
Entwic klung objektorientier ter Software mit formalen Methoden

Program Verification – Dynamic Logic for Users

Bernhar d Becker t

UNIVERSITÄT KOBLENZ-LANDAU

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% &

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

Verification in diff erent design phases

Requirements
OCL + nat. Language

Use Case

Use Case 1

Use Case 2

Analyse
Diagrams

+

ClassE ClassA

ClassB ClassC

+
Diagrams

Design

Specification
OCL (inv., pre−/post)

ClassF ClassG

ClassE ClassA

ClassB ClassC

ClassH

meth(...)

meth(...)

meth(...)

meth(...)
meth(...)
meth(...)

meth(...)meth(...)
meth(...)

meth(...)

meth(...) meth(...)

meth(...)

meth(...)

meth(...)

+
Diagrams

Implementation

Source Code
Java, C++, Prolog

time

(semantic gap)

Refi nement

Horizontal
Verification

Equ ivalence

Vertical
Verification��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% '

What has to be proved?

Horizontal Verification

Consistenc y proper ties

Compliance to design principles

sour ce code is not involved

Specification

inv: 3 = 5

Design
by

Contract

Horizontal Verification can be done in
Classical First-Or der Logic (FOL)

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�%

What has to be proved?

Horizontal Verification

(Consistenc y proper ties

Compliance to design principles

sour ce code is not involved

Specification

inv: 3 = 5

Design
by

Contract

Horizontal Verification can be done in
Classical First-Or der Logic (FOL)

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�%

What has to be proved?

Horizontal Verification

(Consistenc y proper ties

(Compliance to design principles

sour ce code is not involved

Specification

inv: 3 = 5

Design
by

Contract

Design
by

Contract

Horizontal Verification can be done in
Classical First-Or der Logic (FOL)

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�%

What has to be proved?

Horizontal Verification

(Consistenc y proper ties

(Compliance to design principles

) sour ce code is not involved

Specification

inv: 3 = 5

Design
by

Contract

Design
by

Contract

Horizontal Verification can be done in
Classical First-Or der Logic (FOL)

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�%

What has to be proved?

Horizontal Verification

(Consistenc y proper ties

(Compliance to design principles

) sour ce code is not involved

Specification

inv: 3 = 5

Design
by

Contract

Design
by

Contract

Horizontal Verification can be done in
Classical First-Or der Logic (FOL)

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�%

Syntax of Propositional Logic

Signature

*,+ -.0/ 1 2

(Propositional Variab les

. + 3465 78 9 :; <

Logical Operator s (handle , as abbre viations)

Form ulas

Propositional Variab les are form ulas

If and are form ulas then

, and

are also form ulas

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Syntax of Propositional Logic

Signature

*,+ -.0/ 1 2

(Propositional Variab les

. + 3465 78 9 :; <

(Logical Operator s

1+ 3>=/ ?/ @ <

(handle A, B as abbre viations)

Form ulas

Propositional Variab les are form ulas

If and are form ulas then

, and

are also form ulas

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Syntax of Propositional Logic

Signature

*,+ -.0/ 1 2

(Propositional Variab les

. + 3465 78 9 :; <

(Logical Operator s

1+ 3>=/ ?/ @ <

(handle A, B as abbre viations)

Form ulas

CEDF GIH

(Propositional Variab les are form ulas

If and are form ulas then

, and

are also form ulas

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Syntax of Propositional Logic

Signature

*,+ -.0/ 1 2

(Propositional Variab les

. + 3465 78 9 :; <

(Logical Operator s

1+ 3>=/ ?/ @ <

(handle A, B as abbre viations)

Form ulas

CEDF GIH

(Propositional Variab les are form ulas

(If

J

and

K

are form ulas then

@ J
,

- J = K 2

and

- J ? K 2

are also form ulas

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Semantics of Propositional Logic

Interpretation (Assignment)

:

Assigns a definite truth value to each propositional variab le:ML . A 3ONF PQ/ RTS UWVX <

Valuation : Contin uation of on

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% Y

Semantics of Propositional Logic

Interpretation (Assignment)

:

Assigns a definite truth value to each propositional variab le:ML . A 3ONF PQ/ RTS UWVX <
Valuation Z[\^] : Contin uation of

:

on

CEDF G_H

Z [\^] L CEDF G`H A 3ONF PQ/ RS UWVX <

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% Y

Semantics of Propositional Logic

Interpretation (Assignment)

:

Assigns a definite truth value to each propositional variab le:ML . A 3ONF PQ/ RTS UWVX <
Valuation Z[\^] : Contin uation of

:

on

CEDF G_H

Z [\^] L CEDF G`H A 3ONF PQ/ RS UWVX <

Z [\^] -4 5 2 + : -4 5 2

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% Y

Semantics of Propositional Logic

Interpretation (Assignment)

