Introduction to Artificial Intelligence

First-order Logic

(Logic, Deduction, Knowledge Representation)

Bernhard Beckert

Wintersemester 2003/2004

Outline

- Why first-order logic?
- Syntax and semantics of first-order logic
- Fun with sentences
. Wumpus world in first-order logic

Pros and Cons of Propositional Logic

(e)

Propositional logic is declarative:
pieces of syntax correspond to facts

Pros and Cons of Propositional Logic

©
Propositional logic is declarative:
pieces of syntax correspond to facts
(ㄹ)
Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)

Pros and Cons of Propositional Logic

(3)

Propositional logic is declarative:
pieces of syntax correspond to factsPropositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

Pros and Cons of Propositional Logic

©
Propositional logic is declarative:
pieces of syntax correspond to facts

Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)

Pros and Cons of Propositional Logic

(3)

Propositional logic is declarative:
pieces of syntax correspond to factsPropositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)

Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
(2) Propositional logic has very limited expressive power (unlike natural language)

Example:

Cannot say "pits cause breezes in adjacent squares"
except by writing one sentence for each square

First-order Logic

Propositional logic

Assumes that the world contains facts

First-order Logic

Propositional logic

Assumes that the world contains facts

First-order logic
Assumes that the world contains

- Objects people, houses, numbers, theories, Donald Duck, colors, centuries, ...

First-order Logic

Propositional logic

Assumes that the world contains facts

First-order logic
Assumes that the world contains

- Objects people, houses, numbers, theories, Donald Duck, colors, centuries, ...
- Relations
red, round, prime, multistoried, ... brother of, bigger than, part of, has color, occurred after, owns, ...

First-order Logic

Propositional logic
Assumes that the world contains facts

First-order logic
Assumes that the world contains

- Objects people, houses, numbers, theories, Donald Duck, colors, centuries, ...
- Relations red, round, prime, multistoried, ... brother of, bigger than, part of, has color, occurred after, owns, ...
- Functions
+ , middle of, father of, one more than, beginning of, \ldots

Syntax of First-order Logic: Basic Elements

Symbols

Constants	KingJohn, 2, Koblenz, C, \ldots
Predicates	Brother,$>,=, \ldots$
Functions	Sqrt, LeftLegOf, \ldots
Variables	x, y, a, b, \ldots
Connectives	$\wedge \vee \neg \Rightarrow \Leftrightarrow$
Quantifiers	$\forall \exists$

Syntax of First-order Logic: Basic Elements

Symbols
Constants KingJohn, 2, Koblenz, C,...

Predicates	Brother,$>=$
Functions	Sqrt, LeftLegO
Variables	x, y, a, b, \ldots

Connectives
Quantifiers $\quad \forall \exists$

Note
The equality predicate is always in the vocabulary
It is written in infix notation

Syntax of First-order Logic: Atomic Sentences

Atomic sentence

$$
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

or

$$
\text { term }_{1}=\text { term }_{2}
$$

Syntax of First-order Logic: Atomic Sentences

Atomic sentence

$$
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

or

$$
\text { term }_{1}=\text { term }_{2}
$$

Term

$$
\text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

or
constant
or
variable

Syntax of First-order Logic: Atomic Sentences

Example

Brother (KingJohn, RichardTheLionheart)

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Atomic Sentences

Example

$$
>\quad(\operatorname{Length}(\operatorname{Left} \operatorname{LegOf}(\text { Richard })), \text { Length }(\operatorname{LeftLegOf}(\text { KingJohn })))
$$

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Atomic Sentences

Example

Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

$$
\neg S \quad S_{1} \wedge S_{2} \quad S_{1} \vee S_{2} \quad S_{1} \Rightarrow S_{2} \quad S_{1} \Leftrightarrow S_{2}
$$

(as in propositional logic)

Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

$$
\neg S \quad S_{1} \wedge S_{2} \quad S_{1} \vee S_{2} \quad S_{1} \Rightarrow S_{2} \quad S_{1} \Leftrightarrow S_{2}
$$

(as in propositional logic)

Example

$$
\text { Sibling(KingJohn, Richard }) \quad \Rightarrow \quad \text { Sibling(Richard,KingJohn })
$$

Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

$$
\neg S \quad S_{1} \wedge S_{2} \quad S_{1} \vee S_{2} \quad S_{1} \Rightarrow S_{2} \quad S_{1} \Leftrightarrow S_{2}
$$

(as in propositional logic)

Example

Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

$$
\neg S \quad S_{1} \wedge S_{2} \quad S_{1} \vee S_{2} \quad S_{1} \Rightarrow S_{2} \quad S_{1} \Leftrightarrow S_{2}
$$

(as in propositional logic)

Example

Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

$$
\neg S \quad S_{1} \wedge S_{2} \quad S_{1} \vee S_{2} \quad S_{1} \Rightarrow S_{2} \quad S_{1} \Leftrightarrow S_{2}
$$

(as in propositional logic)

