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Abstract. Free-variable semantic tableaux are a well-establishefthigue for first-order theorem
proving where free variables act as a meta-linguistic defir tracking theeigenvariablesused
during proof search. We present the theoretical foundatiorextend this technique to propositional
modal logics, including non-trivial rigorous proofs of sulness and completeness, and also present
various techniques that improve the efficiency of the bagieenmethod for such tableaux.
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1. Introduction

Free-variable semantic tableaux are a well-establisheldnigue for first-order
theorem proving where free variables act as a meta-linguigivice for tracking
the eigenvariablesused during proof search [27, 13]. By allowing the choice of
these free-variables to be deferred until more informatiecomes available, free
variables reduce the search space and reduce the non-iésenrimherent in auto-
mated proof search. Free variables are the most importéméneent of traditional
tableaux for classical logic from the automated theorenvipgpperspective. It is
therefore natural to investigate whether free-variabkes loe used in automated
theorem proving for non-classical logics.

Kanger's meta-linguistic indices for non-classical I&ji20] have already been
generalised by Gabbay into Labelled Deductive Systems Hi] recently, Mas-
sacci [22] and Russo [28] have shown the utility of usimgundlabels for obtain-
ing modularmodal tableaux and natural deduction systems (respegtisee [16]
for an introduction to labelled modal tableaux.

Here we present a rigorous account of free-variable taklézupropositional
modal logics. We show how to use this theory to obtain modpianf systems
based upon free-variable tableaux for all 15 basic modat$od his paper is a full
version of [2]. It does not include further work on decidapilissues which we
have reported in [3, 4] as these aspects have not been fulkedout yet.

Our object language uséabelled formuladike o: A, whereo is a label andA
is a formula, with intuitive reading “the possible wourdsatisfies the formul&”;
see [12, 24, 16] for details. Thus, dp says that the possible world 1 satisfies the
formulaOp. Our box-rule then reduces the formulaclp to the labelled formula
1.(x): p which contains theuniversalvariablex in its label and has an intuitive
reading “the possible world.(x) satisfies the formulg”’. Since different instan-
tiations of x give different labels, the labelled formula(g): p effectively says
that “all successors of the possible world 1 satigfythereby capturing the usual
Kripke semantics foEdp (almost) exactly. But the possible world 1 may hae
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2 B. Beckert and R. Gore

successors; so we enclose the variable in parentheses ahd & as “for all
instantiations of the variables o if the world corresponding to that instantiation
of o exists then the world satisfies the formé#a

The use of variables as place-markers éigenvariableshas been used by
various authors in the past where it has also been used inredign with spe-
cialist unification algorithms to close branches. The eatlsuch work is probably
that of Wallen [29], but Wallen catered for only a very few pismnmodal logics.
Similar approaches using labels containing variables baem explored by Gov-
ernatori [17], D’Agostino et al. [10] and Pitt and Cunninghd26]. D’Agostino
et al. relate the labels to modal algebras, instead of todidsr logic as we do.
Both Pitt and Cunningham and Governatori use string unifinabver labels to
detect complementary formulae, whereas we just use matcBionsequently, our
variables are of a simpler kind: they captureialimediatechildren of a possible
world (in a rooted tree model), but do not captateR-successorssee [22, 16].
Note, however, that extensions of our calculi using striniication are perfectly
feasible. Indeed, such work is currently being persued hyBte [9].

The following techniques, in particular, are crucial:

Freevariables: Applying the traditional ground box-rule requires guegsthe
correcteigenvariables Using (free) variables in labels as “wildcards” that
get instantiated “on demand” during branch closure allovesenintelligent
choices of theseigenvariables To preserve soundness for worlds with no
R-successors, variable positions in labels must be conditio

Universal variables. Under certain conditions, a varialbkeintroduced by a for-
mula like DA is “universal” in that an instantiation of on one branch need
not affect the value ok on other branches, thereby localising the effects
of a variable instantiation to one branch. The techniqueailsntreating and
instantiating local duplicates of labelled formulae iast®f the originals.