:

Assigns a definite truth value to each propositional variab le:ML . A 3ONF PQ/ RTS UWVX <
Valuation Z[\^] : Contin uation of

:

on

CEDF G_H

Z [\^] L CEDF G`H A 3ONF PQ/ RS UWVX <

Z [\^] -4 5 2 + : -4 5 2 Z [\^] -4a5 = 4ab 2 +
cdedfdedhg

dfdedhdei
NF PQ Z [\j] -4k5 2 + NF PQ

Z [\^] -46b 2 + NF P Q

RTS UV X D N l QF m8on Q

p p p - [q rn D D q 2 ��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% Y

»The truth that’ s me.«, said the tautology .

Let

s 9 CEDF G_H , tvu CEDF G_H

(:

is a model for

s

iff . Z [\k] - s 2 + NF P Q (write:

: 7+ s
)

iff . for all interpretations :

If is valid under all interpretations, i.e

then is called a tautology .

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% w

»The truth that’ s me.«, said the tautology .

Let

s 9 CEDF G_H , tvu CEDF G_H

(:

is a model for

s

iff . Z [\k] - s 2 + NF P Q (write:

: 7+ s
)

(t 7+ s

iff . for all interpretations

:

:

If is valid under all interpretations, i.e

then is called a tautology .

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% w

»The truth that’ s me.«, said the tautology .

Let

s 9 CEDF G_H , tvu CEDF G_H

(:

is a model for

s

iff . Z [\k] - s 2 + NF P Q (write:

: 7+ s
)

(t 7+ s

iff . for all interpretations

:

:

: 7+ x x 9 t : 7+ s

If is valid under all interpretations, i.e

then is called a tautology .

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% w

»The truth that’ s me.«, said the tautology .

Let

s 9 CEDF G_H , tvu CEDF G_H

(:

is a model for

s

iff . Z [\k] - s 2 + NF P Q (write:

: 7+ s
)

(t 7+ s

iff . for all interpretations

:

:

: 7+ x x 9 t : 7+ s

(If

s

is valid under all interpretations, i.e

y 7+ s - L 7+ s 2

then

s

is called a tautology .
��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% w

Orientation Map

Syntax

True Semantics False

Now: Syntactical reasoning

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ |

True Semantics False

Now: Syntactical reasoning

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True Semantics False

Now: Syntactical reasoning

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True ~ Semantics � False

Now: Syntactical reasoning

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True ~ Semantics � False

Now: Syntactical reasoning

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True ~ Semantics � False

Now: Syntactical reasoning{

THE SUN SHINES

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True ~ Semantics � False

Now: Syntactical reasoning{
{ A |

THE SUN SHINES

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

Orientation Map

Syntax

{ } |

True ~ Semantics � False

Now: Syntactical reasoning{
{ A |

|

THE SUN SHINES

IF THE SUN SHINES THEN THE PEOPLE ARE HAPPY.

THE PEOPLE ARE HAPPY

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% z

A Bridg e between Semantics and Syntax

Deduction Theorem

Let

tvu C DF G , s/ x 9 C DF G
t/ x 7+ s

iff .

t 7+ x A s

Estab lishes a relationship between the semantical consequence ’

7+ ’

and the syntactical implication ’ A’

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Reasoning as Syntactical Transf ormations

Task: Compute

t 7+ s

by perf orming syntactical transf ormations

Solution: Calculus and a set of rules

Sequent Calculus ’ ’:

has the same semantic as

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Reasoning as Syntactical Transf ormations

Task: Compute

t 7+ s

by perf orming syntactical transf ormations

Solution: Calculus

�

and a set of rules

�

Sequent Calculus ’ ’:

has the same semantic as

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Reasoning as Syntactical Transf ormations

Task: Compute

t 7+ s

by perf orming syntactical transf ormations

Solution: Calculus

�

and a set of rules

�

Sequent Calculus ’+)’:

�^� / p p p/ � �� �� ����� �5 �� �
+) �� / p p p/ � �� �� ���� � ��� �� ��� �

has the same semantic as

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Reasoning as Syntactical Transf ormations

Task: Compute

t 7+ s

by perf orming syntactical transf ormations

Solution: Calculus

�

and a set of rules

�

Sequent Calculus ’+)’:

�^� / p p p/ � �� �� ����� �5 �� �
+) �� / p p p/ � �� �� ���� � ��� �� ��� �

has the same semantic as

� � = p p p = � � A �� ? p p p ? � �

��� � �� � ��� 	
��
� ��� ��� � 	 � ��� ��� �� ��� � � � �� � �� � �� � � ��� � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � !#" $�% �

Rules of the Sequent Calculus

left side right side

not

��� � ��� �

� � �� � �

� � �� � �

��� � ��� �

and

or

imp

CLOSE(AXIOM)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &�

Rules of the Sequent Calculus

left side right side

not

��� � ��� �

� � �� � �

� � �� � �

��� � ��� �

and

� � ��� ¡ � � �

� � �¢ ¡ � � �

��� � �� � � � � ¡ � �

��� � �¢ ¡ � �

or

imp

CLOSE(AXIOM)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &�

Rules of the Sequent Calculus

left side right side

not

��� � ��� �

� � �� � �

� � �� � �

��� � ��� �

and

� � ��� ¡ � � �

� � �¢ ¡ � � �

��� � �� � � � � ¡ � �

��� � �¢ ¡ � �

or

� � �� � � � � ¡ � � �

� � �£ ¡ � � �

��� � ��� ¡ � �

��� � �£ ¡ � �

imp

CLOSE(AXIOM)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &�

Rules of the Sequent Calculus

left side right side

not

��� � ��� �

� � �� � �

� � �� � �

��� � ��� �

and

� � ��� ¡ � � �

� � �¢ ¡ � � �

��� � �� � � � � ¡ � �

��� � �¢ ¡ � �

or

� � �� � � � � ¡ � � �

� � �£ ¡ � � �

��� � ��� ¡ � �

��� � �£ ¡ � �

imp

��� � ��� � � � ¡ � � �

� � �¥¤ ¡ � � �

� � �� � ¡ � �

��� � �¤ ¡ � �

CLOSE(AXIOM)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &�

Rules of the Sequent Calculus

left side right side

not

��� � ��� �

� � �� � �

� � �� � �

��� � ��� �

and

� � ��� ¡ � � �

� � �¢ ¡ � � �

��� � �� � � � � ¡ � �

��� � �¢ ¡ � �

or

� � �� � � � � ¡ � � �

� � �£ ¡ � � �

��� � ��� ¡ � �

��� � �£ ¡ � �

imp

��� � ��� � � � ¡ � � �

� � �¥¤ ¡ � � �

� � �� � ¡ � �

��� � �¤ ¡ � �

CLOSE(AXIOM)

¦
� � �� � ��� �

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &�

Proof of Modus Ponens

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Proof of Modus Ponens

t/ - { = - { A | 2 2 +) |/ §

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Proof of Modus Ponens

t/ {/ - { A | 2 +) |/ §

t/ - { = - { A | 2 2 +) |/ §

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Proof of Modus Ponens

t/ { +) |/ {/ § t/ {/ | +) |/ §

t/ {/ - { A | 2 +) |/ §

t/ - { = - { A | 2 2 +) |/ §

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Proof of Modus Ponens

¨

t/ { +) |/ {/ §

¨

t/ {/ | +) |/ §

t/ {/ - { A | 2 +) |/ §

t/ - { = - { A | 2 2 +) |/ §

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Proof of Modus Ponens

¨

t/ { +) |/ {/ §

¨

t/ {/ | +) |/ §

t/ {/ - { A | 2 +) |/ §

t/ - { = - { A | 2 2 +) |/ §

t +) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & &

Propositional logic is insufficient

{

ALL PERSONS ARE HAPPY

PAT IS HAPPY

Propositional Logic lacks a possibility to talk about individuals.

First-Or der Logic (FOL)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & '

Propositional logic is insufficient

{
|

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional Logic lacks a possibility to talk about individuals.

First-Or der Logic (FOL)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & '

Propositional logic is insufficient

{
|

©

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional Logic lacks a possibility to talk about individuals.

First-Or der Logic (FOL)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & '

Propositional logic is insufficient

{
|

©

ALL PERSONS ARE HAPPY

PAT IS A PERSON

PAT IS HAPPY

Propositional Logic lacks a possibility to talk about individuals.

) First-Or der Logic (FOL)
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & '

Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

Predicate Symbols

Function Symbols
(arity)

Variab les

Operator s , Quantifier s and

the syntactical equality

Terms and Form ulas are defined inductivel y as usual.

Additional: Let be terms then is a form ula.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &

Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

(Predicate Symbols

. + 34 5 7 8 9 :; </

Function Symbols

ª+ 3¯5 7 8 9 :; </
° dh±

de²
¬ L . ­ ª A :;

(arity)

Variab les

«+ 3´³5 7 8 9 :; <

Operator s , Quantifier s and

the syntactical equality

Terms and Form ulas are defined inductivel y as usual.

