
Formal Specification and Verification
Formal Specification, Part III

Bernhard Beckert

Adaptation of slides by
Wolfgang Ahrendt

Chalmers University, Gothenburg, Sweden

Formal Specification and Verification: Formal Specification 1 / 71

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General Philosophy

Integrate

specification and

implementation

in one single language.

⇒ JML is not external to Java

JML
is

Formal Specification and Verification: Formal Specification 2 / 71

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General Philosophy

Integrate

specification and

implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java

Formal Specification and Verification: Formal Specification 2 / 71

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General Philosophy

Integrate

specification and

implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants + more ...

Formal Specification and Verification: Formal Specification 2 / 71

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General Philosophy

Integrate

specification and

implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants + more ...

Formal Specification and Verification: Formal Specification 2 / 71

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General Philosophy

Integrate

specification and

implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants + more ...

Formal Specification and Verification: Formal Specification 2 / 71

JML Annotations

JML extends Java by annotations.

JML annotations include:

4 preconditions

4 postconditions

8 intermediate assertions

4 class invariants

4 additional modifiers

8 ‘specification-only’ field declarations

8 ‘specification-only’ field conditions

8 ‘specification-only’ field assignments

8 ...

4: in this course, 8: not in this course

Formal Specification and Verification: Formal Specification 3 / 71

JML/Java integration

JML annotations are attached to Java programs
by

writing them directly into the Java source code files!

But to not confuse the Java compiler:

JML annotations live in in special comments,
ignored by Java, but recognised by JML.

Formal Specification and Verification: Formal Specification 4 / 71

JML/Java integration

JML annotations are attached to Java programs
by

writing them directly into the Java source code files!

But to not confuse the Java compiler:

JML annotations live in in special comments,
ignored by Java, but recognised by JML.

Formal Specification and Verification: Formal Specification 4 / 71

JML Example 1

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

...

Formal Specification and Verification: Formal Specification 6 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

Everything between /* and */ is invisible for Java.

Formal Specification and Verification: Formal Specification 8 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
is not a comment for JML.

(Non-Java) JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Formal Specification 10 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
is not a comment for JML.

(Non-Java) JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Formal Specification 10 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
is not a comment for JML.

(Non-Java) JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Formal Specification 10 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

But:

A Java comment with ‘@’ as its first character
is not a comment for JML.

(Non-Java) JML annotations appear in Java comments starting with @.

How about “//”comments?

Formal Specification and Verification: Formal Specification 10 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {
if (....

is equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

public void enterPIN (int pin) {
if (....

Formal Specification and Verification: Formal Specification 12 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

if it is the first (non-white) character in the line

if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Formal Specification 14 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

if it is the first (non-white) character in the line

if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Formal Specification 14 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/
public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

if it is the first (non-white) character in the line

if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

Formal Specification and Verification: Formal Specification 14 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case, meaning it:

1 is visible from all classes and interfaces

2 can only mention public fields/methods of this class

2. is normally a problem. Solution later in the lecture.

In this course: only public specifications.

Formal Specification and Verification: Formal Specification 16 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case, meaning it:

1 is visible from all classes and interfaces

2 can only mention public fields/methods of this class

2. is normally a problem. Solution later in the lecture.

In this course: only public specifications.

Formal Specification and Verification: Formal Specification 16 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This is a public specification case, meaning it:

1 is visible from all classes and interfaces

2 can only mention public fields/methods of this class

2. is normally a problem. Solution later in the lecture.

In this course: only public specifications.

Formal Specification and Verification: Formal Specification 16 / 71

Discussion Example 1

/*@ public normal_behavior
@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

Each keyword ending on behavior opens a ‘specification case’.

normal_behavior opens a ‘normal behavior specification case’:
The method guarantees normal termination if the caller guarantees all
preconditions of this specification case.

Formal Specification and Verification: Formal Specification 18 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has two preconditions (marked by requires)

1 !customerAuthenticated

2 pin == insertedCard.correctPIN

Here, the preconditions are boolean Java expressions.

In general, pre/postconditions and invariants are
boolean JML expressions.

Formal Specification and Verification: Formal Specification 20 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has two preconditions (marked by requires)

1 !customerAuthenticated

2 pin == insertedCard.correctPIN

Here, the preconditions are boolean Java expressions.

In general, pre/postconditions and invariants are
boolean JML expressions.

Formal Specification and Verification: Formal Specification 20 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

This specifies only the case where both preconditions are true in the
prestate.