Finite diamond-rule: Applying the diamond-rule te>A usually creates a new
label. By using (a Godelisation of) the formufaitself as the label instead,
we guarantee that only a finite number of different labelsa(oértain length)
are used in the proof. In particular, different (identigadbelled) occurrences
of OA generate the same unique label.

The paper is structured as follows: In Sections 2 and 3 wedntre the syntax
and semantics of labelled modal tableaux. In Section 4 wednte our calculus
and present an example; we prove its soundness and congdstanSections 5
and 6, respectively. In Section 7 we present our conclusams discuss future
work.
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Free-variable Tableaux for Propositional Modal Logics 3

2. Syntax

The formulae of modal logics are built in the usual way fromeaumerable non-
empty setp of primitive propositions, the classical connectivegconjunction),

V (disjunction),— (negation),— (implication), and the non-classical unary modal
connectivesd (“box”) and < (“diamond”).

To reduce the number of tableau rules and the number of cageations in
proofs, we restrict all considerations to implicationeffiormulae in negated nor-
mal form (NNF); thus negation signs appear in front of priveipropositions only.
Using NNF formulae is no real restriction since every foranchn be transformed
into an equivalent NNF formula in linear time.

Labels are built from natural numbers and variables, withiatdes intended
to capture the similarities between thiequantifier of first-order logic and the
O modality of propositional modal logic. However, whereastfrder logic for-
bids an empty domain, the modality tolerates possible worlds with no succes-
sors? To capture this (new) behaviour, variable positions in lsilaee made “condi-
tional” on the existence of an appropriate successor bysimg these conditional
positions in parentheses.

DEFINITION 2.1. LetVarsbe a set of variables. Themjis alabelfor me N; and
if ois alabel, then so ammando.(l) for me N andl € VarsuUN. Thelength|o]
of a labelo is the number of dots it contains plus one. The constitudradabelo
are calledpositionsin ¢ and terms like “the 1st position” or “theth position” are
defined in the obvious way. A position é@nditionalif it is of the form (), and a
label is conditional if it contains a conditional positidy ipr (o) we mean the set
of all non-emptyinitial prefixesof a labelo, excludingo itself. A label isground
if it consists of (possibly conditional) members§fonly. Let £ be the set of all
ground labels.

When dealing with ground labels, we often do not differastibetween the
labelso.m andao.(m), and we use.[m| to denote that the label may be of either
form. Note thato.x (parentheses aroundomitted) is not a label fox € Vars
the parentheses mark the positions that contain variabiebat used to contain
variables before a substitution was applied.

DEFINITION 2.2. A sefl” of labels isstrongly generatedf:
1. there is some (root) labple I" with p € ipr(o) forallo € '\ {p}; and

2. el impliest €T forall t € ipr(0).

1 To that extent, modal logics are similar to free logic, ifiest-order logic where the domains of
models may be empty [8].
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4 B. Beckert and R. Gore

Since we deal with mono-modal logics with semantics in tevfmeoted frames
(see Section 3), we always assume that our labels form agfgrgenerated set with
rootp = 1.

DEFINITION 2.3. A labelled tableau formulgor just tableau formulalp is a
structure of the formX:A:o:A, whereX is a subset oarsUN, A is a set of
labels,o is a label, andh is a formula in NNF. If the seh is empty, we us&:0:A
as an abbreviation foX:0:0:A. A tableau formulaX:A:o:Ais groundif o and
all labels inA are ground. IfF is a set of labelled tableau formulae, tHah(# ) is
the set{o | X:A:0:A€ 7 }.

