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Abstract. Free-variable semantic tableaux are a well-established technique for first-order theorem
proving where free variables act as a meta-linguistic device for tracking theeigenvariablesused
during proof search. We present the theoretical foundations to extend this technique to propositional
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1. Introduction

Free-variable semantic tableaux are a well-established technique for first-order
theorem proving where free variables act as a meta-linguistic device for tracking
the eigenvariablesused during proof search [27, 13]. By allowing the choice of
these free-variables to be deferred until more informationbecomes available, free
variables reduce the search space and reduce the non-determinism inherent in auto-
mated proof search. Free variables are the most important refinement of traditional
tableaux for classical logic from the automated theorem proving perspective. It is
therefore natural to investigate whether free-variables can be used in automated
theorem proving for non-classical logics.

Kanger’s meta-linguistic indices for non-classical logics [20] have already been
generalised by Gabbay into Labelled Deductive Systems [15], and recently, Mas-
sacci [22] and Russo [28] have shown the utility of usingground labels for obtain-
ing modularmodal tableaux and natural deduction systems (respectively); see [16]
for an introduction to labelled modal tableaux.

Here we present a rigorous account of free-variable tableaux for propositional
modal logics. We show how to use this theory to obtain modularproof systems
based upon free-variable tableaux for all 15 basic modal logics. This paper is a full
version of [2]. It does not include further work on decidability issues which we
have reported in [3, 4] as these aspects have not been fully worked out yet.

Our object language useslabelled formulaelike σ :A, whereσ is a label andA
is a formula, with intuitive reading “the possible worldσ satisfies the formulaA”;
see [12, 24, 16] for details. Thus, 1:2p says that the possible world 1 satisfies the
formula2p. Our box-rule then reduces the formula 1:2p to the labelled formula
1:(x) : p which contains theuniversalvariablex in its label and has an intuitive
reading “the possible world 1:(x) satisfies the formulap”. Since different instan-
tiations of x give different labels, the labelled formula 1:(x) : p effectively says
that “all successors of the possible world 1 satisfyp”, thereby capturing the usual
Kripke semantics for2p (almost) exactly. But the possible world 1 may haveno
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2 B. Beckert and R. Gore

successors; so we enclose the variable in parentheses and read σ :A as “for all
instantiations of the variables inσ, if the world corresponding to that instantiation
of σ exists then the world satisfies the formulaA”.

The use of variables as place-markers foreigenvariableshas been used by
various authors in the past where it has also been used in conjunction with spe-
cialist unification algorithms to close branches. The earliest such work is probably
that of Wallen [29], but Wallen catered for only a very few simple modal logics.
Similar approaches using labels containing variables havebeen explored by Gov-
ernatori [17], D’Agostino et al. [10] and Pitt and Cunningham [26]. D’Agostino
et al. relate the labels to modal algebras, instead of to first-order logic as we do.
Both Pitt and Cunningham and Governatori use string unification over labels to
detect complementary formulae, whereas we just use matching. Consequently, our
variables are of a simpler kind: they capture allimmediatechildren of a possible
world (in a rooted tree model), but do not captureall R-successors; see [22, 16].
Note, however, that extensions of our calculi using string unification are perfectly
feasible. Indeed, such work is currently being persued by Bonnette [9].

The following techniques, in particular, are crucial:

Free variables: Applying the traditional ground box-rule requires guessing the
correcteigenvariables. Using (free) variables in labels as “wildcards” that
get instantiated “on demand” during branch closure allows more intelligent
choices of theseeigenvariables. To preserve soundness for worlds with no
R-successors, variable positions in labels must be conditional.

Universal variables: Under certain conditions, a variablex introduced by a for-
mula like2A is “universal” in that an instantiation ofx on one branch need
not affect the value ofx on other branches, thereby localising the effects
of a variable instantiation to one branch. The technique entails creating and
instantiating local duplicates of labelled formulae instead of the originals.

Finite diamond-rule: Applying the diamond-rule to3A usually creates a new
label. By using (a Gödelisation of) the formulaA itself as the label instead,
we guarantee that only a finite number of different labels (ofa certain length)
are used in the proof. In particular, different (identically labelled) occurrences
of 3A generate the same unique label.

The paper is structured as follows: In Sections 2 and 3 we introduce the syntax
and semantics of labelled modal tableaux. In Section 4 we introduce our calculus
and present an example; we prove its soundness and completeness in Sections 5
and 6, respectively. In Section 7 we present our conclusionsand discuss future
work.
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Free-variable Tableaux for Propositional Modal Logics 3

2. Syntax

The formulae of modal logics are built in the usual way from a denumerable non-
empty setP of primitive propositions, the classical connectives^ (conjunction),_ (disjunction),: (negation),! (implication), and the non-classical unary modal
connectives2 (“box”) and3 (“diamond”).

To reduce the number of tableau rules and the number of case distinctions in
proofs, we restrict all considerations to implication-free formulae in negated nor-
mal form (NNF); thus negation signs appear in front of primitive propositions only.
Using NNF formulae is no real restriction since every formula can be transformed
into an equivalent NNF formula in linear time.

Labels are built from natural numbers and variables, with variables intended
to capture the similarities between the8 quantifier of first-order logic and the2 modality of propositional modal logic. However, whereas first-order logic for-
bids an empty domain, the2 modality tolerates possible worlds with no succes-
sors.1 To capture this (new) behaviour, variable positions in labels are made “condi-
tional” on the existence of an appropriate successor by enclosing these conditional
positions in parentheses.

DEFINITION 2.1. LetVarsbe a set of variables. Then,m is a label for m2 N ; and
if σ is a label, then so areσ:mandσ:(l) for m2 N andl 2 Vars[N . Thelengthjσj
of a labelσ is the number of dots it contains plus one. The constituents of a labelσ
are calledpositionsin σ and terms like “the 1st position” or “then-th position” are
defined in the obvious way. A position isconditional if it is of the form (l), and a
label is conditional if it contains a conditional position.By ipr(σ) we mean the set
of all non-emptyinitial prefixesof a labelσ, excludingσ itself. A label isground
if it consists of (possibly conditional) members ofN only. Let L be the set of all
ground labels.

When dealing with ground labels, we often do not differentiate between the
labelsσ:m andσ:(m), and we useσ:[m℄ to denote that the label may be of either
form. Note thatσ:x (parentheses aroundx omitted) is not a label forx2 Vars:
the parentheses mark the positions that contain variables,or that used to contain
variables before a substitution was applied.

DEFINITION 2.2. A setΓ of labels isstrongly generatedif:

1. there is some (root) labelρ 2 Γ with ρ 2 ipr(σ) for all σ 2 Γnfρg; and

2. σ 2 Γ impliesτ 2 Γ for all τ 2 ipr(σ).
1 To that extent, modal logics are similar to free logic, i.e.,first-order logic where the domains of

models may be empty [8].

modlean.tex; 19/12/2000; 18:14; p.3



4 B. Beckert and R. Gore

Since we deal with mono-modal logics with semantics in termsof rooted frames
(see Section 3), we always assume that our labels form a strongly generated set with
root ρ = 1.

DEFINITION 2.3. A labelled tableau formula(or just tableau formula)φ is a
structure of the formX :∆ :σ :A, whereX is a subset ofVars[N , ∆ is a set of
labels,σ is a label, andA is a formula in NNF. If the set∆ is empty, we useX :σ :A
as an abbreviation forX : /0 :σ :A. A tableau formulaX :∆ :σ :A is ground if σ and
all labels in∆ are ground. IfF is a set of labelled tableau formulae, thenlab(F ) is
the setfσ j X :∆ :σ :A2 F g.

The intuitions behind the different parts of our “tableau formulae” are as fol-
lows: The fourth partA is just a traditional modal formula. The third partσ is a
label, possibly containing variables introduced by the reduction of2 modalities.
If the label σ is ground, then it corresponds to a particular path in the intended
rooted tree model; for example, the ground label 1:1:1 typically represents the
leftmost child of the leftmost child of the root 1. Ifσ contains variables, then
it represents all the different paths (successors) that canbe obtained by different
instantiations of the variables, thereby capturing the semantics of the2 modalities
that introduced them. Our rule for splitting disjunctions allows us to retain these
variables in the labels of the two disjuncts, but because2 does not distribute over_,
such variables then lose their “universal” force, meaning that these “free” variables
can be instantiated onlyoncein a tableau proof. We use the first componentX to
record the variables in the tableau formulaφ that are “universal”, meaning thatφ
can be used multiply in the same proof with different instantiations for these vari-
ables. The free variables inφ (that do not appear inX) can be used with only one
instantiation since they have been pushed through the scopeof an_ connective.
The second part∆, which can be empty, has a significance only if our calculus is
applied to one of the four logicsKB, K5, KB4, andK45 (that are non-serial, but
are symmetric or euclidean). It is empty for the other logics. The intuition of∆ is
that the formulaA has to be true in the possible world calledσ only if the labels
in ∆ name legitimate worlds in the model under consideration. This feature has to
be used, if (a) rule applications may shorten labels, which is the case if the logic is
symmetric or euclidean, and (b) the logic is non-serial and,thus, the existence of
successor worlds is not guaranteed. The set∆ can contain both universal and free
variables, and some of them may appear inσ.

DEFINITION 2.4. Given a tableau formulaφ = X :∆ :σ :A, Univ(φ) = X is the set
of universal variablesof φ, while Free(φ) = fx j x appears inσ or ∆, x 62 Xg is the
set offree variablesof φ. These notions are extended in the obvious way to obtain
the setsFree(T ) andUniv(T ) of free and universal variables of a given tableauT
(see Def. 2.5).

DEFINITION 2.5. A tableau is a (finite) binary tree whose nodes are tableau
formulae. Abranch in a tableauT is a maximal path inT (where no confusion
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can arise, we identify a tableau branch with the set of tableau formulae it contains).
A branch may be marked as beingclosed. If it is not marked as being closed, it is
open. A tableau branch isground if every formula on it is ground, and a tableau is
ground if all its branches are ground.

Since we deal with propositional modal logics, notions fromfirst-order logic
like variables and substitutions are needed only for handling semantic notions
like the accessibility relation between worlds. Specifically, whereas substitutions
in first-order logic assign terms to variables, here they assign numbers or other
variables (denoting possible worlds) to variables.

DEFINITION 2.6. A substitutionis a (partial) functionµ : Vars! N [Vars. Sub-
stitutions are extended to labels and formulae in the obvious way. A substitution
is grounding if its domain is the (whole) setVars and its range isN; that is, if it
maps all variables inVarsto natural numbers. Therestrictionof a substitutionµ to
a setX of variables is denoted byµjX . Theconcatenation µÆν of substitutionsµ
andν is defined by(µÆν)(x) = µ(ν(x)) for all variablesx2 Vars.

Note, that applying the concatenationµÆν has the same effect as first applyingν
and then applyingµ, i.e.,o(µÆν) = oνµ for all objectso (labels, formulae, etc.).

