(a) The Promela code below is an incomplete implementation of a threshold filter. The filter receives values on channel \(C \) and forwards them based on the threshold variables \(t_1 \) and \(t_2 \). When a received value is greater or equal than \(t_1 \) it is sent on channel \(O_1 \), if it is between \(t_2 \) and \(t_1 \) it is sent on channel \(O_2 \), and if it is smaller than \(t_2 \) it is dropped. For verification we use a listener process that receives values on channels \(O_1 \) and \(O_2 \) and asserts that these values satisfy the corresponding thresholds. Your task is to implement the filter and listener processes. You may assume that \(t_1 > t_2 \).

\[
\begin{align*}
\text{chan } C &= [0] \text{ of } \{\text{byte}\} \\
\text{chan } O_1 &= [0] \text{ of } \{\text{byte}\} \\
\text{chan } O_2 &= [0] \text{ of } \{\text{byte}\} \\
\text{byte } t_1 &= 4; /* thresholds */ \\
\text{byte } t_2 &= 2; \\
\end{align*}
\]

active proctype generator() {
 end:
 do
 :: C ! 0
 :: C ! 1
 :: C ! 2
 :: C ! 3
 :: C ! 4
 :: C ! 5
 od
}

active proctype filter() { /* ... */ }

active proctype listener() { /* ... */ }

(For part (b) of this assignment, see next page)
(b) The PROMELA model below has a flaw: it may deadlock. Explain why a deadlock is possible and show a trail of channel messages that exhibits it.

```promela
mtype {msgA, msgB};
chan C1 = [1] of {mtype}; /* buffered channel */
chan C2 = [0] of {mtype}; /* synchronous channel */

active proctype P() {
    C1 ! msgA
}

active proctype Q() {
    C2 ! msgB
}

active proctype Z() {
    byte x;
    end:
    do
        :: C1 ? x ->
        if :: C1 ! x
            :: C2 ! x
        fi
        :: C2 ? x ->
        if :: C1 ! x
            :: C2 ! x
        fi
    od
}
```

Solution

Implementation for (a)

active proctype filter () {
 byte x;
 end:
 do
 :: C ? x ->
 if
 :: (x >= t1) -> O1 ! x
 :: (x >= t2 && x < t1) -> O2 ! x
 :: else -> skip;
 fi;
 od
}

active proctype listener () {
 byte y = 0;
 end:
 do
 :: O1 ? y -> assert (y >= t1)
 :: O2 ? y -> assert (y >= t2 && y < t1)
 od
```
Full trace for (b)

Starting P with pid 0
Starting Q with pid 1
Starting Z with pid 2

1: proc 1 (Q) line 17 "br.pml" (state -) [values: 1!msgB]
   1: proc 1 (Q) line 17 "br.pml" (state 1) [C2!msgB]

2: proc 2 (Z) line 29 "br.pml" (state -) [values: 1?msgB]
   2: proc 2 (Z) line 29 "br.pml" (state 6) [C2?x]
   Z(2): x = msgB

3: proc 2 (Z) line 30 "br.pml" (state -) [values: 2!msgB]
   3: proc 2 (Z) line 30 "br.pml" (state 7) [C1!x]
   queue 2 (C1): [msgB]

4: proc 2 (Z) line 25 "br.pml" (state -) [values: 2?msgB]
   4: proc 2 (Z) line 25 "br.pml" (state 1) [C1?x]
   queue 2 (C1): [msgB]
   Z(2): x = msgB

5: proc 0 (P) line 12 "br.pml" (state -) [values: 2!msgA]
   5: proc 0 (P) line 12 "br.pml" (state 1) [C1!msgA]
   queue 2 (C1): [msgA]

spin: trail ends after 5 steps
#processes: 3
queue 2 (C1): [msgA]

5: proc 2 (Z) line 26 "br.pml" (state 4)
5: proc 1 (Q) line 18 "br.pml" (state 2)
5: proc 0 (P) line 14 "br.pml" (state 2)
3 processes created
Exit-Status 0
null
Consider the following Promela model:

```promela
byte x = 0;
bool b = false

active proctype P() {
 do
 :: x < 20 -> x = 20; b = true
 :: x >= 0 -> if
 :: x < 30 -> x++
 :: else -> x = 10
 fi
 od
}
```

Take your time to understand the behavior of P. Then consider the following properties, each of which might or might not hold:

1. b will be true at some point.
2. x will always be ≥ 10.
3. At some point, x will be 10.
4. At some point, x will be 11.
5. From some point on, x will always be ≥ 10.
6. x will infinitely often be 11.
7. If b will never be true, then x will infinitely often be 11.

(a) Formulate each of the properties 1. - 7. in Temporal Logic.

(b) For each of the properties 1. - 7., tell whether or not the property is valid in the transition system given by the above Promela model. (You don’t need to explain your answer.)

Solution

\[\text{[6p, 4p]}\]

(a) 

1. \(\Diamond b\)
2. \(\Box (x \geq 10)\)
3. \(\Diamond (x = 10)\)
4. \(\Diamond (x = 11)\)
5. $<>[x \geq 10]$
6. $[x == 11]$
7. $(!<>b) \rightarrow [x == 11]$

(b)

1. invalid
2. invalid
3. valid
4. invalid
5. valid
6. invalid
7. valid