The intuitions behind the different parts of our “tableaunfolae” are as fol-
lows: The fourth parA is just a traditional modal formula. The third partis a
label, possibly containing variables introduced by theuotidn of O modalities.
If the labelo is ground, then it corresponds to a particular path in thenitéd
rooted tree model; for example, the ground labdl 1l typically represents the
leftmost child of the leftmost child of the root 1. & contains variables, then
it represents all the different paths (successors) thabeaobtained by different
instantiations of the variables, thereby capturing theasdios of thed modalities
that introduced them. Our rule for splitting disjunctiorkwas us to retain these
variables in the labels of the two disjuncts, but becausees not distribute over,
such variables then lose their “universal” force, meanivag these “free” variables
can be instantiated onlgncein a tableau proof. We use the first componZrtio
record the variables in the tableau formyglghat are “universal”’, meaning that
can be used multiply in the same proof with different ingtgtitns for these vari-
ables. The free variables ip(that do not appear iX) can be used with only one
instantiation since they have been pushed through the sufopeV connective.
The second pam, which can be empty, has a significance only if our calculus
applied to one of the four logids B, K5, KB4, andK 45 (that are non-serial, but
are symmetric or euclidean). It is empty for the other logidse intuition ofA is
that the formulaA has to be true in the possible world callednly if the labels
in A name legitimate worlds in the model under considerations Téature has to
be used, if (a) rule applications may shorten labels, whidheé case if the logic is
symmetric or euclidean, and (b) the logic is non-serial d@nds, the existence of
successor worlds is not guaranteed. The/sseain contain both universal and free
variables, and some of them may appeaw.in

S

DEFINITION 2.4. Given a tableau formutp= X:A:0: A, Univ(g) = X is the set

of universal variableof @, while Free(q) = {x| x appears iro or A, x ¢ X} is the

set offree variablesof ¢. These notions are extended in the obvious way to obtain
the setd-ree(7 ) andUniv(7 ) of free and universal variables of a given tablgau
(see Def. 2.5).

DEFINITION 2.5. A tableauis a (finite) binary tree whose nodes are tableau
formulae. Abranchin a tableaur is a maximal path inr (where no confusion
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Free-variable Tableaux for Propositional Modal Logics 5

can arise, we identify a tableau branch with the set of tableanulae it contains).
A branch may be marked as beiolpsed If it is not marked as being closed, it is
open A tableau branch igroundif every formula on it is ground, and a tableau is
ground if all its branches are ground.

Since we deal with propositional modal logics, notions friirst-order logic
like variables and substitutions are needed only for hagdéemantic notions
like the accessibility relation between worlds. Specificalhereas substitutions
in first-order logic assign terms to variables, here theygassumbers or other
variables (denoting possible worlds) to variables.

DEFINITION 2.6. A substitutionis a (partial) functiory : Vars— NU Vars. Sub-
stitutions are extended to labels and formulae in the olsvieay. A substitution
is groundingif its domain is the (whole) se¥ars and its range i, that is, if it

maps all variables iWarsto natural numbers. Thestriction of a substitutioru to

a setX of variables is denoted byx. The concatenation pv of substitutionsu

andv is defined by(pov)(x) = u(v(x)) for all variablesx € Vars

Note, that applying the concatenatipnv has the same effect as first applying
and then applying, i.e.,o(pov) = ovp for all objectso (labels, formulae, etc.).

DEFINITION 2.7. Given a tableaa containing a tableau formuld:A:0: A a
tableau formulaX':A’:0’: A is a 7 -renamingof X:A:o:A if there is a substi-
tution p such that (a)X':A":0’:A= (X:A:0:A)Y, (b) the domain ofxis X (all

other variables remain unchanged), and{m®places the variables Kby distinct
variables new to the tableau.

3. Semantics

In this section we first introduce the Kripke semantics fordaddogics, and then
extend these semantics to labelled tableau formulae atehtab

DEerFINITION 3.1. A Kripke frameis a pair(W,R), whereW is a non-empty set
(of possible worlds) and is a binary relation oW. A Kripke modelis a triple
(W,R,V), where the valuatioW is a mapping from primitive propositions to sets
of worlds. ThusY (p) is the set of worlds at whichis “true” under the valuatiol .
We writewRW iff (w,w) € R, and we say that world/ is reachablefrom worldw,
and thaw is asuccessopf w.