Additional: Let be terms then is a form ula.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &

Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

(Predicate Symbols

. + 34 5 7 8 9 :; </

Function Symbols

ª+ 3¯5 7 8 9 :; </
° dh±

de²
¬ L . ­ ª A :;

(arity)

Variab les

«+ 3´³5 7 8 9 :; <

(Operator s

1+ 3>=/ ?/ @ <

, Quantifier s
®+ 3µ/ ¶ <

and

the syntactical equality

p+

Terms and Form ulas are defined inductivel y as usual.

Additional: Let be terms then is a form ula.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &

Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

(Predicate Symbols

. + 34 5 7 8 9 :; </

Function Symbols

ª+ 3¯5 7 8 9 :; </
° dh±

de²
¬ L . ­ ª A :;

(arity)

Variab les

«+ 3´³5 7 8 9 :; <

(Operator s

1+ 3>=/ ?/ @ <

, Quantifier s
®+ 3µ/ ¶ <

and

the syntactical equality

p+
Terms

·QF ¸ G and Form ulas
C DF G are defined inductivel y as usual.

Additional: Let be terms then is a form ula.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &

Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

(Predicate Symbols

. + 34 5 7 8 9 :; </

Function Symbols

ª+ 3¯5 7 8 9 :; </
° dh±

de²
¬ L . ­ ª A :;

(arity)

Variab les

«+ 3´³5 7 8 9 :; <

(Operator s

1+ 3>=/ ?/ @ <

, Quantifier s
®+ 3µ/ ¶ <

and

the syntactical equality

p+
Terms

·QF ¸ G and Form ulas
C DF G are defined inductivel y as usual.

Additional: Let

N� / Nº¹ be terms then

N� p+ Nº¹ is a form ula.
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% &

Semantics of First-Or der Logic

Interpretation

»

=(

¼

,

:

):

¼

is the non-empty univer se

Variab le Assignment

for all

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Semantics of First-Or der Logic

Interpretation

»

=(

¼

,

:

):

¼

is the non-empty univer se

4] ½ 3 -³� / p p p/ ³ � 2 7 ³5 9 ¼/ q+ ¬ -4 2 <

¯] L ¼¾ ¿À Á A ¼

Variab le Assignment

for all

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Semantics of First-Or der Logic

Interpretation

»

=(

¼

,

:

):

¼

is the non-empty univer se

4] ½ 3 -³� / p p p/ ³ � 2 7 ³5 9 ¼/ q+ ¬ -4 2 <

¯] L ¼¾ ¿À Á A ¼

Variab le Assignment

Â L « A ¼

Z [\jÃÅÄ Æ -4 -³� / p p p/ ³ � 2 2 +

cdfg
dhi

NF P Q - Â -³� 2/ p p p/ Â -³ � 2 2 9 4]

RS UWVX D N l QF m8on Q

for all

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Semantics of First-Or der Logic

Interpretation

»

=(

¼

,

:

):

¼

is the non-empty univer se

4] ½ 3 -³� / p p p/ ³ � 2 7 ³5 9 ¼/ q+ ¬ -4 2 <

¯] L ¼¾ ¿À Á A ¼

Variab le Assignment

Â L « A ¼

Z [\jÃÅÄ Æ -4 -³� / p p p/ ³ � 2 2 +

cdfg
dhi

NF P Q - Â -³� 2/ p p p/ Â -³ � 2 2 9 4]

RS UWVX D N l QF m8on Q

Z [\jÃÅÄ Æ -µ ³ p s -³ 2 2 +
cdfg

dfi
NF P Q for all

r 9 ¼ L Z [\ÇÃ Ä Æ ÈÊÉ - s 2 + NF PQ

RTS UWVX D N l QF m8on Q

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Definitions

Satisfiability , Model and Univer sal validity»/ Â 7+ s

iff . Z[\ ÃÅÄ Æ - s 2 + NF P Q - s

is satisfiab le
2

iff . for all is valid

iff . for all is univer sall y valid

REMARK :Sor ted First-Or der Logic

Variab les and functions is given a sor t

i.e.

i.e.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & Y

Definitions

Satisfiability , Model and Univer sal validity»/ Â 7+ s

iff . Z[\ ÃÅÄ Æ - s 2 + NF P Q - s

is satisfiab le
2

» 7+ s

iff . for all

Â L »/ Â 7+ s - s

is valid

2

iff . for all is univer sall y valid

REMARK :Sor ted First-Or der Logic

Variab les and functions is given a sor t

i.e.

i.e.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & Y

Definitions

Satisfiability , Model and Univer sal validity»/ Â 7+ s

iff . Z[\ ÃÅÄ Æ - s 2 + NF P Q - s

is satisfiab le
2

» 7+ s

iff . for all

Â L »/ Â 7+ s - s

is valid

2

7+ s

iff . for all

» L » 7+ s - s

is univer sall y valid

2

REMARK :Sor ted First-Or der Logic

Variab les and functions is given a sor t

i.e.

i.e.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & Y

Definitions

Satisfiability , Model and Univer sal validity»/ Â 7+ s

iff . Z[\ ÃÅÄ Æ - s 2 + NF P Q - s

is satisfiab le
2

» 7+ s

iff . for all

Â L »/ Â 7+ s - s

is valid

2

7+ s

iff . for all

» L » 7+ s - s

is univer sall y valid

2

REMARK :Sor ted First-Or der Logic

Variab les and functions is given a sor t 9 ËTDF Nn

µ ³ L Ë p s -³ 2
i.e.