DEFINITION 2.7. Given a tableauT containing a tableau formulaX :∆ :σ :A, a
tableau formulaX0 :∆0 :σ0 :A is a T -renamingof X :∆ :σ :A if there is a substi-
tution µ such that (a)X0 :∆0 :σ0 :A = (X :∆ :σ :A)µ, (b) the domain ofµ is X (all
other variables remain unchanged), and (c)µ replaces the variables inX by distinct
variables new to the tableauT .

3. Semantics

In this section we first introduce the Kripke semantics for modal logics, and then
extend these semantics to labelled tableau formulae and tableau.

DEFINITION 3.1. A Kripke frame is a pairhW;Ri, whereW is a non-empty set
(of possible worlds) andR is a binary relation onW. A Kripke model is a triplehW;R;Vi, where the valuationV is a mapping from primitive propositions to sets
of worlds. Thus,V(p) is the set of worlds at whichp is “true” under the valuationV.
We writewRw0 iff (w;w0) 2 R, and we say that worldw0 is reachablefrom worldw,
and thatw0 is asuccessorof w.

DEFINITION 3.2. Given some modelhW;R;Vi, and somew2W, we writew j= p
iff w2V(p). This satisfaction relationj= is then extended to more complex formu-
lae as usual. We say thatw satisfiesa formulaA iff w j= A. A formulaA is satisfied
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6 B. Beckert and R. Gore

Table I. Basic axioms and the corresponding prop-
erty of the reachability relation.

Name Axiom Property

(K) 2(A! B)! (2A!2B) —

(T) 2A! A reflexive

(D) 2A!3A serial

(4) 2A!22A transitive

(5) 3A!23A euclidean2

(B) A! 23A symmetric

by a modelhW;R;Vi if it is satisfied by some worldw2W; it is valid in hW;R;Vi,
written ashW;R;Vi j= A, iff every world inW satisfiesA. A formulaA is valid in a
framehW;Ri, iff it is valid in every modelhW;R;Vi based on that frame. An axiom
A is valid in a framehW;Ri, iff every formula instance of it is valid inhW;Ri.

The first two columns of Table II show the axiomatisations of the 15 basic logics
that can be formed from the axioms shown in Table I.

DEFINITION 3.3. Given one of the logicsL listed in Table II, a framehW;Ri
is anL-frame if each axiom ofL is valid in hW;Ri. A model hW;R;Vi is anL-
modelif hW;Ri is anL-frame. A formulaA is L-satisfiableif there is anL-model
satisfyingA.

The axioms listed in Table I are characterised by the properties ofR listed next
to them; see [16]. Thus, allKT-frames have a reflexive accessibility relationR,
and if a frame has a reflexive accessibility relation then it will validate axiom (T).
Therefore, we associate these properties with logics as well, and say, for example,
that a logicL is serial if allL-frames have a serial accessibility relation. Some care
is needed: for example the axiom (D) is not an axiom ofKT, but it is valid in all
KT-frames since it is implied by (T). Consequently the reachability relation R of
all KT-modelsis serial.

As we shall soon see, ground labels capture a basic reachability relation between
the worlds they name, where the world named byσ:[n℄ is reachable from the world
named byσ. A set of strongly generated ground labels can be viewed as a tree
with root ρ, whereσ:[n℄ is an immediate child ofσ (hence the name “strongly
generated”). We formalise this as follows.

DEFINITION 3.4. Given a logicL and a setΓ of strongly generated ground labels
with rootρ = 1, a labelτ 2 Γ is L-accessiblefrom a labelσ 2 Γ, written asσ� τ, if

2 RelationR is euclidean iff: for allu;v;w2 R, uRvanduRwimpliesvRw.
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Table II. Basic logics, axiomatic characterisations, andL-accessibility�.

Logic Axioms σ� τ Logic Axioms σ� τ
K (K) τ = σ:[n℄ KT (KT) τ = σ:[n℄ or τ = σ
KB (KB) τ = σ:[n℄ or

σ = τ:[m℄ K4 (K4) τ = σ:θ
K5 (K5) τ = σ:[n℄, orjσj � 2, jτj � 2

K45 (K45) τ = σ:θ, orjσj � 2, jτj � 2

KD (KD) K-condition, or
σ is aK-deadend
andσ = τ

KDB (KDB) KB-condition, orjΓj= 1 and
σ = τ = 1

KD4 (KD4) K4-condition, or
σ is aK-deadend
andσ = τ

KD5 (KD5) K5-condition, orjΓj= 1 and
σ = τ = 1

KD45 (KD45) K45-cond., orjΓj= 1,
σ = τ = 1

KB4 (KB4) jΓj � 2

B (KTB) τ = σ, or
τ = σ:[n℄, or
σ = τ:[m℄ S4 (KT4) τ = σ:θ or τ = σ

S5 (KT5) for all σ;τ

the conditions set out in Table II forL are satisfied. A labelσ 2 Γ is anL-deadend,
if no τ 2 Γ is L-accessible fromσ.

The following lemma shows that theL-accessibility relation� on labels cap-
tures the reachability relationR of L-frames; see [16] for a proof. In particular,� has the properties like reflexivity, transitivity, etc. that are appropriate for the
axioms ofL (see Table I).

LEMMA 3.5. If Γ is a strongly generated set of ground labels with rootρ = 1, thenhΓ;�i is anL-frame.

The traditional notion of satisfaction relates a world in a model with a formula
or a set of formulae. When formulae are annotated with groundlabels, the notion
of satisfaction must be extended by a further “interpretation function” that maps
ground labels to worlds; see [13, 16]. If the labels are allowed to contain free
variables, and in particular, universal variables, then the notion of satisfaction must
also allow for all possible instantiations of the universalvariables, thus catering
for many different “interpretation functions”. As usual, we define “satisfiability”
so that our tableau expansion rules preserve this notion, and such that a “closed
tableau” is not satisfiable.

We proceed incrementally by defining satisfiability for: ground labels; ground
tableau formulae; non-ground tableau formulae; and whole tableaux. But first we
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8 B. Beckert and R. Gore

enrich models by the “interpretation function” that maps labels to worlds. Note
that such interpretations give a meaning toall ground labels, not just to those that
appear in a particular tableau. A label that does not correspond to a world in the
model is mapped to the special symbol?.

DEFINITION 3.6. An L-interpretation is a pairhM;Ii, whereM = hW;R;Vi, is
a Kripke L-model andI is a functionI : L !W[f?g interpreting ground labels
such that:

(i) I(1) 2W

(ii) I(σ:(n)) = I(σ:n) for all σ:n andσ:(n) in L

(iii) for all σ 2 L , if I(τ) =? for someτ 2 ipr(σ) thenI(σ) =?
(iv) if σ� τ, I(σ) 2W, andI(τ) 2W, thenI(σ)RI(τ).
DEFINITION 3.7. An L-interpretationhM;Ii, whereM = hW;R;Vi, satisfiesa
ground labelσ, if for all labels τ:n2 ipr(σ)[fσg (that end in an unconditional
label position):I(τ) 2W implies I(τ:n) 2W. TheL-interpretationhM;Ii satisfies
a ground tableau formulaX :∆ :σ :A, if

(a) I(σ) =?, or I(τ) =? for someτ 2 ∆, or I(σ) j= A; and

(b) if I(τ) 2W for all τ 2 ∆, thenhM;Ii satisfiesσ.3

Thus, a tableau formula is satisfied by default if its labelσ is undefined (that
is, if I(σ) =?) or if one of the labels in∆ is undefined. But because we deal only
with strongly generated sets of labels with root 1, the twin requirements that every
L-interpretationhM;Ii define the label 1, and condition (b) in the above definition
force the interpretation functionI to “define” as many members ofipr(σ) as is
possible. However, for a conditional ground label of the form τ:(n), wheren is
parenthesised, it is perfectly acceptable to haveI(τ:(n)) =? even ifI(τ) 2W.

EXAMPLE 3.8. If hM;Ii satisfiesσ = 1:1:1, thenI(1), I(1:1), andI(1:1:1) must
be defined. Ifσ = 1:(1):1, thenI(1:(1)) need not be defined; but if it is, then
I(1:(1):1) must be defined.

The domain of every interpretation functionI is the set of allground labelsL ,
but our tableaux contain labels with variables. We therefore introduce a definition
of satisfiability for non-ground tableau formulae capturing our intuitions that a
labelσ:(x) stands forall possible successors of the labelσ, and taking into account
the special nature of universal variables.

3 In particular,hM;Ii must satisfyσ if ∆ = /0, which is the most frequent case.
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DEFINITION 3.9. Given anL-interpretationhM;Ii and a grounding substitutionµ,
a (non-ground) tableau formulaφ = X :∆ :σ :A is satisfiedby hM;I;µi, written ashM;I;µi j= φ, if for all grounding substitutionsλ, the ground formulaφλjXµ is
satisfied byhM;Ii (Def. 3.7). A setF of tableau formulae is satisfied byhM;I;µi,
if every member ofF is simultaneously satisfied byhM;I;µi.

In the above definition, a ground formulaφλjXµ is constructed fromφ in two
steps, such that the definition of satisfiability for ground formulae can be applied.
To cater for the differences between the free variables and universal variables, we
use two substitutions: a fixed substitutionµ and an arbitrary substitutionλ. The
first step, applyingλjX to φ instantiates the universal variablesx2 X. The second
step, applyingµ to φλjX , instantiates the free variables. Therefore, the instantiation
of universal variablesx2 X is given by the arbitrary substitutionλ, and the instan-
tiation of free variablesx 62 X is given by the fixed substitutionµ. Quantifying over
all λ captures the universal nature of the members ofX.

Note, that in the following definition of satisfiable tableaux, there has to be a
single satisfyingL-interpretation forall grounding substitutionsµ.

DEFINITION 3.10. A tableauT is L-satisfiableif there is anL-interpretationhM;Ii such that foreverygrounding substitutionµ there is someopenbranchB
in T with hM;I;µi j= B .

4. The Calculus

4.1. OVERVIEW

We now present an overview of our calculus, highlighting itsmain principles.

Refutation method. Our calculus is a refutation method: to prove that a formulaA
is a theorem of logicL, we first convert its negation:A into NNF obtaining a
formula B, and then test ifB is L-unsatisfiable. To do so, we start with the initial
tableau whose single node is/0 : /0 :1 :B and repeatedly apply the tableau expansion
rules, the substitution rule, and the closure rule until a closed tableau results. Since
our rules preserveL-satisfiability of tableaux, a closed tableau indicates that B is
indeedL-unsatisfiable, and hence that its negationA is L-valid. SinceL-frames
characterise the logicL we then know thatA is a theorem of logicL. Constructing
a tableau for/0 : /0 :1 :B can be seen as a search for anL-model forB. Each branch
is a partial definition of a possibleL-model, and different substitutions give differ-
entL-models. Our tableau rules extendoneparticular branch usingoneparticular
formula, thus differingcrucially from the systematic methods in [12, 16] where a
rule extendsall branches that pass through one particular formula.
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10 B. Beckert and R. Gore

Universal variables. In the following we explain the relationship between univer-
sal variables in first-order logic (resp. universal quantifiers in first-order logic) and
modal logics (resp. box-formulae in modal logics). To emphasise the similarities,
we use in this explanation a simplified notationσ :2A instead ofX :∆ :σ :A for
tableau formulae.