DEFINITION 3.2. Given some modgW,R,V), and someav € W, we writew = p

iff we V(p). This satisfaction relatiop- is then extended to more complex formu-
lae as usual. We say thatsatisfiesa formulaA iff w = A. A formulaAis satisfied
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6 B. Beckert and R. Gore

Table I. Basic axioms and the corresponding prop-
erty of the reachability relation.

Name Axiom Property

(K) OA—B)— (OA—0OB) —

(M) OA— A reflexive
(D) OA — OA serial

(4) OA — O0OA transitive
(5) OA— OOA euclidea”
(B) A— OCA symmetric

by a modelW,R V) if it is satisfied by some worldv € W; it is valid in (W,R V),
written as(W,R,V) [= A, iff every world inW satisfiesA. A formulaAis valid in a
frame (W, R), iff it is valid in every modekW, R, V) based on that frame. An axiom
Aisvalid in a frame(W, R), iff every formula instance of it is valid ifW, R).

The first two columns of Table 1l show the axiomatisationshef15 basic logics
that can be formed from the axioms shown in Table I.

DerINITION 3.3.  Given one of the logick listed in Table Il, a framgW,R)
is anL-frameif each axiom ofL is valid in (W,R). A model (W,R V) is anL-
modelif (W,R) is anL-frame. A formulaA is L -satisfiableif there is anL-model
satisfyingA.

The axioms listed in Table | are characterised by the pragsedf R listed next
to them; see [16]. Thus, aKT-frames have a reflexive accessibility relatiBn
and if a frame has a reflexive accessibility relation thenilitwalidate axiom (T).
Therefore, we associate these properties with logics ds avel say, for example,
that a logicL is serial if allL-frames have a serial accessibility relation. Some care
is needed: for example the axiom (D) is not an axionKdf, but it is valid in all
KT-frames since it is implied by (T). Consequently the readhgbelation R of
all KT-modelsis serial.

As we shall soon see, ground labels capture a basic reaithaddiition between
the worlds they name, where the world namedty] is reachable from the world
named byo. A set of strongly generated ground labels can be viewed asea t
with root p, whereo.[n| is an immediate child ob (hence the name “strongly
generated”). We formalise this as follows.

DeFINITION 3.4. Given alogid. and a sef of strongly generated ground labels
with rootp = 1, alabelt € ' isL-accessibldrom a labelo € I, written aso > 1, if

2 RelationRis euclidean iff: for allu,v,w € R, uRvanduRwimpliesvRw
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Table Il. Basic logics, axiomatic characterisations, hraccessibility>.

Logic Axioms opT Logic Axioms op>T
K (K) T=0.n| KT (KT) T=0.nort=0
KB (KB) T=a.[nor K4 (K4) 1=0.6
c=T1.[m
K5 (K5) T=a.[n|, or K45  (K45) 1=0.6,0r
o > 2,1/ >2 o] > 2,1/ >2
KD (KD) K-condition, or KDB (KDB) K B-condition, or
o is aK-deadend Il =1and
ando=rt o=1=1
KD4  (KD4) K 4-condition, or KD5 (KD5) K 5-condition, or
o is aK-deadend IF|=1and
ando=T1 o=1=1
KD45 (KD45) Kd45-cond., or KB4 (KB4) Ir|>2
r=1,
o=1=1
B (KTB) t=0,0r A (KT4) 1=0.0ort=0
T=o0.[n],or
c=T1.[m
S5 (KT5) forallo,t

the conditions set out in Table Il far are satisfied. A labe¥ € I' is anL -deadend
if not el isL-accessible fronw.

The following lemma shows that tHe-accessibility relatior> on labels cap-
tures the reachability relatioR of L-frames; see [16] for a proof. In particular,
> has the properties like reflexivity, transitivity, etc. theae appropriate for the
axioms ofL (see Table I).

LEMMA 3.5. If I is a strongly generated set of ground labels with rpet 1, then
(I',>>) is anL-frame.