µ ³ p - Ë -³ 2 A s -³ 2 2

¶³ L Ë p s -³ 2
i.e.

¶³ p - Ë -³ 2 = s -³ 2 2

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & Y

Do we have a deduction theorem at hand?

t/ x 7+ s

iff .

t 7+ x A s
?

Yes, but onl y if is closed.

From now on onl y closed form ulas are considered.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & w

Do we have a deduction theorem at hand?

t/ x 7+ s

iff .

t 7+ x A s
?

Yes, but onl y if

x

is closed.

From now on onl y closed form ulas are considered.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & w

Do we have a deduction theorem at hand?

t/ x 7+ s

iff .

t 7+ x A s
?

Yes, but onl y if

x

is closed.

From now on onl y closed form ulas are considered.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & w

Sequent Calculus for FOL

left side right side

all

ex.

inser t
eq. —

(N 9 ·QF ¸ G an arbitrar y ground term (no variab les)

(Ì q Q m constant
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & z

Sequent Calculus for FOL

left side right side

all

� � ÍÏÎÑÐ Ò Ó Î Ô � Õ Î Ö× Ø Ò Ó Î Ô � � �

� � ÍÏÎÑÐ Ò Ó Î Ô � � �

��� � Õ Î ÖMÙ Ø Ò Ó Î Ô � �

� � � ÍÏÎÑÐ Ò Ó Î Ô � �

ex.

inser t
eq. —

(N 9 ·QF ¸ G an arbitrar y ground term (no variab les)

(Ì q Q m constant
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & z

Sequent Calculus for FOL

left side right side

all

� � ÍÏÎÑÐ Ò Ó Î Ô � Õ Î Ö× Ø Ò Ó Î Ô � � �

� � ÍÏÎÑÐ Ò Ó Î Ô � � �

��� � Õ Î ÖMÙ Ø Ò Ó Î Ô � �

� � � ÍÏÎÑÐ Ò Ó Î Ô � �

ex.

��� � Õ Î Ö× Ø Ò Ó Î Ô � Ú ÎÑÐ Ò Ó Î Ô � �

��� � Ú ÎÑÐ Ò Ó Î Ô � �

� � Õ Î ÖMÙ Ø Ò Ó Î Ô � � �

� � Ú ÎÑÐ Ò Ó Î Ô � � �

inser t
eq. —

(N 9 ·QF ¸ G an arbitrar y ground term (no variab les)

(Ì q Q m constant
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & z

Sequent Calculus for FOL

left side right side

all

� � ÍÏÎÑÐ Ò Ó Î Ô � Õ Î Ö× Ø Ò Ó Î Ô � � �

� � ÍÏÎÑÐ Ò Ó Î Ô � � �

��� � Õ Î ÖMÙ Ø Ò Ó Î Ô � �

� � � ÍÏÎÑÐ Ò Ó Î Ô � �

ex.

��� � Õ Î Ö× Ø Ò Ó Î Ô � Ú ÎÑÐ Ò Ó Î Ô � �

��� � Ú ÎÑÐ Ò Ó Î Ô � �

� � Õ Î ÖMÙ Ø Ò Ó Î Ô � � �

� � Ú ÎÑÐ Ò Ó Î Ô � � �

inser t
eq.

� � Î Ð� Û� � Õ Î Ö Û Ø Ò Ó Î Ô � �

� � Î Ð� Û� � Ò Ó Î Ô � � —

(N 9 ·QF ¸ G an arbitrar y ground term (no variab les)

(Ì q Q m constant
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & z

Explaining the Rules (I)

Ü Ý Ý ÝvÞ ßà ÍÎÑÐ Ò Ó Î Ô
× Õ Î Ö× Ø Ò Ó Î Ô

×

ÞáMâ ÝvÞ ßà Ú ÎÑÐ Ò Ó Î Ô Õ Î ÖMÙ Ø Ò Ù ÙÒ Ó Î Ô

× Ò Ó Î Ô
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Explaining the Rules (II)

