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»The truth that’ s me.«, said the tautology .
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A Bridg e between Semantics and Syntax
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Proof of Modus Ponens

t + ) - { = - { A | 2 2 A |/ §

A proof is closed, if all its goals are closed.
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Propositional logic is insufficient

{

ALL PERSONS ARE HAPPY

PAT IS HAPPY

Propositional Logic lacks a possibility to talk about individuals.

First-Or der Logic (FOL)
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Syntax of First-Or der Logic

Signature

*,+ -.0/ ª/ «/ ¬/ 1�­ ®­ 3 p+ < 2

Predicate Symbols

Function Symbols
(arity)

Variab les

Operator s , Quantifier s and

the syntactical equality

Terms and Form ulas are defined inductivel y as usual.

Additional: Let be terms then is a form ula.
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Semantics of First-Or der Logic

Interpretation
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Do we have a deduction theorem at hand?

t/ x 7+ s

iff .

t 7+ x A s
?

Yes, but onl y if is closed.

From now on onl y closed form ulas are considered.
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Sequent Calculus for FOL

left side right side

all

ex.

inser t
eq. —
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Explaining the Rules (I)
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Explaining the Rules (II)
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Example

DEMO
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Towards Program Verification

Vertical Verification

( Prove that the implementation fulfills the specification (equiv alence

for complete specifications)

Reasoning about programs

Formalise program proper ties as form ulas of Dynamic Logic

In contrast to testing,
verification can sho w the absence of errors
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Do we reall y need another kind of logics?

»There is a tradition in logic, carried over into computer science ,

to think of pure fir st order logic as a univer sal langua ge.

In fact fir st order langua ge is about as useful in verification as a

Turing machine is in software engineering:

CUTE TO WATCH BUT NOT VERY USEFUL .«

V. Pratt
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State Dependance of Truth Values

What is the truth value of

? ’The value of program variab le ³ is
ó

.’ ?

May vary during the execution time of a program.

For example , after the execution of

the value is

the value is

Reasoning about programs must consider the current program state .
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Dynamic Logics for a simple ’while’ langua ge

Signature* + -. / ª/ ù H/ 1 ­ 3úüû ý/ þ p ÿ < 2

,

ËTDF Nn + 3�� � �/ ��� � ��� 	 � <

is a set of atomic programs (e.g. )

Definition of Programs

If and a term of sor t then

are programs in .
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What does this mean in terms of program execution?

: total correctness; : par tial correctness
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A ’While’-Langua ge with Assignments(II)

Statesn + - ¼/ :/ . 2

( have all the same univer se

¼

predicate symbols are rigid

Fur ther agreement:

Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .
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Logic variab les vs. program variab les:

Program variab les cannot be quantified. Their value depends on the

current state . Theref ore each state contains a function

.

On the other hand, logic variab les are not allo wed to occur in

programs and they must be bound by a quantifier .
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Local Validity

There is some choice selecting the consequence relation
7+ .

The deduction theorem holds for the local version:

t 7+ s

iff .

for all states /: if / 7+ t
then / 7+ s

(global version:

iff .

for all states : then for all states :

)
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Sequent Calculus Rules

IF-ELSE

� � 1Ð� ×
2 34 � � 576 8 Ò � � ��� � 1Ð� ×
2 34 � 59 8 Ò � �

� � � 5;:< Ó 1 Ô>= ?A@B 6C @ DAE @ 9C 8 Ò � �

Assignment

F;GH IJ K IMLN OPQR QS;T U;V GN H WMX Y;Z J[ K;\ I W L Z] V ^_ X I J V G KX Z J K;X G J X G P V `J[ H G Xa b Z J G V c L \ J K V Z J V def g hMiR j
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Example

DEMO

�;�� �� K �MLN OPQR QS;T U;V �N � WMX Y;Z �[ K;\ � W L Z] V ^_ X � � V � KX Z � K;X � � X � P V `�[ � � Xa b Z � � V c L \ � K V Z � V def g hMiR R
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