The traditional notion of satisfaction relates a world in adal with a formula
or a set of formulae. When formulae are annotated with grdaibels, the notion
of satisfaction must be extended by a further “interpretafunction” that maps
ground labels to worlds; see [13, 16]. If the labels are afldwo contain free
variables, and in particular, universal variables, thembtion of satisfaction must
also allow for all possible instantiations of the universatiables, thus catering
for many different “interpretation functions”. As usualewdefine “satisfiability”
so that our tableau expansion rules preserve this notiahsaoch that a “closed
tableau” is not satisfiable.

We proceed incrementally by defining satisfiability for: gmd labels; ground
tableau formulae; non-ground tableau formulae; and whaddeaux. But first we
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8 B. Beckert and R. Gore

enrich models by the “interpretation function” that mapisels to worlds. Note
that such interpretations give a meaningtioground labels, not just to those that
appear in a particular tableau. A label that does not coorespo a world in the
model is mapped to the special symhal

DEFINITION 3.6. AnL-interpretation is a paitM, 1), whereM = (W,R V), is
a Kripke L-model and is a functionl : £ — WU {_L} interpreting ground labels
such that:

() 1(1) eW

(i) 1(o.(n)) =1(o.n) for allo.nando.(n) in £

(i) forall o € £, if I(1) = L for somet € ipr(o) thenl(o) = L
(iv) if o>1,1(0) e W, andl (1) € W, thenl (o) RI(T).

DEFINITION 3.7.  AnL-interpretation(M, 1), whereM = (W,R,V), satisfiesa
ground labelo, if for all labelst.n € ipr(o) U{o} (that end in an unconditional
label position):l (1) € W implies|(t.n) € W. TheL-interpretation(M, |) satisfies
a ground tableau formuld:A:o: A, if

(@) I(o) =1, orl(t) =L forsomet € A, orl (o) = A; and

(b) if 1(T) € W for all T € A, then(M, 1) satisfiess.®

Thus, a tableau formula is satisfied by default if its labes undefined (that
is, if 1(o) = L) or if one of the labels id\ is undefined. But because we deal only
with strongly generated sets of labels with root 1, the twiguuirements that every
L -interpretation(M, I) define the label 1, and condition (b) in the above definition
force the interpretation functiohto “define” as many members @br (o) as is
possible. However, for a conditional ground label of thenfar.(n), wheren is
parenthesised, it is perfectly acceptable to Hdven)) = L even ifl (1) € W.

ExampPLE 3.8. If (M,I) satisfiesoc = 1.1.1, thenl (1), 1(1.1), andl(1.1.1) must
be defined. Ifo=1.(1).1, thenl(1.(1)) need not be defined; but if it is, then
[(1.(1).1) must be defined.

The domain of every interpretation functibrs the set of algroundlabels .,
but our tableaux contain labels with variables. We theeefotroduce a definition
of satisfiability for non-ground tableau formulae captgriour intuitions that a
labelo.(x) stands forll possible successors of the labelnd taking into account
the special nature of universal variables.

3 In particular,(M, 1) must satisfyo if A = 0, which is the most frequent case.
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DEFINITION 3.9. Given ar-interpretationlM, 1) and a grounding substitutiqn

a (non-ground) tableau formuta= X:A:0:Ais satisfiedby (M, I, ), written as
(M, 1,1 |= @, if for all grounding substitutions\, the ground formulap\ x is

satisfied by(M, 1) (Def. 3.7). A setF of tableau formulae is satisfied by, 1, ),

if every member off is simultaneously satisfied QM 1, ).

In the above definition, a ground formua x is constructed fronp in two
steps, such that the definition of satisfiability for groundhiulae can be applied.
To cater for the differences between the free variables anersal variables, we
use two substitutions: a fixed substitutiprand an arbitrary substitutioh. The
first step, applying\|x to @instantiates the universal variables X. The second
step, applyingito @\ x, instantiates the free variables. Therefore, the insttoti
of universal variableg € X is given by the arbitrary substitutioxn, and the instan-
tiation of free variablex ¢ X is given by the fixed substitutign Quantifying over
all A captures the universal nature of the memberX.of

Note, that in the following definition of satisfiable tableathere has to be a
single satisfyind.--interpretation forll grounding substitutiong.

