invariant rule construction

The Invariant rule is similar to the method contract rule. We make no statement about termination there-
fore the box-operator “[]” is used.

prepq ⇒ Inv Inv,¬c
�postl o o p

⇒〈q〉postpq
Inv∧ c�
pre l o o p

→ [b]Inv⇒ prepq → [while(c){b}]〈q〉postpq

Usually we don’t assume Inv∧ c→ [b]Inv is correct. Therefore, proving it yields the loop invariant rule:

prepq ⇒ Inv Inv∧ c⇒ [b]Inv Inv,¬c⇒〈q〉postpq
⇒ prepq → [while(c){b}]〈q〉postpq

In KeY without modifies clause:

Γ⇒{U }inv ⇒ inv→ ([b=c](b= true)→ [body]inv) ⇒ inv→¬c→Post

Γ⇒{U }[while(c){body}]Post

Note that Γ (which has all the useful information that we migth need for a proof) is not present in the
second and third branch.

In KeY with modifies clause:

Here {M } represents a so-called “anonymous update” that is created from a modifier set M (in KeY these
updates look like this: “{ ∗ 4 ∗ 1}”). The modifier set M is a set of all program variables (or non-rigid
function symbols) that may be modified by the loop body. {M } replaces all symbols that could be modi-
fied by new symbols (skolem functions). In this way modified symbols are not in “conflict” with symbols
that are constrained by Γ. For instance assume that i = 0 before loop execution and the body computes
i + + , then without {M } we get the “conflict” i = 0 ∧ i = 1. However if {M } represents, e.g., the anony-
mous update {i4 isk}, where isk is a new function symbol, then we get i = 0 ∧ {M }i = 1 yields i = 0 ∧
isk = 1.

Γ⇒{U }inv Γ⇒{U }{M }(inv→ ([b=c](b = true)→ [body]inv)) Γ⇒{U }{M }(inv→¬c→Post)

Γ⇒{U }[while(c){body}]Post

1