Example
$\underbrace{\underbrace{\text { Sibling }}_{\text {predicate }}(\underbrace{\text { KingJohn }}_{\text {term }}, \underbrace{\text { Richard }}_{\text {term }}) \Rightarrow \underbrace{\text { Sibling }}_{\text {predicate }}(\underbrace{\text { Richard }}_{\text {term }}, \underbrace{\text { KingJohn sentence }}_{\text {term }})}_{\text {atomic sentence }}$

Semantics in First-order Logic

Models of first-order logic
Sentences are true or false with respect to models, which consist of

- a domain (also called universe)
- an interpretation

Semantics in First-order Logic

Models of first-order logic
Sentences are true or false with respect to models, which consist of

- a domain (also called universe)
- an interpretation

Domain
A non-empty (finite or infinite) set of arbitrary elements

Semantics in First-order Logic

Models of first-order logic
Sentences are true or false with respect to models, which consist of

- a domain (also called universe)
- an interpretation

Domain
A non-empty (finite or infinite) set of arbitrary elements

Interpretation
Assigns to each

- constant symbol: a domain element
- predicate symbol: a relation on the domain (of appropriate arity)
- function symbol: a function on the domain (of appropriate arity)

Semantics in First-order Logic

Definition
An atomic sentence

$$
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

is true in a certain model (that consists of a domain and an interpretation)
iff
the domain elements that are the interpretations of term $_{1}, \ldots$, term $_{n}$ are in the relation that is the interpretation of predicate

Semantics in First-order Logic

Definition
An atomic sentence

$$
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)
$$

is true in a certain model (that consists of a domain and an interpretation)
iff
the domain elements that are the interpretations of term $_{1}, \ldots$, term $_{n}$ are in the relation that is the interpretation of predicate

The truth value of a complex sentence in a model
is computed from the truth-values of its atomic sub-sentences
in the same way as in propositional logic

Models for First-order Logic: Example

Constants: KingJohn, Richard
Predicates: person, king, crown
Functions: brother, on_head, left_leg

Universal Quantification: Syntax

Syntax

\forall variables sentence

Universal Quantification: Syntax

Syntax

\forall variables sentence

Example

"Everyone studying in Koblenz is smart:

Universal Quantification: Semantics

Semantics

$\forall x P \quad$ is true in a model

iff

for all domain elements d in the model:
P is true in the model when x is interpreted by d

Universal Quantification: Semantics

Semantics

$\forall x P \quad$ is true in a model
iff
for all domain elements d in the model:
P is true in the model when x is interpreted by d

Intuition
$\forall x P$ is roughly equivalent to the conjunction of all instances of P

Universal Quantification: Semantics

Semantics

$\forall x P \quad$ is true in a model
iff
for all domain elements d in the model:
P is true in the model when x is interpreted by d

Intuition
$\forall x P$ is roughly equivalent to the conjunction of all instances of P

Example $\quad \forall x \operatorname{StudiesAt}(x, \operatorname{Koblenz}) \Rightarrow \operatorname{Smart}(x) \quad$ equivalent to:

```
            StudiesAt (KingJohn, Koblenz) \(\Rightarrow\) Smart (KingJohn)
\(\wedge\) StudiesAt(Richard,Koblenz) \(\Rightarrow\) Smart (Richard)
\(\wedge\) StudiesAt (Koblenz, Koblenz) \(\Rightarrow\) Smart (Koblenz)
\(\wedge \ldots\)
```


A Common Mistake to Avoid

Note
$\Rightarrow \quad$ is the main connective with $\quad \forall$

Common mistake
Using \wedge as the main connective with \forall

A Common Mistake to Avoid

Note
$\Rightarrow \quad$ is the main connective with $\quad \forall$

Common mistake
Using \wedge as the main connective with \forall

Example

Correct: $\quad \forall x(\operatorname{StudiesAt}(x$, Koblenz $) \Rightarrow \operatorname{Smart}(x))$
"Everyone who studies at Koblenz is smart"

A Common Mistake to Avoid

Note
$\Rightarrow \quad$ is the main connective with $\quad \forall$

Common mistake
Using \wedge as the main connective with \forall

Example
Correct: $\quad \forall x(\operatorname{StudiesAt}(x, \operatorname{Koblenz}) \Rightarrow \operatorname{Smart}(x))$
"Everyone who studies at Koblenz is smart"

Wrong: $\quad \forall x(\operatorname{StudiesAt}(x, \operatorname{Koblenz}) \wedge \operatorname{Smart}(x))$
"Everyone studies at Koblenz and is smart", i.e.,
"Everyone studies at Koblenz and everyone is smart"

Existential Quantification: Syntax

Syntax

\exists variables sentence

Existential Quantification: Syntax

Syntax

\exists variables sentence

Example

"Someone studying in Landau is smart:

Existential Quantification: Semantics

Semantics

$\exists x P \quad$ is true in a model
iff
there is a domain element d in the model such that:
P is true in the model when x is interpreted by d

Existential Quantification: Semantics

Semantics

$\exists x P \quad$ is true in a model
iff
there is a domain element d in the model such that:
P is true in the model when x is interpreted by d

Intuition
$\exists x P$ is roughly equivalent to the disjunction of all instances of P

Existential Quantification: Semantics

Semantics
$\exists x P \quad$ is true in a model
iff
there is a domain element d in the model such that:
P is true in the model when x is interpreted by d