In first-order tableaux, a free variablex is used as a place marker for aneigen-
variablewhose value is unknown when reducing a formula8xϕ(x) to ϕ(x). In our
calculus, a free variablex is used as a place marker for a successor world whose
value is unknown when reducing a labelled formulaσ :2A to σ:x:A. Because a
world may have no successor, variable positions in labels inour calculus must be
conditional to preserve soundness for non-serial logics, but we ignore this aspect
for the moment to simplify the exposition. In each calculus,the free variablex
is used so that the actualvalue of x does not have to be guessed at the point
where8xϕ(x) or σ :2A is reduced. Instead, we defer the choice ofx until enough
information is available to make a choice thatimmediatelycloses a branch of the
respective tableau.

Since the free variablex is a proxy for one instance ofx, or one particular
successor ofσ respectively,xmust be instantiated to the same value on all branches.
Moreover, one single instantiation of the free variables has to be found that allows
us to close all branches of a tableausimultaneously, and instantiating a free variable
(in the wrong way) to close one branch, can make it impossibleto close other
branches.

However, both8xϕ(x) andσ :2A have a universal nature, and we may require
additional renamingsϕ(x1); : : : ;ϕ(xn) andσ:x1 :A; : : : ;σ:xn :A of the respective re-
duced formulae to construct a close tableau, correspondingto multiple different
instances of8xϕ(x) andmultiple differentsuccessors ofσ :2A respectively.

Beckert and Hähnle [5] noticed that under certain conditions, the free variablex
can be instantiated in one way to close one branch, but this binding can be un-
done, andx can be instantiated in a different way to close another branch, without
losing soundness. Such a variablex is said to be “universal” since it allows the
single formula ϕ(x) or σ:x:A respectively to stand in for themultiple renamings
ϕ(x1); : : : ;ϕ(xn) andσ:x1 :A; : : : ;σ:xn :A mentioned above. Indeed, if the number
of required renamingsn is large, then using a variable in this “universal” manner
can shorten the tableau branches considerably. The examplebelow illustrates this
point for our modal tableaux.

EXAMPLE 4.1. Suppose that we are given a tableau branch containing the tableau
formulae 1:3:p_3:q and 1:2(p^q).

In Figure 1(a) we reduce the second formula to obtain 1:x1 : p^q, creating
the free variablex1. Applying the conjunctive rule to this formula gives 1:x1 : p
and 1:x1 :q. Next we apply the disjunctive rule to the root and split the tableau
into two branches, the first containing 1:3:p and the second containing 1:3:q.
We apply the diamond-rule to obtain 1:1::p on the first branch where 1:1 is a
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1:3:p_3:q

1:2(p^q)
1:x1 : p^q

1:x1 : p

1:x1 :q

1:3:p

1:1::pfx1=1g 1:3:q

1:2::q

1:x2 : p^q

1:x2 : p

1:x2 :qfx2=2g
(a)

1:3:p_3:q

1:2(p^q)
1:x: p^q

1:x: p

1:x:q

1:3:p

1:1::pfx=1g 1:3:q

1:2::qfx=2g
(b)

Figure 1. Tableau proof (a) without and (b) with universal variables (see Example 4.1).

label new to the tableau. We can now close the left branch by setting x1 := 1. All
occurrences ofx1 are now bound to 1.

To continue, we apply the diamond-rule to 1:3:q on the second branch to
obtain 1:2::q where the label 1:2 is new to the tableau.

The only potential closure on this second branch is between 1:2 ::q and 1:x1 :q
but this closure is not possible sincex1 is bound to 1 so that the latter formula is
actually 1:1:q, and this does not contradict 1:2 ::q. We therefore have to apply
the box-rule once again to 1:2(p^q) to obtain 1:x2 : p^q on the second branch
thereby creating a second free variablex2. Applying the conjunctive rule to this
formula allows us to close the second branch by puttingx2 := 2 as shown.

In Figure 1(b) we proceed in exactly the same manner until we close the first
branch, except that we create the free variablex rather thanx1. But before proceed-
ing to process the second branch, we undo the binding forx. Consequently we can
close the second branch much sooner by puttingx := 2, without generating the ex-
tra renaming 1:x2 : p^q required in Figure 1(a). Thus the variablex is instantiated
in multiple ways.

How to detect such “universal” variables and use them only ina sound manner?
Here is one way. Every variablex is introduced into a label by the reduction of
a box-formula like2A. At some later stage of the tableau construction, in some
particular formulaϕ(x) on some particular tableau branchB , the variablex will be
“universal” if a renamingϕ0 = ϕfx := x0g of ϕ could be added toB without gener-
ating additional branches. That is, the modified tableau would be no more difficult
to close than the original. One way to generate the renaming is to repeat the rule
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12 B. Beckert and R. Gore

applications that lead to the generation ofϕ, starting from the box-rule application
that createdx. Once renamingϕ0 is present onB , the variablex never has to be
instantiated to closeB becauseϕ0 could be used instead ofϕ, thus instantiatingx0
instead ofx. However, ifx occurs on two separate branches in the tableau then
repeating these rule applications would generate at least one additional branch,
making the new tableau harder to close than the original one.

All variables are obviously universal when they are created. So how can a uni-
versal variable become non-universal? The crucial criterion is that the steps that
generate the copyx0 of x must not cause the creation ofadditionalbranches to the
tableau. This simply means that all occurrences of the original x must occur on
only one branch. Since the only rule that causes branching isthe disjunctive rule,
occurrences ofx on different branches can be created only by a disjunctive rule
application to a formula containingx. Therefore, an application of the disjunctive
rule to a formulaψ causes the universal variables ofψ to become “non-universal”
variables. That is, all “non-universal” variables are a result of a disjunction within
the scope of a2, corresponding to the fact that2 does not distribute over_.

Consider 1:2(p_q) and suppose we reduce this to 1:x: p_q. At this point,x is
universal, but it will become “non-universal” once we applythe disjunctive rule to
obtain two branches, the first containing 1:x: p and the second containing 1:x:q.
An instantiation ofx to 1 (say) on the first branch must now instantiatex to 1 on
the second branch as well sincex is no longer universal. But it may also be neces-
sary to reduce 1:2(p_q) once again on the second branch to obtain 1:y: p_q
to obtain closure. There is clearly an interaction between the box-rule and the
disjunctive rule. We capture this interaction by ensuring that when the disjunctive
rule makes universal variables “non-universal”, an additional renaming (1:y: p_q)
of the disjunctive-formula (1:x: p_q) that created these “non-universal” variables
is generated by the disjunctive rule itself (rather than thebox-rule).

The diamond-rule. Our diamond-rule does not introduce anew label σ:n, when
it is applied toX :∆ :σ :3A. Instead, each formula3A is assigned its own unique
labeldAe which is a Gödelisation ofA itself.4 This rule is easier to implement than
the traditional one; and it guarantees that (up to renaming of free variables) only
a limited number of different labels can occur in a proof, which depends on the
number of different sub-formulae in the input formula.

The box-rule for symmetric or euclidean logics can shorten labels. For example,
the tableau formulaX0 :∆0 :1 :A is obtainable fromX :∆ :1:(1) :2A for symmetric
logics. The semantics for serial logics guarantee that all labels define worlds, but
in non-serial logics, the label 1 may be defined when 1:(1) is undefined. To ensure
that the formulaX0 :∆0 :1 :A or one of its descendants is used to close a branch only
if the label 1:(1) is defined, the label 1:(1) is made part of∆0 (see Section 4.3).

4 Similar features were used inleanTAP [7] for first-order predicate logic, and in other labelled
proof systems for modal logics, but within the context of ground labels; see [28].
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Such problems do not occur when rule applications always lengthen labels since
τ has to be defined ifτ:l is defined.

All expansion rules are sound andinvertible (some denominator of each rule
is L-satisfiableiff the numerator isL-satisfiable). Thus, unlike traditional modal
tableau methods where the order of (their non-invertible) rule applications is cru-
cial [12, 16], the order of rule application isimmaterial.

The differences in the calculi for different logicsL is mainly in the box-rule,
with different denominators for different logics. In addition, a simpler version of
the closure rule can be used if the logic is serial.

4.2. TABLEAU EXPANSION RULES

There are four expansion rules, one for each class of complex(non-literal) formulae
(conjunctive, disjunctive, box-, and diamond-formulae).If we wanted to avoid the
restriction to NNF, we would have several types of formulae in each class and,
accordingly, would need several (similar) rules for each class (and an extra rule for
double negation). Since we assume that all our formulae are in NNF, we need just
one rule for each of the four classes.

As usual, in each rule, the formula above the horizontal lineis its numerator
(the premiss) and the formula(e) below the horizontal line,possibly separated by
vertical bars, are itsdenominators(the conclusions). All expansion rules (including
the box-rule) are “destructive”; that is, once the (appropriate) rule has been applied
to a formula occurrence to expand a branch, that formula occurrence is not used
again to expand that branch. Note that we permit multiple occurrences of the same
formula on the same branch (nevertheless, when a branch is identified with the set
of formulae it contains, these occurrences collapse to one).

DEFINITION 4.2. Given a tableauT , a new tableauT 0 may be constructed fromT
by applying one of theL-expansion rulesfrom Table III as follows: If the numer-
ator of a rule occurs on a branchB in T , then the branchB is extended by the
addition of the denominators of that rule. For the disjunctive rule the branch splits
and the formulae in the right and left denominator, respectively, are added to the
two resulting sub-branches instead.

The box-rule(s) shown in Table III require explanation. Theform of the rule is
determined by the indexL in the accompanying table. But some of the denomi-
nators have side conditions that determine when they are applicable. For example,
the constraintσ5 = 1:l5 means that (5) is part of the denominator only when the
numerator of the box-rule is of the formX :∆ :1:l5 :2A. Similarly, the constraints
σ2 = τ2:l2 andσ4 = τ4:l4 for the (4r ) and (B) denominators mean these rules can
be used only for a numerator of the formX :∆ :σ :2A where jσj � 2, thereby
guaranteeing that thestrictly shorterlabelsτ2 andτ4 that appear in the respective
denominators are properly defined. The table indicates thatthe rules for a logicL
and its serial versionLD are identical because these logics are distinguished by

modlean.tex; 19/12/2000; 18:14; p.13



14 B. Beckert and R. Gore

Table III. Tableau expansion rules.

X :∆ :σ :A^B

X :∆ :σ :A

X0 :∆0 :σ0 :B Conjunctive rule. X0 :∆0 :σ0 :B is aT -renam-
ing of X :∆ :σ :B.

X :∆ :σ :A_B

/0 :∆1 :σ1 :A /0 :∆1 :σ1 :B

X2 :∆2 :σ2 :A_B X3 :∆3 :σ3 :A_B

Disjunctive rule.TheXi :∆i :σi :A_B areT -
renamings ofX :∆ :σ :A_B (for 1� i � 3)
with disjoint Xi . If X = /0 then the renamings
for i = 2 andi = 3 are omitted.

X :∆ :σ :3A

X :∆ :σ:dAe :A

Diamond-rule.d�e is an arbitrary but fixed
bijection from the set of formulae toN.