I.e., the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated
@ && pin == insertedCard.correctPIN);
@ ensures customerAuthenticated;
@*/

Formal Specification and Verification: Formal Specification 22 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has one postcondition (marked by ensures)

customerAuthenticated

Again, the postcondition is a boolean Java expressions.

Again, in general pre/postconditions and invariants are
boolean JML expressions.

Formal Specification and Verification: Formal Specification 24 / 71

Discussion Example 1

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@*/

public void enterPIN (int pin) {
if (....

This specification case has one postcondition (marked by ensures)

customerAuthenticated

Again, the postcondition is a boolean Java expressions.

Again, in general pre/postconditions and invariants are
boolean JML expressions.

Formal Specification and Verification: Formal Specification 24 / 71

Discussion Example 1

Different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin == insertedCard.correctPIN;
@ ensures customerAuthenticated;
@
@ also

@
@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@*/

public void enterPIN (int pin) {
if (....

Formal Specification and Verification: Formal Specification 26 / 71

Discussion Example 1

/*@ <spec-case1> also

@
@ public normal_behavior

@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter < 2;
@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;
@*/

public void enterPIN (int pin) { ...

Now, for the first time, we have a JML expression which is not a Java
expression.

\old(E) is: E evaluated in the prestate of enterPIN.

E can be any (arbitrarily complicated) Java/JML expression.

Formal Specification and Verification: Formal Specification 28 / 71

Discussion Example 1

/*@ <spec-case1> also <spec-case2> also

@
@ public normal_behavior

@ requires insertedCard != null;
@ requires !customerAuthenticated;
@ requires pin != insertedCard.correctPIN;
@ requires wrongPINCounter >= 2;
@ ensures insertedCard == null;
@ ensures \old(insertedCard).invalid;
@*/

public void enterPIN (int pin) { ...

Ths specification case has two postconditions, stating that:

‘Given the above preconditions, enterPIN guarantees:

(insertedCard == null && \old(insertedCard).invalid)’

Formal Specification and Verification: Formal Specification 30 / 71

JML Modifiers

JML extends the Java modifiers by additional modifiers.

The most important ones are:

spec public

pure

Aim: admitting more class elements to be used in JML expressions.

Formal Specification and Verification: Formal Specification 31 / 71

JML Modifiers: spec public

In Example 1 (enterPIN), pre- and postconditions made heavy use of
class fields.

But: public specifications can only talk about public fields.

Not desired: make all fields public.

Solution:

keep the fields private/protected

make those needed for specification spec public

private /*@ spec_public @*/ boolean customerAuthenticated;
private /*@ spec_public @*/ int wrongPINCounter;

Formal Specification and Verification: Formal Specification 33 / 71

JML Modifiers: spec public

In Example 1 (enterPIN), pre- and postconditions made heavy use of
class fields.

But: public specifications can only talk about public fields.

Not desired: make all fields public.

Solution:

keep the fields private/protected

make those needed for specification spec public

private /*@ spec_public @*/ boolean customerAuthenticated;
private /*@ spec_public @*/ int wrongPINCounter;

Formal Specification and Verification: Formal Specification 33 / 71

JML Modifiers: spec public

In Example 1 (enterPIN), pre- and postconditions made heavy use of
class fields.

But: public specifications can only talk about public fields.

Not desired: make all fields public.

Solution:

keep the fields private/protected

make those needed for specification spec public

private /*@ spec_public @*/ boolean customerAuthenticated;
private /*@ spec_public @*/ int wrongPINCounter;

Formal Specification and Verification: Formal Specification 33 / 71

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

o1.equals(o2)

li.contains(elem)

li1.max() < li2.min()

This is allowed if, and only if, the method call is guaranteed to have no
side effects.

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

The ‘pure’ modifier puts an additional obligation on the implementer
(no to use side effects), but allows to use the method in annotations.

Formal Specification and Verification: Formal Specification 35 / 71

JML Expressions and FO Logic

So far: pre/postconditions did not use first-order logic formulae,
but simply boolean Java expressions.

But: last lecture motivated the need for more powerful features,
foremost quantification1.

⇒ many specification frameworks employ formulas of some logic

Not so JML!

Design decision taken in JML

Instead of going from Java boolean expressions to a more expressive
logic, make the boolean expressions more expressive themselves.

1see List::set()
Formal Specification and Verification: Formal Specification 36 / 71

JML Expressions and FO Logic

So far: pre/postconditions did not use first-order logic formulae,
but simply boolean Java expressions.

But: last lecture motivated the need for more powerful features,
foremost quantification1.

⇒ many specification frameworks employ formulas of some logic

Not so JML!