Ü Ý Ý�ã äæå çà ÍÎÑÐ Ò Ó Î Ô

Õ Î ÖMÙ Ø Ò Ó Î Ô Ù
Ù

×

×Ò Ó Î Ô

è � é � ê � ë

ÞáMâ ã äæå çà Ú ÎÑÐ Ò Ó Î Ô

× × Ò Ó Î Ô ìîí ïÏðñìîí ïÏðñ£

× ò
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% & �

Example

DEMO

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '�

Towards Program Verification

Vertical Verification

(Prove that the implementation fulfills the specification (equiv alence

for complete specifications)

Reasoning about programs

Formalise program proper ties as form ulas of Dynamic Logic

In contrast to testing,
verification can sho w the absence of errors

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' &

Towards Program Verification

Vertical Verification

(Prove that the implementation fulfills the specification (equiv alence

for complete specifications)

(Reasoning about programs

Formalise program proper ties as form ulas of Dynamic Logic

In contrast to testing,
verification can sho w the absence of errors

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' &

Towards Program Verification

Vertical Verification

(Prove that the implementation fulfills the specification (equiv alence

for complete specifications)

(Reasoning about programs

(Formalise program proper ties as form ulas of Dynamic Logic

In contrast to testing,
verification can sho w the absence of errors

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' &

Towards Program Verification

Vertical Verification

(Prove that the implementation fulfills the specification (equiv alence

for complete specifications)

(Reasoning about programs

(Formalise program proper ties as form ulas of Dynamic Logic

In contrast to testing,
verification can sho w the absence of errors

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' &

Do we reall y need another kind of logics?

»There is a tradition in logic, carried over into computer science ,

to think of pure fir st order logic as a univer sal langua ge.

In fact fir st order langua ge is about as useful in verification as a

Turing machine is in software engineering:

CUTE TO WATCH BUT NOT VERY USEFUL .«

V. Pratt

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' '

State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?

May vary during the execution time of a program.

For example , after the execution of

the value is

the value is

Reasoning about programs must consider the current program state .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '

State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?
May vary during the execution time of a program.

For example , after the execution of

the value is

the value is

Reasoning about programs must consider the current program state .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '

State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?
May vary during the execution time of a program.

For example , after the execution of

(ô õ ö#÷ the value is

NF P Q

the value is

Reasoning about programs must consider the current program state .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '

State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?
May vary during the execution time of a program.

For example , after the execution of

(ô õ ö#÷ the value is

NF P Q

(ô õ ø÷ the value is

RTS UWVX

Reasoning about programs must consider the current program state .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '

State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?
May vary during the execution time of a program.

For example , after the execution of

(ô õ ö#÷ the value is

NF P Q

(ô õ ø÷ the value is

RTS UWVX

) Reasoning about programs must consider the current program state .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% '

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

is a set of atomic programs (e.g.)

Definition of Programs

If and a term of sor t then

are programs in .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

ù H is a set of atomic programs (e.g. ¬/ Â

)

Definition of Programs

If and a term of sor t then

are programs in .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

ù H is a set of atomic programs (e.g. ¬/ Â

)

Definition of Programs

ù

If and a term of sor t then

are programs in .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

ù H is a set of atomic programs (e.g. ¬/ Â

)

Definition of Programs

ù

If ¬/ Â 9 ù H and

a term of sor t

�
� � �

then

(¬� Â

are programs in .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

ù H is a set of atomic programs (e.g. ¬/ Â

)

Definition of Programs

ù

If ¬/ Â 9 ù H and

a term of sor t

�
� � �

then

(¬� Â
(�� �
� � �
� � 3 ¬ < � �
� � 3 Â <

are programs in .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

ù H is a set of atomic programs (e.g. ¬/ Â

)

Definition of Programs

ù

If ¬/ Â 9 ù H and

a term of sor t

�
� � �

then

(¬� Â
(�� �
� � �
� � 3 ¬ < � �
� � 3 Â <

(� � � � � �
� 3 ¬ <
are programs in

ù
.

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If is a program and a form ula then

is a DL-Form ula

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

(non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If is a program and a form ula then

is a DL-Form ula

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

(non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If is a program and a form ula then

is a DL-Form ula

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

(non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If ¬ is a program and

s

a form ula then

is a DL-Form ula

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

(non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If ¬ is a program and

s

a form ula thenú ¬ ý s

is a DL-Form ula

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Terms and Form ulas of Dynamic Logics

Definition of Terms

Defined as in fir st-or der logics. But we distinct between

(rigid terms, whic h are meant to be state independant

(non-rigid (or flexib le) terms, whose value (interpretation) will

depend on the current program state

Definition of Form ulas

All form ulas of FOL are also dynamic logic form ulas (DL form ulas).