X :∆ :σ :2A

X[fxg :∆ :σ:(x) :A (K)

X1[fx1g :∆1 :σ1:(x1) :2A (4)

X2 :∆2[fσ2g :τ2 :2A (4r )

X3 :∆3 :σ3 :A (T)

X4 :∆4[fσ4g :τ4 :A (B)

X5[fx5g :∆5[fσ5g :1:(x5) :2A (5)

Box-rule.The formulaeXi :∆i :σi :2A areT -
renamings ofX :∆ :σ :2A for 1� i � 5. The
variablesx;x1;x5 2 Vars are new toT . The
setsX[fxg, X1[fx1g, X2, X3, X4, X5[fx5g
are disjoint. Also,σ2 = τ2:l2, σ4 = τ4:l4, and
σ5 = 1:l5.
The form of the denominator depends on the
logic L, and is determined by including every
denominator corresponding to the entry forL
in the table below.

Logics Box-rule denominator

K, D (K)

T (K), (T)

KB, KDB (K), (B)a

K4, KD4 (K), (4)

K5, KD5 (K), (4)a, (4r )a, (5)b

a Only included ifjσj � 2.

Logics Box-rule denominator

K45, K45D (K), (4), (4r )a

K4B, (K), (B)a, (4), (4r )a

B (K), (T), (B)a

S4 (K), (T), (4)

S5 (K), (T), (4), (4r )a

b Only included ifjσj= 2.

the form of our closure rule; see Definition 4.5. Various other ways to define the
calculi for serial logics exist; see [16].

The expansion rules rename the universal variables in the denominators to en-
sure that no two literals in a tableau, which may be used for closure, share the
same universal variables. This is important because our closure rule uses a sin-
gle instantiation of all universal variables. We could do without renamings if the
closure rule used separate instantiations of the universalvariables of the closing
literals (including those literals used for justification). This is a technicality since
all proofs would still go through with minor changes.
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Free-variable Tableaux for Propositional Modal Logics 15

4.3. THE SUBSTITUTION RULE AND THE CLOSURE RULE

By definition, the substitution rule allows us to applyanysubstitution atany time
to a tableau. In practice, however, it makes sense to apply only “useful” substitu-
tions; that is, those most general substitutions which allow to close a branch of the
tableau.

DEFINITION 4.3. Substitution rule:Given a tableauT , a new tableauT 0 = T µ
may be constructed fromT by applying a substitutionµ to T that instantiates free
variables inT with other free variables or natural numbers.

In tableaux for modal logics without free variables as well as in free-variable
tableaux for first-order logic, a tableau branch is closed ifit contains complemen-
tary literals since this immediately implies the existenceof an inconsistency. Here,
however, this is not always the case because the labels of thecomplementary literals
may be conditional. For example, the (apparently contradictory) pair /0 :1:(1) : p
and /0 :1:(1) ::p is not necessarily inconsistent since the worldI(1:(1)) may not
exist in the chosen model. Before declaring this pair to be inconsistent, we therefore
have to ensure thatI(1:(1)) 6=? for all L-interpretations satisfying the tableau
branchB that is to be closed. Fortunately, this knowledge can be deduced from
other formulae onB . Thus in our example, a formula likeψ = X :1:1 :A on B
would “justify” the use of the literal pair/0 :1:(1) : p and /0 :1:(1) ::p for closing
the branchB since anyL-interpretationhM;Ii satisfyingB has to satisfyψ, and,
thus,I(1:(1)) = I(1:1) 6=? has to be a world in the chosen modelM. The crucial
point is that the label 1:1 of ψ is unconditionalexactly in theconditionalpositions
of /0 :1:(1) : p and /0 :1:(1) ::p. These observations are now extended to the general
case of arbitraryground labels.

DEFINITION 4.4. A ground labelσ with j-th position[n j ℄ (1� j � jσj) is justi-
fied on a branchB if there is some setF � B of tableau formulae such that for
every j:

1. some label inlab(F ) has (an unconditional but otherwise identical)j-th posi-
tion n j ; and

2. for all τ 2 lab(F ): if jτj � j then thej-th position inτ is n j or (n j).
DEFINITION 4.5. Given a tableauT and a substitutionλ : Univ(T )! N that in-
stantiates universal variables inT with natural numbers, theL-closure ruleallows
to construct a new tableauT 0 from T by markingB in T as closed provided that:

1. the branchB λ of T λ contains a pairX :∆ :σ : p andX0 :∆0 :σ ::p of comple-
mentary literals; and

2. (a) the logicL is serial, or (b) all labels infσg[∆[∆0 are ground and justified
onB λ.
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16 B. Beckert and R. Gore

Note: the substitutionλ that instantiates universal variables isnot applied to the
tableau when the branch is closed; it must merely exist.

By definition, only complementaryliterals close tableau branches, but in theory,
pairs of complementarycomplex formulaecould be used as well (that, however,
would lead to additional choice points in the proof search).

4.4. TABLEAU PROOFS

We now have the ingredients to define the notion of a tableau proof.

DEFINITION 4.6. A sequenceT 0; : : : ;T r of tableaux is anL-proof for the L-
unsatisfiability of a formulaA if:

1. T 0 consists of the single node/0 : /0 :1 :A;

2. for 1� m� r, the tableauT m is constructed fromT m�1 by applying anL-
expansion rule (Def. 4.2), the substitution rule (Def. 4.3), or theL-closure rule
(Def. 4.5); and

3. all branches inT r are marked as closed.

Theorems 4.7 and 4.9 state soundness and completeness for our calculus with
respect to the Kripke semantics for logicL; proofs in Sections 5 and 6.

THEOREM 4.7. (Soundness).Let A be a formula in NNF. If there is anL-proof
T 0; : : : ;T r for theL-unsatisfiability of A (Def. 4.6), then A isL-unsatisfiable.

We prove completeness for the non-deterministic and unrestricted version of the
calculus, and also for all tableau procedures based on this calculus that determin-
istically choose the next formula for expansion (in afair way) and that only apply
most general closing substitutions.

DEFINITION 4.8. Given an open tableauT , a tableau procedureΨ deterministi-
cally chooses an open branchB in T and a non-literal tableau formulaψ onB for
expansion.

The tableau procedureΨ is fair if, in the (possibly infinite) tableau constructed
usingΨ (where no substitution is applied and no branch is closed), every formula
is used for expansion of every branch on which it occurs.

THEOREM 4.9. (Completeness).LetΨ be a fair tableau procedure, and let A be an
L-unsatisfiable formula in NNF. Then there is a (finite) tableau proof T 0; : : : ;T r

for theL-unsatisfiability of A, whereT i is constructed fromT i�1 (1� i � r) by

1. applying the appropriateL-expansion rule to the branchB and the formulaψ
onB chosen byΨ from T i�1; or
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2. applying a most general substitution such that theL-closure rule can be applied
to a previously open branch inT i�1.

When a tableau proof is constructed according to Theorem 4.9, i.e., using a
fair tableau procedure, the remaining choices are (1) whether a branch (that can
be closed) is closed or further expanded and (2) in case thereare different pos-
sibilities to close a branch, which of different most general closing substitutions
is applied. An implementation has to resolve this non-determinism (for example,
using a backtracking mechanism). As long as no branch is closed, the expansion is
deterministic.

There is clearly an interaction between the box-rule, the closure rule and the
disjunctive rule. This interaction can be used to restrict the search space by en-
suring that when the disjunctive rule “frees” universal variables, an additional re-
naming (1:y: p_q) of the disjunctive-formula (1:x: p_q) that created these “non-
universal” variables is generated by the disjunctive rule,but only if demanded by
the closure rule (that is, when the free variablex gets instantiated during branch
closure). Applying this same criterion to the copy (1:y: p_q) will produce another
copy (1:z: p_q), but only upon demand, and so on.

EXAMPLE 4.10. We prove thatA = 2(p! q)! (2p! (2q^2p)) is a K-
theorem. To do this, we first transform the negation ofA into NNF; the result is

B = NNF(:A) = 2(:p_q)^2p^ (3:q_3:p) :
The (fully expanded) tableauT , that is part of the proof for theK-unsatisfiability
of B is shown in Figure 2. The nodes of the tableau are numbered; a pair [i; j℄ is
attached to thei-th node, the numberj denotes that nodei has been created by
applying an expansion rule to the formula in nodej. Note, that by applying the
disjunctive rule to 6, the nodes 11 to 14 are added; 13 and 14 are renamings of 6.
The variabley1 is no longer universal in 11 and 12.

When the substitutionµ= fy1=d:qeg is applied toT , the branches of the re-
sulting tableauT µ can be closed as follows, thereby completing the tableau proof.
The left branchB1 of T µ can be closed using the universal-variable substitution
λ1 = fx=d:qeg asB1λ1 contains the complementary pairfd:qeg :1:(d:qe) : p and
/0 :1:(d:qe) ::p in nodes 7 and 11, respectively. The label 1:(d:qe) of these literals
is justified onB1λ1 by label 1:d:qe of formula 10. In this case, the complementary
literals contain conditional labels which are only justified by a third formula on the
branch, so checking for justification is indispensable. Themiddle branchB2 of T µ
can be closed using the same universal-variable substitution λ2 = λ1 = fx=d:qeg
as for the left branch. The branchB2λ2 then contains the complementary literals
/0 :1:(d:qe) ::q and /0 :1:(d:qe) :q in nodes 10 and 12. The label is again justi-
fied by formula 10, which in this case is one of the complementary literals. Note
that the middle branchB2 can be closed only by the substitutionµ= fy1=d:qeg,
other choices will not suffice. The right branchB3 of T µ can be closed using
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18 B. Beckert and R. Gore

[1;–] /0 :1 :2(:p_q)^2p^ (3:q_3:p)
[2;1] /0 :1 :2(:p_q)

[3;1] /0 :1 :2p^ (3:q_3:p)
[4;3] /0 :1 :2p

[5;3] /0 :1 :3:q_3:p

[6;2] fyg :1:(y) ::p_q

[7;4] fxg :1:(x) : p

[8;5] /0 :1 :3:q

[10;8] /0 :1:d:qe ::q

[11;6] /0 :1:(y1) ::p

[13;6] fy2g :1:(y2) ::p_q

B1

[12;6] /0 :1:(y1) :q

[14;6] fy3g :1:(y3) ::p_q

B2

[9;5] /0 :1 :3:p

[15;9] /0 :1:d:pe ::p

B3

Figure 2. The tableauT from Example 4.10.

the universal-variable substitutionλ3 = fx=d:peg asB3λ3 then contains the pairfd:peg :1:(d:pe) : p andfd:peg :1:d:pe ::p of complementary literals in nodes
7 resp. 15. The label 1:(d:pe) of node 7 is justified onB3 by formula 15.

The universal-variable substitutionλ1 = λ2 = fx=d:qeg that closesB1 andB2

is incompatible with the substitutionλ3 = fx=d:pe that closesB3. Therefore, if
the variablex were not universal in formula 7, the tableau could not be closed; a
second instance of formula 7 would have to be added.