Design decision taken in JML

Instead of going from Java boolean expressions to a more expressive
logic, make the boolean expressions more expressive themselves.

1see List::set()
Formal Specification and Verification: Formal Specification 36 / 71

JML Expressions and FO Logic

⇒ JML boolean expressions extend Java boolean expressions by:

implication

quantification

(more ...)

Instead of a formula being valid, or not valid, in a certain model, we
speak about a boolean expression being true or false in a certain state.

Formal Specification and Verification: Formal Specification 37 / 71

boolean JML Expressions

boolean JML expressions are defined recursively:

Formulae

each side-effect free boolean Java expression is a boolean JML
expression

if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

!a (“not a”)
a && b (“a and b”)
a || b (“a or b”)
a ==> b (“a implies b”)
a <==> b (“a is equivalent to b”)
(\forall t x; a) (“for all x of type t is true”)
(\exists t x; a) (“there exists x of type t such that a”)
(\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
(\exists t x; a; b) (“there exists x of type t fulfilling a,

such that b”)

Formal Specification and Verification: Formal Specification 39 / 71

boolean JML Expressions

boolean JML expressions are defined recursively:

Formulae

each side-effect free boolean Java expression is a boolean JML
expression

if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

!a (“not a”)
a && b (“a and b”)
a || b (“a or b”)
a ==> b (“a implies b”)
a <==> b (“a is equivalent to b”)
(\forall t x; a) (“for all x of type t is true”)
(\exists t x; a) (“there exists x of type t such that a”)
(\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
(\exists t x; a; b) (“there exists x of type t fulfilling a,

such that b”)

Formal Specification and Verification: Formal Specification 39 / 71

JML Quantifiers

In the two last quantifier expressions:

(\forall t x; a; b) and (\exists t x; a; b)

a is called the ‘range predicate’

These forms are redundant:

(\forall t x; a; b)
is equivalent to
(\forall t x; a ==> b)

and

(\exists t x; a; b)
is equivalent to
(\exists t x; a && b)

Formal Specification and Verification: Formal Specification 41 / 71

Pragmatics of Range Predicates

Even if the forms

(\forall t x; a; b) and (\exists t x; a; b)

are redundant, they are widely used.

Pragmatics of the range predicate:

a is used to restrict the range of x further than its type t does.

(\forall int i,j; 0 <= i && i < j && j < 10; a[i] < a[j])

says that a is sorted at indexes between 0 and 9.

The quantifiers for i and j ‘range’ over values making the expression
between ; and ; true.

Formal Specification and Verification: Formal Specification 43 / 71

Generalized Quantifiers

JML offers generalised quantifiers:

\max

\min

\product

\sum

returning the maximum, minimum, product, or sum of the values of the
expressions given, where the variables satisfy the given range.

Examples (all formulae are true):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4

(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4

(\max int i; 0 <= i && i < 5; i) == 4

(\min int i; 0 <= i && i < 5; i-1) == -1

Formal Specification and Verification: Formal Specification 45 / 71

Result Values in Postcondition

/*@ public normal_behavior

@ ensures (\forall int j; j >= 0 && j < a.length;
@ \result >= a[j]);
@*/

public static /*@ pure @*/ int max(int[] a) {
if (...

In a postcondition:
one can use ‘\result’ to refer to the return value of the method.

But is the above postcondition sufficient?

Formal Specification and Verification: Formal Specification 47 / 71

Result Values in Postcondition

/*@ public normal_behavior

@ ensures (\forall int j; j >= 0 && j < a.length;
@ \result >= a[j]);
@*/

public static /*@ pure @*/ int max(int[] a) {
if (...

In a postcondition:
one can use ‘\result’ to refer to the return value of the method.

But is the above postcondition sufficient?

Formal Specification and Verification: Formal Specification 47 / 71

Result Values in Postcondition

/*@ public normal_behavior

@ ensures (\forall int j; j >= 0 && j < a.length;
@ \result >= a[j]);
@*/

public static /*@ pure @*/ int max(int[] a) {
if (...

In a postcondition:
one can use ‘\result’ to refer to the return value of the method.

But is the above postcondition sufficient?

Formal Specification and Verification: Formal Specification 47 / 71

Result Values in Postcondition

/*@ public normal_behavior

@ ensures (\forall int j; j >= 0 && j < a.length;
@ \result >= a[j]);
@ ensures a.length > 0 ==>
@ (\exists int j; j >= 0 && j < a.length;
@ \result == a[j]);
@*/

public static /*@ pure @*/ int max(int[] a) {
if (...