If ¬ is a program and

s

a form ula thenú ¬ ý s

is a DL-Form ula

þ ¬ ÿ s

is a DL-Form ula

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' Y

Semantics of Dynamic Logic - Kripke Structure

Kripke-Structure

�+ - ËN [N Q n / � 2

wheren 9 ËN [N Q/ n + -�/ : 2

and �L ù H A ËN [N Q n � ËN [N Q n

,

s1

s3

s4

s6
s5

s2

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' w

Semantics of Dynamic Logic - Kripke Structure

Kripke-Structure

�+ - ËN [N Q n / � 2

wheren 9 ËN [N Q/ n + -�/ : 2

and �L ù H A ËN [N Q n � ËN [N Q n

� - ¬ 2

,

α

α

α

s1

s3

s4

s6
s5

s2

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' w

Semantics of Dynamic Logic - Kripke Structure

Kripke-Structure

�+ - ËN [N Q n / � 2

wheren 9 ËN [N Q/ n + -�/ : 2

and �L ù H A ËN [N Q n � ËN [N Q n

� - ¬ 2 , � - Â 2

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' w

Diamond and Box Revealed

ú ¬ ý s

There exists an ¬-reachable state , suc h that

s
holds.

holds in all -reachable states.

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

What does this mean in terms of program execution?

: total correctness; : par tial correctness

Duality: iff .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' z

Diamond and Box Revealed

ú ¬ ý s

There exists an ¬-reachable state , suc h that

s
holds.

þ ¬ ÿ s s

holds in all ¬-reachable states.

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

What does this mean in terms of program execution?

: total correctness; : par tial correctness

Duality: iff .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' z

Diamond and Box Revealed

ú ¬ ý s

There exists an ¬-reachable state , suc h that

s
holds.

þ ¬ ÿ s s

holds in all ¬-reachable states.

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

What does this mean in terms of program execution?

: total correctness; : par tial correctness

Duality: iff .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' z

Diamond and Box Revealed

ú ¬ ý s

There exists an ¬-reachable state , suc h that

s
holds.

þ ¬ ÿ s s

holds in all ¬-reachable states.

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

What does this mean in terms of program execution?ú û ý

: total correctness;
þ p ÿ : par tial correctness

Duality: iff .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' z

Diamond and Box Revealed

ú ¬ ý s

There exists an ¬-reachable state , suc h that

s
holds.

þ ¬ ÿ s s

holds in all ¬-reachable states.

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

What does this mean in terms of program execution?ú û ý

: total correctness;
þ p ÿ : par tial correctness

Duality:

ú ¬ ý s

iff . @ þ ¬ ÿ @ s
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' z

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

?
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) ,
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
?

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
(—)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
(—)

n " 7+ ú Â ý {

?
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
(—)

n " 7+ ú Â ý {

(—),
� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
(—)

n " 7+ ú Â ý {

(—), n " 7+ þ Â ÿ {
?

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

Semantics of Dynamic Logic

Let

. + 3 {/ |/ � <

,

»+ :;

and

n � L :+ 3 {/ | <

,n L :+ 3 � <

,n ! L :+ 3 { <

β

β

β

β

α

α

α

s1

s3

s4

s6
s5

s2

n � 7+ ú ¬ ý {

(ok) , n � 7+ ú Â ý {
(—)

n " 7+ ú Â ý {

(—), n " 7+ þ Â ÿ {
(ok)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

A ’While’-Langua ge with Assignments (I)

(The atomic programs are assignments:

³ + N

(n DF N -³ 2 + n DF N -N 2 + 8 qN)

Terms are arithmetical expressions (functions)

Conditions are built with and

Example

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

A ’While’-Langua ge with Assignments (I)

(The atomic programs are assignments:

³ + N

(n DF N -³ 2 + n DF N -N 2 + 8 qN)

(Terms are arithmetical expressions (functions
#/ $/ ¨)

Conditions are built with and

Example

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

A ’While’-Langua ge with Assignments (I)

(The atomic programs are assignments:

³ + N

(n DF N -³ 2 + n DF N -N 2 + 8 qN)

(Terms are arithmetical expressions (functions
#/ $/ ¨)

(Conditions are built with

%

and

%+

Example

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

A ’While’-Langua ge with Assignments (I)

(The atomic programs are assignments:

³ + N

(n DF N -³ 2 + n DF N -N 2 + 8 qN)

(Terms are arithmetical expressions (functions
#/ $/ ¨)

(Conditions are built with

%

and

%+
Example

& õ ' ÷ô õ ö#÷
� � � � � �ô () � *

& õ & +ô ÷ô õô , ' ÷
-

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $% ' �

A ’While’-Langua ge with Assignments(II)