In the above example, the only reason for instantiating freevariables is to make
the labels of closing literals identical. There are situations however, where a free
variable has to be instantiated solely to make sure that the labels of the closing
literals are justified (and not to make them identical).5

EXAMPLE 4.11. This example demonstrates why the second part∆ of tableau
formulae is needed. Consider the formulaA=22p! p, which is a theorem of
the serial logicKDB but not of the non-serial logicKB. The calculi for both logics
have the same tableau expansion rules (they only differ in the closure rule); the
tableauT for the NNF22p^:p of :A shown in Figure 3 has been constructed
using these rules.

The (single) branch ofT contains the complementary literalsφ1 = /0 : /0 :1 ::p
andφ2 = fxg :f1:(x)g :1 : p in nodes 3 and 6. Using the closure rule of the calculus

5 This happens, for example, during the construction of a tableau proof for the unsatisfiability of
the formula(2q) ^ (323r) ^ 2((32(p^:p))_:q).
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[1;–] /0 : /0 :1 :22p^:p

[2;1] /0 : /0 :1 :22p

[3;1] /0 : /0 :1 ::p

[4;2] fxg : /0 :1:(x) :2p

[5;4] fx;yg : /0 :1:(x):(y) : p

[6;4] fxg :f1:(x)g :1 : p

Figure 3. The tableauT from Example 4.11.

for KDB, that does not require a justification of labels, the branch can be closed
with φ1 and φ2. Thus, a tableau proof for theKDB-unsatisfiability of:A can
be constructed fromT . Using the closure rule of the calculus for the logicKB,
however, the branch cannot be closed. That closure rule requires the labels of the
two complementary literals to be justified on the branch, including all labels in
the sets∆1 = /0 and∆2 = f1:(x)g—but neither the label 1:(x) 2 ∆2 nor any of its
instances 1:(n) is justified. No tableau proof for theKB-unsatisfiability ofA can be
constructed, which is correct as:A is, in fact,KB-satisfiable.

5. Soundness Proof

The following two lemmata, which will be used in the soundness proof, follow
immediately from the definitions. The first one states that a tableau formulaψ and
a renamingψ0 of ψ are equivalent. The second lemma states that if a labelσ is
justifiedon a tableau branchB satisfied by an interpretationhM;Ii, thenI(σ) has
to be a world inM (even ifσ is conditional).

LEMMA 5.1. Let hM;Ii be anL-interpretation, µ a grounding substitution,ψ a
formula in a tableauT , andψ0 a T -renaming ofψ. ThenhM;I;µi j= ψ if and only
if hM;I;µi j= ψ0.
LEMMA 5.2. Let hM;Ii be anL-interpretation, whereM = hW;R;Vi, let B be a
tableau branch, and letσ be a ground label. IfhM;I;µi satisfiesB , and the labelσ
is justified onB , thenI(σ) 2W.

The crux of the proof is to show thatL-satisfiability is preserved by the ex-
pansion rule (Lemma 5.5), the substitution rule (Lemma 5.6), and the closure rule
(Lemma 5.7). Consequently, if the initial tableau consisting of the input formulaA
is L-satisfiable, then all tableaux forA are L-satisfiable. None can be closed as
closed tableaux are notL-satisfiable. Hence, the existence of a closed tableau forA
implies theL-unsatisfiability ofA.
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For the soundness proof we restrict all considerations tostandard interpre-
tations, where (ground) labels are interpreted “in the right way,” such that the
diamond-rule preservesL-satisfiability (in standard models). Moreover, for serial
logics, all ground labels are assigned a world by the interpretation function, which
helps the closure rule to preserveL-satisfiability.

DEFINITION 5.3. AnL-interpretationhM;Ii, whereM = hW;R;Vi, is astandard
interpretation provided that:

1. For all ground labelsτ:[n℄:
if I(τ) 2W andI(τ) j=3An, thenI(τ:[n℄) 2W andI(τ:[n℄) j= An,

whereAn is the formula for whichn= dAne (d�e is the bijection from the set of
formulae to the set of natural numbers used for the diamond-rule).

2. If the logicL is serial, thenI(σ) 2W for all ground labelsσ.

The restriction to standard interpretations makes sense: every L-modelM that
satisfies a formulaA can be combined with a label interpretationI, such thathM;Ii
is a standard interpretation and satisfies the initial tableau /0 : /0 :1 :A.

LEMMA 5.4. Given a formula A in NNF and anL-modelM that satisfies A, there
is a standardL-interpretation hM;Ii that satisfies the tableau consisting of the
singleton tableau formula/0 : /0 :1 :A.

PROOF. As M = hW;R;Vi satisfiesA, we know that there is some worldw1 2W
such thatw1 j= A. Now, forn� 1, letAn be the formula for whichn= dAne (whered�e is the bijection from the set of formulae to the set of naturalnumbers used
for the diamond-rule) and createI as follows. PutI(1) = w1, and for every ground
label of the formτ:n: (a) if there is a worldw2W such thatI(τ)Rw andw j= An

then putI(τ:n) = I(τ:(n)) = w; (b) else, if there is no such worldw, but there is
a worldw0 that is reachable fromI(τ), then putI(τ:n) = I(τ:(n)) = w0; (c) else, if
there is no world reachable fromI(τ), put I(τ:n) = I(τ:(n)) =?.

TheL-interpretationhM;Ii is a standard interpretation by way of its definition,
and in addition satisfies the tableau consisting ofφ0 = /0 : /0 :1 :A. To prove this,
we have to show that for all grounding substitutionsµ there is a branchB in this
tableau such that for all substitutionsλ the ground formulaφ0λj /0µ is satisfied byhM;Ii. Sinceφ0λj /0µ= φ0 this reduces to showing that (a)I(1) =? or I(1) j= A,
and (b)hM;Ii satisfies the label 1. Condition (a) is satisfied sinceI(1) j= A by
choice, and Condition (b) holds because there are no labelsτ:n in ipr(1)[f1g. 2

Next we prove that satisfiability by standard interpretations is preserved by the
tableau expansion rules, the substitution, and the closurerule.
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In the proofs of Lemmata 5.5–5.7 we make use of the fact that, by defini-
tion, a tableau formulaX :∆ :σ :F is satisfied byhM;I;µi iff for all grounding
substitutionsλ:

I(eσ) =?, or I(ξ) =? for someξ 2 e∆, or I(eσ) j= F; (�)
and

if I(ξ) 6=? for all ξ 2 e∆, thenhM;Ii satisfieseσ; (��)
whereeσ = σλjXµ ande∆ = ∆λjXµ. We can also formulate (�) as:

If I(eσ) 6=? andI(ξ) 6=? for all ξ 2 e∆, thenI(eσ) j= F.

LEMMA 5.5. If the tableauT is satisfied by the standardL-interpretationhM;Ii,
andT 0 is constructed fromT by applying anL-expansion rule, thenhM;Ii satis-
fiesT 0 as well.

PROOF. We show that for each grounding substitutionµ, there is a branchB 0
in T 0 that is satisfied byhM;Ii.

By assumption,hM;I;µi satisfies some branchB of T . If T 0 is constructed
from T by expanding a branch other thanB , thenB is a branch ofT 0 as well,
and we are through. For the case thatT 0 is constructed fromT by expanding
the branchB , we show thathM;I;µi satisfies one of the branches ofT 0 by cases
according to the expansion rule applied.

Conjunctive rule.Let φ = X :∆ :σ :(A^B) be the formula onB , such thatT 0 is
constructed fromT by addingφ1 = X :∆ :σ :A and φ02 = X0 :∆0 :σ0 :B to B . Be-
causehM;I;µi j= φ, (�) and (��) hold for all grounding substitutionsλ whereeσ = ζ = σλjXµ, e∆ = ∆λjXµ, andF = A^B. As I(ζ) j= A^B impliesI(ζ) j= A and
I(ζ) j= B, the same is true forF = A and forF = B. Therefore,hM;I;µi satisfiesφ1

andφ2 and, by Lemma 5.1, the renamingφ02; thus,hM;I;µi satisfiesB [fφ1;φ02g,
which is a branch inT 0.
Disjunctive rule.Let φ = X :∆ :σ :(A_B) be the formula inB , such thatT 0 is
constructed fromT by addingφ01 = /0 :∆1 :σ1 :A and φ0 = X2 :σ2 :∆2 :A_B to B
obtaining B 01 and addingφ02 = /0 :∆1 :σ1 :B and φ00 = X3 :∆3 :σ3 :A_B to B ob-
taining B 02. hM;I;µi j= φ implies that bothφ0 and φ00 are satisfied byhM;I;µi
(using Lemma 5.1), and it implies that (�) and (��) hold for all grounding substitu-
tionsλ0 whereeσ = ζ = σλ0jXµ, e∆ = ∆λ0jXµ, andF = A_B. SinceI(ζ) j= A_B im-
plies thatI(ζ) j= A or I(ζ) j= B, the same is true forF = A or for F = B. In partic-
ular, if we choseλ0 equal toµ, then (�) and (��) hold foreσ = σµjXµ= σµ= σλj /0µ,e∆ = ∆λ0jXµ= ∆λj /0µ, andF = A or F = B, whereλ is anarbitrary grounding sub-
stitution. This implies thathM;I;µi satisfiesφ1 or φ2 and thus, by Lemma 5.1,
(at least) one of the renamingsφ01 andφ02. Therefore,hM;I;µi satisfies one of the
branchesB 01 andB 02 in T 0.
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Table IV. Formulae added by the box-rule.

ψ eσ e∆ F Condition

φ(K) = X[fxg :∆ :σ:(x) :A ζ:(n) ∆λjXµ A —

φ(4) = X[fxg :∆ :σ:(x) :2A ζ:(n) ∆λjXµ 2A L transitive, or

L euclidean andjσj � 2

φ(4r ) = X :∆[fσg :τ :2A ζ0 (∆[fσg)λjXµ 2A L euclidean

φ(5) = X[fxg :∆[fσg :1:(x) :2A 1:(n) (∆[fσg)λjXµ 2A L euclidean andjσj= 2

φ(T) = X :∆ :σ :A ζ ∆λjXµ A L reflexive

φ(B) = X :∆[fσg :τ :A ζ0 (∆[fσg)λjXµ A L symmetric

where n= µ(x), σ = τ:l , ζ = σλjXµ, ζ0 = τλjXµ.