Intuition

$\exists x P$ is roughly equivalent to the disjunction of all instances of P

Example $\quad \exists x \operatorname{StudiesAt}(x, \operatorname{Landau}) \wedge \operatorname{Smart}(x) \quad$ equivalent to:

	StudiesAt $($ KingJohn,Landau $) \wedge \operatorname{Smart}($ KingJohn $)$
$\vee \quad$	StudiesAt $($ Richard, Landau $) \wedge \operatorname{Smart}($ Richard $)$
$\vee \quad$	StudiesAt $($ Landau, Landau $) \wedge \operatorname{Smart}($ Landau $)$
$\vee \quad$	\ldots

Another Common Mistake to Avoid

Note
\wedge is the main connective with \exists

Common mistake
Using $\quad \Rightarrow$ as the main connective with \exists

Another Common Mistake to Avoid

Note
\wedge is the main connective with \exists

Common mistake
Using $\quad \Rightarrow$ as the main connective with \exists

Example
Correct: $\quad \exists x(\operatorname{StudiesAt}(x$, Landau $) \wedge \operatorname{Smart}(x))$
"There is someone who studies at Landau and is smart"

Another Common Mistake to Avoid

Note
\wedge is the main connective with \exists

Common mistake
Using \Rightarrow as the main connective with \exists

Example
Correct: $\quad \exists x(\operatorname{StudiesAt}(x$, Landau $) \wedge \operatorname{Smart}(x))$
"There is someone who studies at Landau and is smart"

Wrong: $\quad \exists x(\operatorname{StudiesAt}(x$, Landau $) \Rightarrow \operatorname{Smart}(x))$
"There is someone who, if he/she studies at Landau, is smart"
This is true if there is anyone not studying at Landau

Properties of Quantifiers

Quantifiers of same type commute
$\forall x \forall y \quad$ is the same as $\quad \forall y \forall x$
$\exists x \exists y \quad$ is the same as $\quad \exists y \exists x$

Properties of Quantifiers

Quantifiers of different type do NOT commute
$\exists x \forall y \quad$ is not the same as $\quad \forall y \exists x$

Example

$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
(Both hopefully true but different)

Properties of Quantifiers

Quantifiers of different type do NOT commute
$\exists x \forall y \quad$ is not the same as $\quad \forall y \exists x$

Example

$\forall x \exists y \operatorname{Mother}(x, y)$
"Everyone has a mother" (correct)
$\exists y \forall x$ Mother (x, y)
"There is a person who is the mother of everyone" (wrong)

Properties of Quantifiers

Quantifier duality

$$
\begin{array}{lll}
\forall x \operatorname{Likes}(x, \text { IceCream }) & \text { is the same as } & \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) \\
\exists x \operatorname{Likes}(x, \text { Broccol }) & \text { is the same as } & \neg \forall x \neg \operatorname{Likes}(x, \text { Broccol })
\end{array}
$$

Fun with Sentences

. "Brothers are siblings"

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

Fun with Sentences

. "Brothers are siblings"

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric

$$
\forall x, y(\operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x))
$$

Fun with Sentences

- "Brothers are siblings"
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$
. "Sibling" is symmetric

$$
\forall x, y(\operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x))
$$

- "One's mother is one's female parent"
$\forall x, y(\operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$

Fun with Sentences

- "Brothers are siblings"
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$
. "Sibling" is symmetric

$$
\forall x, y(\operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x))
$$

- "One's mother is one's female parent"
$\forall x, y(\operatorname{Mother}(x, y) \Leftrightarrow($ Female $(x) \wedge \operatorname{Parent}(x, y)))$
- "A first cousin is a child of a parent's sibling"
$\forall x, y($ FirstCousin $(x, y) \Leftrightarrow \exists p, p s(\operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge \operatorname{Parent}(p s, y)))$

Equality

Semantics
term $_{1}=$ term $_{2} \quad$ is true under a given interpretation
if and only if
term $_{1}$ and term $_{2}$ have the same interpretation

Equality

Example

Definition of (full) sibling in terms of Parent

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow(\neg(x=y) \wedge \\
& \exists m, f(\neg(m=f) \wedge \\
& \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \\
&\operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)))
\end{aligned}
$$

Properties of First-order Logic

Important notions

- validity
- satisfiability
- unsatisfiablity
- entailment
are defined for first-order logic in the same way as for propositional logic

Properties of First-order Logic

Important notions

- validity
- satisfiability
- unsatisfiablity
- entailment
are defined for first-order logic in the same way as for propositional logic

Calculi
There are sound and complete calculi for first-order logic (e.g. resolution)

- Whenever $K B \vdash \alpha$, it is also true that $K B \models \alpha$
(Whenever $K B \models \alpha$, it is also true that $K B \vdash \alpha$
But these calculi CANNOT decide validity, entailment, etc.

Properties of First-order Logic

In propositional logic
Validity, satisfiability, unsatisfiablity are decidable

In first-order logic
The set of valid, and the set of unsatisfiable formulas are enumerable
The set of satisfiable formulas is NOT EVEN enumerable