Formal Specification and Verification: Formal Specification 49 / 71

JML Invariants

So far: attached pre/postconditions to methods.

Now: attaching invariants to classes.

We are free where to put it in the class (potentially close to fields the
invariant talks about).

Formal Specification and Verification: Formal Specification 50 / 71

JML Invariants: Example

/*@ public invariant

@ accountProxies != null;
@ public invariant

@ accountProxies.length == maxAccountNumber;
@ public invariant

@ (\forall int i; i >= 0 && i < maxAccountNumber;
@ (accountProxies[i] == null

@ ||
@ accountProxies[i].accountNumber == i));
@*/

private /*@ spec_public nullable@*/ final

OfflineAccountProxy[] accountProxies
= new OfflineAccountProxy [maxAccountNumber];

Formal Specification and Verification: Formal Specification 52 / 71

non null and nullable

JML extends the Java modifiers by further modifiers:

class fields

method parameters

method return types

can be declared as

nullable: may or may not be null

non_null: must not be null

Formal Specification and Verification: Formal Specification 54 / 71

non null: Examples

private /*@ spec_public non_null @*/ String name;

invariant
‘public invariant name != null;’
implicitly added to class

public void insertCard(/*@ non_null @*/ BankCard card) {..

precondition
‘requires card != null;’
implicitly added to each specification case of insertCard

public /*@ non_null @*/ String toString()

postcondition
‘ensures \result != null;’
implicitly added to each specification case of toString

Formal Specification and Verification: Formal Specification 56 / 71

non null is default in JML!

⇒ same effect even without explicit ‘non null’s

private /*@ spec_public @*/ String name;

invariant
‘public invariant name != null;’
implicitly added to class

public void insertCard(BankCard card) {..

precondition
‘requires card != null;’
implicitly added to each specification case of insertCard

public String toString()

postcondition
‘ensures \result != null;’
implicitly added to each specification case of toString

Formal Specification and Verification: Formal Specification 58 / 71

nullable: Examples

To prevent such pre/post conditions and invariants: ‘nullable’

private /*@ spec_public nullable @*/ String name;

no implicit invariant added

public void insertCard(/*@ nullable @*/ BankCard card) {..

no implicit precondition added

public /*@ nullable @*/ String toString()

no implicit postcondition added to specification cases of toString

Formal Specification and Verification: Formal Specification 60 / 71

LinkedList: non null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

all elements in the list are non_null

the list is cyclic, or infinite!

Formal Specification and Verification: Formal Specification 62 / 71

LinkedList: non null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

all elements in the list are non_null

the list is cyclic, or infinite!

Formal Specification and Verification: Formal Specification 62 / 71

LinkedList: non null or nullable?

public class LinkedList {
private Object elem;
private LinkedList next;
....

In JML this means:

all elements in the list are non_null

the list is cyclic, or infinite!

Formal Specification and Verification: Formal Specification 62 / 71

LinkedList: non null or nullable?

Repair:

public class LinkedList {
private Object elem;
private /*@ nullable @*/ LinkedList next;
....

⇒ Now, the list is allowed to end somewhere!

Formal Specification and Verification: Formal Specification 64 / 71

Final Remark on non null and nullable

non null as default in JML is fairly new.

⇒ Not yet well reflected in literature and tools.

Formal Specification and Verification: Formal Specification 66 / 71

JML and Inheritance

All JML contracts, i.e.

specification cases

class invariants

are inherited down from superclasses to subclasses.

A class has to fulfill all contracts of its superclasses.

Recall the hashCode problem from lecture 6.

Formal Specification and Verification: Formal Specification 67 / 71

Literature

This was an intro into JML essentials.
Two tutorial papers:

Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

Both go beyond today’s lecture, but that doesn’t hurt.
The reference manual, for look-up:

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, Peter Müller, and Joseph Kiniry.
JML Reference Manual

all available at
www.eecs.ucf.edu/~leavens/JML/documentation.shtml

Formal Specification and Verification: Formal Specification 69 / 71

Tools

Many tools support JML (see www.eecs.ucf.edu/~leavens/JML/).
Most basic tool set:

jml, a syntax and type checker

jmlc, JML/Java compiler. Compile runtime assertion checks into
the code.

jmldoc, like javadoc for Java + JML

jmlunit, unit testing based on JML

We recommend to use jml to check the syntax.

Formal Specification and Verification: Formal Specification 71 / 71

	JML
	JML Modifiers
	JML Expressions
	JML Invariants
	JML Modifiers II
	Literature
	Tools and Hints