Diamond-rule.Let φ = X :∆ :σ :3A be the formula onB , such thatT 0 is con-
structed fromT by addingφ1 = X :∆ :σ:dAe :A to B . hM;I;µi j= φ implies that (�)
and (��) hold for all grounding substitutionsλ whereeσ = ζ = σλjXµ, e∆ = ∆λjXµ,
andF =3A. Considering (�), I(ζ) =? impliesI(ζ:dAe) =?; andI(ζ) j=3A im-
plies thatw j= A for somew2W reachable fromI(ζ). BecausehM;Ii is a standard
interpretation,I(ζ:dAe) 2W andI(ζ:dAe) j= A. Considering (��), if I(ξ) 6=? for
all ξ 2 ∆λjXµ, thenhM;Ii satisfiesζ; in that case, (a) ifI(ζ) =?, thenhM;Ii satis-
fiesζ:dAe as well, becauseζ has to be conditional, (b) ifI(ζ) 6=?, thenI(ζ) j=3A,
which implies by definition of standard interpretations that I(ζ:dAe) 2W. There-
fore, (�) and (��) hold with eσ = σ:dAeλjXµ andF = A as well, which implies thathM;I;µi satisfiesφ1 and, therefore, satisfies the branchB [fφ1g in T 0.
Box-rule.Let φ = X :∆ :σ :2A be the formula inB , such thatT 0 is constructed
from T by adding toB—according to Table III—renamings of one or more of
the formulaeψ shown in the first column of Table IV. The respective formulaeψ
are only used if the corresponding conditions in the last column of Table IV is
fulfilled. We show that these conditions imply thathM;I;µi satisfiesψ and thus, by
Lemma 5.1, the renaming ofψ that is added to the branch. Thus,hM;I;µi satisfies
the resulting new branch inT 0.hM;I;µi j= φ implies that (�) and (��) hold for all grounding substitutionsλ
whereeσ = ζ = σλjXµ, e∆ = ∆λjXµ, and F =2A. For each of the formulaeψ in
Table IV we prove thathM;I;µi satisfiesψ by showing that (�) and (��) hold with
the corresponding instances ofeσ, e∆, andF , as shown in columns 2–4 in Table IV.
Throughout the rest of this proof, we make use of the fact thatthe variablex does
not occur inσ and ∆ and, thus,σλjXµ= ζ = σλjX[fxgµ and ∆λjXµ= ∆λjX[fxgµ.
Note also thatσ:(x)λjX[fxgµ= ζ:(n); andζ = ζ0:[m℄ where[m℄ = µ(l).
ψ = φ(K): (�) If I(ζ:(n)) 6=? then I(ζ) 6=? and I(ζ)RI(ζ:(n)). If, in addition,
I(ξ) 6=? for all ξ 2 ∆λjXµ= ∆λjX[fxgµ, then we can conclude thatI(ζ) j=2A. By
the definition of the box-operator, this impliesI(ζ:(n)) j= A. (��) If I(ξ) 6=? for
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all ξ 2 ∆λjXµ, then hM;Ii satisfies the labelζ:(n) because it satisfiesζ and the
extension(n) is conditional.

ψ = φ(4): (�) If I(ζ:(n)) = w0 6=? then I(ζ) = w 6=? and wRw0. If, in addition,
I(ξ) 6=? for all ξ 2 ∆λjXµ= ∆λjX[fxgµ, then we can conclude thatw j=2A. If w0
has no successors, thenw0 j=2A for any A vacuously. So letw00 be any world
such thatw0Rw00. (a) If R is transitive, this immediately implieswRw00. (b) If R is
euclidean andjζj � 2, then there is a worldw0 such thatw0Rw. We can derivewRw00
as follows:w0Rw implies wRw, wRw0 andwRw implies w0Rw, w0Rw andw0Rw00
implieswRw00. Now, sincew j=2A we havew00 j= A, and sincew00 is an arbitrary
world reachable fromw0, w0 j=2A. Condition (��) can be proven in the same way
as in the previous sub-case.

ψ = φ(4r): (�) If I(ζ) =? or there is some labelξ in ∆λjXµsuch thatI(ξ) =?, then
there is a labelξ in (∆[fσg)λjXµ= ∆λjXµ[fζg such thatI(ξ) =?. Otherwise,
if I(ζ) = w j=2A, then I(ζ0) = w0 6=? and w0Rw. If w0 has no successors, then
w0 j=2A for any A vacuously. So letw00 be any world such thatw0Rw00. SinceL
is euclidean,w0Rw and w0Rw00 implies wRw00 and w00Rw. Thusw j=2A implies
w00 j= A. This holds for allw00 reachable fromw0, so I(ζ0) = w0 j=2A. (��) If
I(ξ) 6=? for all ξ 2 (∆[fσg)λjXµ, thenhM;Ii satisfies the labelζ = σλjXµ and,
thus, the labelζ0 2 ipr(ζ).
ψ = φ(5): (�) If I(1:(n)) 6=? then I(1) 6=? and I(1)RI(1:(n)). If, in addition,

I(ξ) 6=? for all ξ in e∆, then I(σλjX[fxgµ) = I(ζ) 6=? and I(ξ) 6=? for all ξ in
∆λjX[fxgµ= ∆λjXµ, which implies I(ζ) j=2A. Also, sinceI(ζ) = I(1:[m℄) 6=?,
we haveI(1)RI(ζ) and I(1:(n))RI(ζ) because the logic is euclidean. Now, for
all worldsw such thatI(1:(n))Rw, we haveI(ζ)Rw(again because the logic is eu-
clidean); andw j= A sinceI(ζ) j=2A. This holds for allw reachable fromI(1:(n));
thereforeI(1:(n)) j=2A. (��) If I(ξ) 6=? for all ξ 2 (∆[fσg)λjXµ, then hM;Ii
satisfies the labelσλjXµ= ζ = 1:[m℄ and, thus, 12 ipr(1:[m℄). Because the exten-
sion(n) is conditional,hM;Ii then also satisfies 1:(n).
ψ = φ(T): (�) I(ζ) =?, or I(ξ) =? for someξ 2 ∆λjXµ, or I(ζ) j=2A which im-
pliesI(ζ) j= A (by reflexivity). Condition (��) is trivially satisfied in this sub-case.

ψ = φ(B): (�) If I(ζ) =? or there is some labelξ in ∆λjXµ such thatI(ξ) =?, then
there is a labelξ in (∆[fσg)λjXµ= ∆λjXµ[fζg such thatI(ξ) =?. Otherwise,
if I(ζ) = w j=2A, then I(ζ0) = w0 6=? and w0Rw (sinceζ = ζ0:[m℄). BecauseR
is symmetric this implieswRw0 and thusI(ζ0) = w0 j= A. Condition (��) can be
proven in the same way as in the sub-caseψ = φ(4r). 2
LEMMA 5.6. If the tableauT is satisfied by the standardL-interpretationhM;Ii,
andT 0 is constructed fromT by applying the substitution rule, thenhM;Ii satis-
fiesT 0 as well.

PROOF. Let ν be the substitution applied to deriveT 0 from T . We must show
that for each grounding substitutionµ, there is a branchB 0 in T 0 that is satisfied
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by hM;I;µi. Let µ be an arbitrary but fixed grounding substitution. By assump-
tion, hM;I;µi satisfies some branchB of T . Let φ = X :∆ :σ :A be an arbitrary
formula onB . Let λ be an arbitrary grounding substitution, and define the sub-
stitution λ0 = λÆν. Then the substitutionsµÆλjX Æν andµÆλ0jX are identical, be-
causeν does not instantiate variables inX, and thusλ0jX = (λÆν)jX = λjX Æν. AshM;I;µi j= φ, (�) and (��) hold witheσ = σλ0jXµ, e∆ = ∆λ0jXµ, andF = A. This im-
plies, becauseµÆλjX Æν = µÆλ0jX , that (�) and (��) hold as well witheσ = σνλjXµ

ande∆ = ∆νλjXµ. Thus,hM;I;µi satisfiesφν. 2
LEMMA 5.7. If the tableauT is satisfied by the standardL-interpretationhM;Ii,
and T 0 is constructed fromT by applying theL-closure rule, thenhM;Ii satis-
fiesT 0 as well.

PROOF. T 0 is obtained fromT by marking a branchB in T as closed, because it
contains formulaeφ1 = X1 :∆1 :σ1 : p andφ2 = X2 :∆2 :σ2 ::p, and there is a sub-
stitutionλ of the universal variables inT such thatσ1λjX1

= σ2λjX2
= ξ and (a) the

logic L is serial, or (b) all labelsζ in fξg[∆1λjX1 [∆2λjX2 are ground and justified
onB . Suppose the branchB were satisfied byhM;I;µi for some grounding substi-
tution µ. ThenI(ζµ) 2W, because (1) if the logicL is serial, thenI(ζµ) 2W sincehM;I;µi is a standard interpretation; (2) otherwise,ζ is ground and justified, and
thusζµ= ζ andI(ζ) 2W according to Lemma 5.2. Now we have a contradiction,
becausehM;I;µi j= φ1 impliesI(ξµ) = I(σ1λjX1

µ) j= p, andhM;I;µi j= φ2 implies
I(ξµ) = I(σ2λjX2

µ) j= :p.
Thus, our assumption is wrong, andB is not satisfied byhM;I;µi for anyµ. But

then there has to be a different branchB0 in T for all µ, that occurs inT 0 as well
and is not affected by marking the branchB as closed. 2

Now we have everything needed to prove soundness of our calculus.

THEOREM 5.8. Let A be a formula in NNF. If there is anL-proof T 0; : : : ;T r for
theL-unsatisfiability of A (Def 4.6), then A isL-unsatisfiable.

PROOF. For a contradiction, suppose there is anL-proof T 0; : : : ;T r for the
L-unsatisfiability ofA, but thatA is L-satisfiable. Then there is anL-model M
of A and by Lemma 5.4 there is a standardL-interpretation ofT 0. Lemmata 5.5,
5.6 and 5.7 imply that satisfiability by standardL-interpretations is preserved in
tableau proofs. Hence the tableauT r is satisfied by a standardL-interpretation as
well. But by definition of a tableau proof, all branches inT r are marked as closed,
thus the tableauT r cannot possibly beL-satisfiable. 2

Note that if a tableau isL-satisfiable then it is satisfied by astandardL-interpre-
tation. Thus,L-satisfiability is preserved in general; it is, however, quite difficult
(if not impossible) to prove this directly without using thenotion of standard
interpretations.
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6. Completeness Proof

We now turn to the completeness of our calculus. The completeness theorem can
be stated in two contraposing ways (letA be a formula in NNF): “If A is L-
unsatisfiable, then there is a tableau proofT 0; : : : ;T r for /0 : /0 :1 :A.” or equivalently
“If there is no tableau proof for/0 : /0 :1 :A thenA is L-satisfiable.”

We prove the completeness theorem as stated in the paper viz:Let Ψ be a fair
tableau procedure, and letA be anL-unsatisfiable formula in NNF. Then there
is a (finite) tableau proofT 0; : : : ;T r for the L-unsatisfiability ofA, whereT i is
constructed fromT i�1 (1� i � r) by� applying the appropriateL-expansion rule to the branchB and the formulaψ

onB chosen byΨ from T i�1; or� applying a most general substitution such that theL-closure rule can be ap-
plied to a previously open branch inT i�1.

So suppose we are given a fair tableau procedureΨ and an initial tableau/0 : /0 :1 :A.
We prove the theorem in a rather roundabout way following themethod of Beckert
and Posegga [7]:

Step 1:We define the notion of anL-Hintikka set of ground tableau formulae
(Def. 6.1) and show that every Hintikka set is satisfied by some L-interpretation
(Lemma 6.2).

Step 2:Consider the sequence(Tn)n�0 deterministically constructed by the fair
tableau procedureΨ without closing branches or applying substitutions, and define
the infinite tableauT ∞ to be the limit of theTn.

Assuming thatno substitution of the variables inT ∞ gives a closed instance
of T ∞, we define a particular substitutionθ∞ and show thatT ∞θ∞ contains at
least one branch that forms a Hintikka set (Lemma 6.3). Step 1then gives anL-
satisfiable set, and in particular anL-interpretation satisfying the formulaA in root
/0 : /0 :1 :A of T ∞θ∞. Consequently, if there is no substitution that closesT ∞ thenA
is L-satisfiable (Lemma 6.4).