Statesn + - ¼/ :/ . 2

(have all the same univer se

¼

predicate symbols are rigid

Fur ther agreement:

Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
�

A ’While’-Langua ge with Assignments(II)

Statesn + - ¼/ :/ . 2

(have all the same univer se

¼

(predicate symbols are rigid

Fur ther agreement:

Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
�

A ’While’-Langua ge with Assignments(II)

Statesn + - ¼/ :/ . 2

(have all the same univer se

¼

(predicate symbols are rigid

Fur ther agreement:

(Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

. L 4 F D / 0[F A ¼

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
�

A ’While’-Langua ge with Assignments(II)

Statesn + - ¼/ :/ . 2

(have all the same univer se

¼

(predicate symbols are rigid

Fur ther agreement:

(Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

. L 4 F D / 0[F A ¼

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
�

Local Validity

There is some choice selecting the consequence relation
7+ .

The deduction theorem holds for the local version:

t 7+ s

iff .

for all states /: if / 7+ t
then / 7+ s

(global version:

iff .

for all states : then for all states :

)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
 &

Local Validity

There is some choice selecting the consequence relation
7+ .

The deduction theorem holds for the local version:

t 7+ s

iff .

for all states /: if / 7+ t
then / 7+ s

(global version:

t 7+ s

iff .

for all states /: / 7+ t

then for all states /: / 7+ s

)

� � � �� � � � 	
��
� � � ��� � 	 � ��� �� � � ��� � � � �� � � � � �� � � �� � � ��� � � � � � � �� � � � � � ��� � � � � � � � � � � � � � !#" $%
 &

Sequent Calculus Rules

IF-ELSE

� � 1Ð� ×
2 34 � � 576 8 Ò � � ��� � 1Ð� ×
2 34 � 59 8 Ò � �

� � � 5;:< Ó 1 Ô>= ?A@B 6C @ DAE @ 9C 8 Ò � �

Assignment

F;GH IJ K IMLN OPQR QS;T U;V GN H WMX Y;Z J[K;\ I W L Z] V ^_ X I J V G KX Z J K;X G J X G P V `J[H G Xa b Z J G V c L \ J K V Z J V def g hMiR j

Sequent Calculus Rules

IF-ELSE

kml no7p q
rs t p u v7w xy l z k p u no7p q
rs tl v{ xy l z

k p u v;|} ~ n �>� �A�� w� � �A� � {� xy l z

Assignment

k � �� l � o�p q � y l z � ��

k � v � p q xy l z
~7� � t� �� r ��� n� t �

�;�� �� K �MLN OPQR QS;T U;V �N � WMX Y;Z �[K;\ � W L Z] V ^_ X � � V � KX Z � K;X � � X � P V `�[� � Xa b Z � � V c L \ � K V Z � V def g hMiR j

Sequent Calculus Rules

IF-ELSE

kml no7p q
rs t p u v7w xy l z k p u no7p q
rs tl v{ xy l z

k p u v;|} ~ n �>� �A�� w� � �A� � {� xy l z

Assignment

k � �� l � o�p q � y l z � ��

k � v � p q xy l z
~7� � t� �� r ��� n� t �

�;�� �� K �MLN OPQR QS;T U;V �N � WMX Y;Z �[K;\ � W L Z] V ^_ X � � V � KX Z � K;X � � X � P V `�[� � Xa b Z � � V c L \ � K V Z � V def g hMiR j

Example

DEMO

�;�� �� K �MLN OPQR QS;T U;V �N � WMX Y;Z �[K;\ � W L Z] V ^_ X � � V � KX Z � K;X � � X � P V `�[� � Xa b Z � � V c L \ � K V Z � V def g hMiR R

	
	Verification in different design phases
	What has to be proved?
	Syntax of Propositional Logic
	Semantics of Propositional Logic
	,>>The truth that's me.<<, said the tautology.
	Orientation Map
	A Bridge between Semantics and Syntax
	Reasoning as Syntactical Transformations
	Rules of the Sequent Calculus
	Proof of Modus Ponens
	Propositional logic is insufficient
	Syntax of First-Order Logic
	Semantics of First-Order Logic
	Definitions
	Do we have a deduction theorem at hand?
	Sequent Calculus for FOL
	Explaining the Rules (I)
	Explaining the Rules (II)
	Example
	Towards Program Verification
	Do we really need another kind of logics?
	State Dependance of Truth Values
	Dynamic Logics for a simple 'while' language
	Terms and Formulas of Dynamic Logics
	Semantics of Dynamic Logic - Kripke Structure
	Diamond and Box Revealed
	Semantics of Dynamic Logic
	A 'While'-Language with Assignments (I)
	A 'While'-Language with Assignments(II)
	Local Validity
	Sequent Calculus Rules
	Example