Step 3:Contraposing Lemma 6.4 gives: IfA is L-unsatisfiable, there is some sub-
stitution θ that, when applied, allows to close all branches inT ∞. Thus, for some
n2 N , all branches in the finite tableauTnθ can be closed.

Step 4:To conclude the completeness proof, we show that ifTnθ can be closed,
then the substitutionθ can be decomposed so that:θ = θ0 Æξr Æξr�1Æ : : :Æξ1 where
ξi is a most general closing substitution for the instantiation (B i)ξ1ξ2 : : :ξi�1 of
the i-th branchB i in Tn. (And θ0 is the part ofθ that is not actually needed to
closeT 0.) Thus the tableauTn constructed using the fair procedureR can be closed
by r applications of the substitution and the closure rule.
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6.1. STEP 1: HINTIKKA SETS

DEFINITION 6.1. A setX of ground tableau formulae is anL-Hintikka set, if it
satisfies the following conditions:

1. lab(X ) is a strongly generated set of labels with root 1.

2. There is no primitive propositionp such that (a)X :∆1 :σ : p andY :∆2 :σ ::p
are inX , and (b) the logicL is serial or all labels infσg[∆1[∆2 are justified
in X .

3. If X :∆ :σ :A^B2 X thenX :∆ :σ :A2 X andX :∆ :σ :B2 X .

4. If X :∆ :σ :A_B2 X thenX :∆ :σ :A2 X or X :∆ :σ :B2 X .

5. If X :∆ :σ :2A 2 X , then the following conditions have to be satisfied for the
logic L as determined by Table III:

(K) condition: X[fng :∆ :σ:(n) :A2 X for everyn2 N ;

(4) condition: X[fng :∆ :σ:(n) :2A2 X for every n2 N (for K5 and KD5
only if σ = τ:l );(4r) condition: if σ = τ:l thenX :∆[fσg :τ :2A2 X ;

(T) condition: X :∆ :σ :A2 X ;

(B) condition: if σ = τ:l thenX :∆[fσg :τ :A2 X ;

(5) condition: ifσ = 1:l thenX[fng :∆[fσg :1:(n) :2A2 X .

6. If X :∆ :σ :3A2 X thenX :∆ :σ:n:A2 X for somen2 N .

LEMMA 6.2. EveryL-Hintikka setX is satisfied by someL-interpretationhM;Ii.
PROOF. We define theL-modelM = hW;R;Vi as follows. PutW = f[σ℄ j σ 2 L g
if L is serial and putW = f[σ℄ j σ 2 lab(X );σ is justified inX g if L is not se-
rial, where[σ℄ is the equivalence class of all labels that are identical toσ up to
(conditional) parentheses. For all[σ℄; [τ℄ 2W, let [σ℄R[τ℄ iff σ� τ: that is, iff τ
is L-accessible fromσ (see Table II). For each primitive propositionp let V(p)
be defined by: IfL is serial, thenV(p) = f[σ℄ j X :∆ :σ : p2 X g. Otherwise, ifL
is not serial, thenV(p) = f[σ℄ j X :∆ :σ : p2 X ;I(σ) 2W;I(ξ) 2W for all ξ 2 ∆g.
The (identity) interpretationI is defined by:I(σ) = [σ℄ if [σ℄ 2W and I(σ) =?
otherwise.

Lemma 3.5 then implies thatM is anL-model. According to its constructionhM;Ii is, therefore, anL-interpretation.
We show by induction on the degree of tableau formulaeφ = X :∆ :σ :A that

if φ 2 X then (a)[σ℄ 62W, or (b) [ξ℄ 62W for someξ 2 ∆, or (c) [σ℄ j= A. This
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induction hypothesis implies thathM;Ii satisfiesφ. ThusX itself is satisfied by
theL-interpretationhM;Ii.

Let the degree of a formulaA be defined syntactically (as usual). The degree
degof a tableau formula is then defined by:deg(X :∆ :σ :A) < deg(X0 :∆0 :σ0 :A0)
iff (a) deg(A) < deg(A0) or (b) deg(A) = deg(A0) andjσj< jσ0j.

Base case: Thus the traditional partA of φ is a literal. In caseA= p, [σ℄ 2W,
and[ξ℄ 2W for all ξ 2 ∆, we have[σ℄ j= p by the definition ofV. In caseA= :p,
we must show that if[σ℄ 2W and [ξ℄ 2W for all ξ 2 ∆ then [σ℄ j= :p. That is,[σ℄ 62V(p). For a contradiction suppose that[σ℄ 2V(p). By the definition ofV
there has to be a tableau formulaX0 :∆0 :σ0 : p2 X and, in addition, ifL is not serial
then[σ0℄ 2W and[ξ0℄ 2W for all ξ0 2 ∆0. By definition, if L is not serial,[σ0℄ 2W
iff σ0 is justified inX . Thus we have two complementary and “completely justified”
atomic formulae inX ; contradicting condition 2 in the definition of Hintikka sets.

The induction step depends on the form of the formulaA in φ.

A= B^C: According to condition 3 in the definition of Hintikka sets,there are
formulaeX :∆ :σ :B2 X andX :∆ :σ :C 2 X . The induction hypothesis applies to
these formulae. Therefore, (a)[σ℄ 62W, or (b) [ξ℄ 62W for someξ 2 ∆, or [σ℄ j= B
and[σ℄ j=C which implies[σ℄ j= B^C.

A= B_C: Similar to the caseA= B^C.

A=2B: Suppose (a)[σ℄ 2W, and (b)[ξ℄ 2W for all ξ 2 ∆; we then have to prove
that[τ℄ j= B for all [τ℄ 2W such thatσ� τ. We first show that (certain combinations
of) the sub-conditions laid out as part of condition 5 of the definition of Hintikka
sets imply this property for certain[τ℄ 2W:

(K) condition: for all τ of the form τ = σ:[n℄ wheren2 N . Proof: By definition
of Hintikka sets, there is someX0 :∆ :σ:(n) :B2 X for everyn2 N , to which the
induction hypothesis applies. Thus, if[τ℄ 2W, then[τ℄ j= B.

(K) and (4) conditions: for all τ of the form τk = σ:n1 : : :nk where k� 1 and
n1; : : : ;nk 2 N (for logics K5 and KD5 only provided thatjσj � 2). Proof: We
use an induction onk. We show, that for allk� 0 (with τ0 = σ) there is a for-
mulaXk :∆ :τk :2B2 X (for someXk). Using the same argument as above for the
(K) condition, this implies[τk℄ j= B if [τk℄ 2W for all k� 1. For k = 0 we have
X0 :∆ :τ0 :2B= X :∆ :σ :A2 X by assumption. Induction step:Xk :∆ :τk :2B2 X
impliesXk+1 :∆ :τk+1 :2B2 X (with Xk+1 = Xk[fnkg), by the (4) condition.

(T) condition: for τ = σ. Proof: There has to be a formulaX :∆ :σ :B2 X that the
induction hypothesis applies to. Thus, if[σ℄ 2W, then[σ℄ j= B.

(B) condition: for τ s.t.σ = τ:l . Proof: There has to be a formulaX :∆[fσg :τ :B
in X that the induction hypothesis applies to. Thus, if[τ℄ 2W, then[τ℄ j= B.

(K), (4), (4r ), (5) conditions: for all τ such thatjτj � 2 in casejσj � 2, and for
all τ of the form 1:n wheren2 N otherwise (i.e., in caseσ = 1). Proof: If jσj � 2,
we prove by induction on the length ofτ using the(4r ) condition that for all
τ 2 ipr(σ) there is a formulaX :∆ :τ :2B2 X . Using the same argument as above
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for the (K) condition this implies[τ℄ j= B for all τ such thatjτj= 2 and[τ℄ 2W. In
addition, we haveX :∆ :1:m:2B2 X for somem2 N (where 1:m2 ipr(σ)); thus
the (5) condition implies thatX[fng :∆[σ :1:(n) :2B2 X for all n2 N . Now, we
can prove[τ℄ j= B for all τ such thatjτj � 3 and[τ℄ 2W as in the case of the (K) and
(4) conditions. Ifσ = 1, we can derive[σ:n℄ j= B for all n2 N and[σ:n℄ 2W using
the (K) condition (see above).

(K), (4), (4r ) conditions:for all τ such thatjτj � 2. Proof: We prove by induction
on the length ofτ using the(4r ) condition that for allτ 2 ipr(σ) there is a formula
X :∆ :τ :2B2 X . In particular, we haveX :∆ :1 :2B2 X . Now, we can proceed to
prove [τ℄ j= B for all τ such thatjτj � 2 and[τ℄ 2W as in the case of the (K) and
(4) conditions.

(K), (T), (4), (4r ) conditions: for all τ. Proof: Similar to the case of conditions
(K), (4) and(4r ) we prove by induction that for allτ such that[τ℄ 2W there is a
formula X :∆ :τ :2B2 X , which then, using the same argument as above for the
(T) condition implies[τ℄ j= B.

By checking Table II, it is obvious that the sub-conditions for box-formulae that
apply to anL-Hintikka set imply: if [τ℄ 2W andσ� τ, then[τ℄ j= B.

A=3B: According to condition 6 in the definition of Hintikka sets,there is a
formulaX :∆ :σ:n:B2 X . The induction hypothesis applies to this formula. There-
fore, (a) [σ:n℄ 62W or (b) [ξ℄ 62W for someξ 2 ∆; or [σ:n℄ j= B. Now, since the
label σ:n itself occurs inlab(X ), [σ:n℄ 62W implies thatσ:n is not justified inX .
Since the last position ofσ:n is unconditional this implies thatσ is not justified
in X . Hence[σ℄ 62W. Furthermore, if[σ:n℄ j= B then [σ℄ j=3B sinceσ�σ:n for
all L. Together, we have enough to prove that (a)[σ℄ 62W or (b) [ξ℄ 62W for some
ξ 2 ∆ or (c) [σ℄ j=3B as desired. 2
6.2. STEP 2: CONSIDERING AN INFINITE TABLEAUX

Let T1, T2, etc. be the sequence of tableaux deterministically constructed usingΨ
without closing branches or applying a substitution. Thesetableaux approximate
the infinite treeT ∞.

Now suppose that no substitution allowsT ∞ to be closed. Thus we can choose
any substitutionθ, and we are guaranteed thatT ∞θ will contain some open branch.
The branch may differ according to the choice ofθ.

We now define a particular substitutionθ∞ as follows: LetfB1;B2; : : :g be an
enumeration of all the branches ofT ∞. Let Φ = fφ1;φ2; : : :g be an enumeration of
the disjunctive formulae (formulae of the formXi :∆i :σi :Bi _Ci) in T excluding
renamings. For every disjunctive formula, ifφi occurs onBk then letφi jk be the
j-th renaming ofφi on thek-th branch.

The labelσi of φi will be of finite length. Thus, the set of all ground instances
of σi is enumerable: letfσ1

i ;σ2
i ; : : :g be such an enumeration.
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Let x be a variable inXi jk and suppose it occurs in thep-th position ofσi jk .
Note that the setsXi jk of universal variables are all pairwise disjoint (even if only
one of the formulae in the numerator of the conjunctive rule is renamed). To ensure
that thek-th branchBk is a potential source of anL-model we ensure that the
occurrences ofφi on Bk “cover” all the instances ofσi . So chooseθ∞ so that
θ∞(x) = n, wheren is the value of thep-th position ofσ j

i . Thus if x is in the p-th
position ofσi1k, its value “covers”σ1

i , if it is in the p-th position ofσi2k, its value
“covers” σ2

i , and so on.

LEMMA 6.3. If θ∞ is defined as above, andB is an open branch of the tableauT ∞
that cannot be closed whenθ∞ is applied then

X = fφλjXθ∞ j φ = X :∆ :σ :A is a formula onB , and
λ is a grounding substitutiong

is anL-Hintikka set.

PROOF. We have to check each clause of Definition 6.1 for the setX .

Condition 1.It is obvious that the root is 1, and fairly easy to see that we always
produce a strongly generated set.

Condition 2.Suppose this condition is violated byX . Then there have to be formu-
lae φ1 = X1 :∆1 :σ1 : p, φ2 = X2 :∆2 :σ2 ::p on B and grounding substitutionsλ1

andλ2, such thatσ1λ1jX1
θ∞ = σ2λ2jX2

θ∞ = ζ, and (b) the logicL is serial or all
labels infζg[∆1λ1jX1

θ∞[∆2λ2jX2
θ∞ are justified inX . Our expansion rules al-

ways useT -renamings of universal variables in their numerator, henceX1\X2 = /0.
Therefore, there is a single grounding substitutionλ of the universal variables
in T ∞, such thatσ1λ = σ1λ1jX1

and σ2λ = σ2λ2jX2
. In addition,λÆθ∞ = θ∞ Æλ,

sinceθ∞ only instantiated free variables inT ∞. Thus the branchB can be closed
using the substitutionλ of the universal variables inT ∞, which contradicts the
choice ofB .

Condition 3.We must show that for allφ = X :∆ :σ :A^B2 B and all grounding
substitutionsλ, and thus for all formulae of the formφλjXθ∞, the formulaeφ1λjXθ∞
andφ2λjXθ∞ are inX , whereφ1 = /0 :∆ :σ :A andφ2 = /0 :∆ :σ :B. Since the appro-
priate rule has been applied toφ, the formulaeX :∆ :σ :A andX0 :∆0 :σ0 :B are both
on B . Thus,φ1λjXθ∞ 2 X . For φ2, let µ be the substitution renaming the variables
in X such thatX0 :∆0 :σ0 :B= (X :∆ :σ :B)µ, and putλ0 = (λÆµ), which implies
λ0jX0 = λjX Æµ. The substitutionλ0 is grounding. Therefore, by definition the setX
contains the formulaφ02λ0jX0θ∞, which is identical toφ2λjXθ∞.

Condition 4.We have to show, that for allφ = X :∆ :σ :A_B2 B and all grounding
substitutionsλ, and thus for all formulae of the formφλjXθ∞, one of the for-
mulaeφ1λjXθ∞ and φ2λjXθ∞ is in X , whereφ1 = /0 :∆ :σ :A and φ2 = /0 :∆ :σ :B.
If X = /0 then this holds immediately by the special case of the disjunctive rule.
Otherwise, according to the construction ofT ∞ andθ∞, there has to be a renaming
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φ0 = φν of φ onB (whereν is the renaming substitution) such thatθ∞jX0 Æν = λjX,
i.e., φ0θ∞ = φλjXθ∞. Since the appropriate rule has been applied toφ0, one of the
formulaeφ01 = φ1ν andφ02 = φ2ν is onB and thusφ01λj /0θ∞ = φ01θ∞ = φ1λjXθ∞ or
φ02λj /0θ∞ = φ2λjXθ∞ is in X .

Condition 5 and 6.Since these conditions closely resemble the tableau expansion
rules, the proof that they hold forX is similar to that for condition 3 (conjunctive
formulae). 2
LEMMA 6.4. If there is no substitutionθ such that all branches ofT ∞θ can be
closed, then the input formula for which the tableau sequence has been constructed
is L-satisfiable.

PROOF. SinceT ∞ cannot be closed using any substitution, it cannot be closed
by applyingθ∞ as defined above. Thus there is some open branch inT ∞θ∞. By
Lemma 6.3 this branch forms anL-Hintikka set. By Lemma 6.2 such a set gives an
L-interpretationhM;Ii that satisfies the root/0 : /0 :1 :A of T 0. But this means that
in theL-modelM we must haveI(1) j= A. 2
6.3. STEP 3: CONSTRUCTING AFINITE CLOSED TABLEAUX

Contraposing Lemma 6.4 gives: IfA is L-unsatisfiable, then there is at least one
substitutionθ that, when applied, allows to close all branches inT ∞.

LEMMA 6.5. If there is a substitutionθ such that all branches ofT ∞θ can be
closed, then there is an n2 N such that all branches in the finite tableauTnθ can
be closed.

PROOF. According to König’s Lemma, the tableauT that results from removing
from T ∞θ all formulae that are not needed to close one of the branches on which
they occur (that includes justification) isfinite. Thus, there is a finiten2N such
thatT is an initial subtree ofTnθ.

6.4. STEP 4: DECOMPOSITION OF THECLOSING SUBSTITUTION

LEMMA 6.6. If T 0
nθ is closed for some finite n, then the substitutionθ can be

decomposed so that:θ = θ0 Æξr Æξr�1Æ : : :Æξ1 whereξi is a most general closing
substitution for the instantiation(B i)ξ1ξ2 : : :ξi�1 of the i-th branch,B i , in T 0

n . And
θ0 is the part ofθ that is not actually needed to closeT 0

n .

PROOF. We construct theξi inductively as follows: Defineξ00 = θ. For 1� i � r,
let ξi be a most general substitution, such that (a)ξ0i�1 is a specialisation ofξi;
that is, there is a substitutionξ0i such thatξ0i�1 = ξ0i Æξi; and (b)ξi is a closing
substitution for(B i)ξ1ξ2 : : :ξi�1.
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Thenξi is a most generalclosingsubstitution. For otherwise, there must be a
closing substitutionξ00i , that is more general thanξi. The is-more-general relation
is transitive henceξ00i is more general thanξ0i�1, which contradicts our choice ofξi

as a most general substitution satisfying the two conditions.
Finally, defineθ0 = ξ0r . 2
We can now conclude the proof of the completeness theorem (Theorem 4.9) as

follows:
The formulaA is L-unsatisfiable andT ∞ is constructed using a fair proof pro-

cedure so there is a substitutionθ such that all branches ofT ∞θ can be closed
(Lemma 6.4). Then there is a finite tableauTn such that all branches ofTnθ can
be closed (Lemma 6.5). The tableauTn can be constructed withn expansion rule
applications using the procedureR . Sinceθ can be decomposed intor most general
closing substitutions (Lemma 6.6), a closed tableau can be constructed fromTn by
r applications of the substitution and closure rules satisfying the conditions of the
completeness theorem.

7. Conclusion and Future Work

The advantages of free variables.We believe that labels with variables deliver
the following advantages:

– The use of variables generates a smaller search space sincea label can now
stand in for all its ground instances. This is in stark contrast to the modular
systems of [22, 16], where only ground labels are used.

– The use of a Gödelisation function in the diamond-rule leads to a smaller
number of labels than in other labelled tableau methods since two different oc-
currences of the formulaX :∆ :σ :3A lead to the same formulaX :∆ :σ:dAe :A.
We therefore do not need to delete duplicate occurrences of aformula as is
done in some tableau implementations for modal logics. Thisis particularly
important since the worldσ:dAe may be the root of a large sub-model and
duplicating it is likely to be extremely inefficient.

Experiences with a Lean Implementation.Tableau-based theorem provers devel-
oped during the last decade for first-order logic have been complex and highly
sophisticated, typified by systems like Setheo [21] and3TAP [6]. On the other hand,
free-variable tableaux, and their extensions like universal-variable tableaux, have
been used successfully forleanProlog implementations, as typified byleanTAP [7]
and ileanTAP [25]. A “lean” implementation is an extremely compact program
that exploits Prolog’s built-in clause indexing scheme andbacktracking mecha-
nisms instead of relying on elaborate heuristics. Such compact lean provers are
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much easier to understand than their more complex stablemates, and hence easier
to adapt to special needs.

We have implemented our calculus as a “lean” theorem prover written in Prolog
(the source code is available ati12www.ira.uka.de/˜beckert/modlean on the
World Wide Web). It makes extensive use of Prolog features like unificationand
backtracking.6 The basic version for the logicK is calledleanK, and consists of
just eleven Prolog clauses and 45 lines of code. The version for the logicKD which
does not demand justified labels, is even shorter: it consists of only 6 clauses and
27 lines of code.

Our initial results with this lean implementation are encouraging. However,
as a comparison with state-of-the-art theorem provers for modal logics [1] has
shown, modal logics differ from first-order logic: the free-variable technique is
not enough. Because of the propositional flavour of modal logics, techniques such
as simplification [23] are needed to implement an efficient prover.

We have developed the theory of how to obtain modular proof systems based
upon free-variable tableaux for modal logics; but it is future work to validate the
usefulness of the free-variable technique in the modal framework by combining it
with other techniques.

Future work. Our method is really a very clever translation of propositional mo-
dal logics into first-order logic, and most of the complications arise because some
worlds may have no successors. The new notion of conditionallabels allows us to
keep track of these complications, and thus handle the non-serial logics that frus-
trate other “general frameworks” [14, 19]. Nevertheless, our method can also han-
dle second-order“provability” logics like G andGrz; see [16]. Furthermore, spe-
cialised versions of these tableau systems can match the theoretical lower bounds
for particular logics likeK45, G andGrz if we give up modularity; see [16, 22].
We intend to extend our initial implementation ofleanK along these lines.

The 15 basic normal modal logics are decidable and techniques from [12, 16,
22, 18] can be used to extend our method into a decision procedure (we have
reported first results in [3, 4]).

Fitting [11] shows how to view the originalleanTAP program for classical pro-
positional logic as an unusual sequent calculusdirseq . He also shows how to
extenddirseq to handle the modal logicsK, KT, K4, andS4. As with traditional
modal tableaux, however,dirseq does not handle the symmetric logics likeS5
andB. Our work can be extended to give a modular free variable version of dirseq
that does handle these logics.

It is also possible to extend our method to deal with the notions of global and
local logical consequence [12].

6 When the prover is ported to other languages, the Prolog mechanisms may have to be imple-
mented; but even then the advantage of lean provers remains,namely that (the main part of) of the
prover is compact and thus easy to understand and to adapt to special needs.
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An alternative approach [17] uses different unification algorithms to find com-
plementary labelled literals for branch closure. The interactions between modal-
ities, variable labels, and unification algorithms, however, is by no means easy
to disentangle. Extending our method to utilise special unification algorithms is
perfectly possible, now that correctness and completenesshave been proved for
the interactions between modalities and variable labels.
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