DEFINITION 3.10. A tableaur is L-satisfiableif there is anL-interpretation
(M, 1) such that foreverygrounding substitutiomu there is som@penbranchs
in 7 with (M, 1, ) |= 3.

4, TheCalculus

4.1. OVERVIEW

We now present an overview of our calculus, highlightingritin principles.

Refutation method. Our calculus is a refutation method: to prove that a forndula
is a theorem of logid_, we first convert its negatiorA into NNF obtaining a
formula B, and then test iB is L -unsatisfiable. To do so, we start with the initial
tableau whose single node@s0:1:B and repeatedly apply the tableau expansion
rules, the substitution rule, and the closure rule untilbsetl tableau results. Since
our rules preserve -satisfiability of tableaux, a closed tableau indicates Bi&s
indeedL -unsatisfiable, and hence that its negatforis L-valid. SinceL-frames
characterise the logic we then know thaf is a theorem of logi¢.. Constructing

a tableau fo: 0:1:B can be seen as a search forlaimodel forB. Each branch

is a partial definition of a possible-model, and different substitutions give differ-
entL-models. Our tableau rules exteade particular branch usingnepatrticular
formula, thus differingcrucially from the systematic methods in [12, 16] where a
rule extendsall branches that pass through one particular formula.
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10 B. Beckert and R. Gore

Universal variables. In the following we explain the relationship between univer
sal variables in first-order logic (resp. universal quaertiin first-order logic) and
modal logics (resp. box-formulae in modal logics). To engibethe similarities,
we use in this explanation a simplified notationOA instead ofX:A:o: A for
tableau formulae.

In first-order tableaux, a free variabtas used as a place marker for eigen-
variable whose value is unknown when reducing a formse (x) to ¢(x). In our
calculus, a free variable is used as a place marker for a successor world whose
value is unknown when reducing a labelled formalaDA to 0.x: A. Because a
world may have no successor, variable positions in labetaiircalculus must be
conditional to preserve soundness for non-serial logioswe ignore this aspect
for the moment to simplify the exposition. In each calculiing free variablex
is used so that the actuahlue of x does not have to be guessed at the point
whereVx¢(x) or o: OAis reduced. Instead, we defer the choicexaftil enough
information is available to make a choice th@mmediatelycloses a branch of the
respective tableau.

Since the free variabl& is a proxy for one instance of, or one particular
successor af respectivelyx must be instantiated to the same value on all branches.
Moreover, one single instantiation of the free variables toebe found that allows
us to close all branches of a tablesionultaneouslyand instantiating a free variable
(in the wrong way) to close one branch, can make it imposdiblelose other
branches.

However, bothvx¢(x) ando: OA have a universal nature, and we may require
additional renamingé(x1),...,$(X,) ando.x; : A,...,0.x,: A of the respective re-
duced formulae to construct a close tableau, correspondimgultiple different
instances of/x¢(x) andmultiple differentsuccessors af: OA respectively.

Beckert and Hahnle [5] noticed that under certain conditiohe free variable
can be instantiated in one way to close one branch, but thidirig can be un-
done, andk can be instantiated in a different way to close another franithout
losing soundness. Such a varialilés said to be “universal” since it allows the
singleformula ¢(x) or o.x: A respectively to stand in for theaultiple renamings
d(X1),...,9(Xy) ando.x1:A,...,0.% A mentioned above. Indeed, if the number
of required renaminga is large, then using a variable in this “universal” manner
can shorten the tableau branches considerably. The exdmalole illustrates this
point for our modal tableaux.

ExAmMPLE 4.1. Suppose that we are given a tableau branch contairertgifeau
formulae 1:0-pVv G—=gand 10(pAQ).

In Figure 1(a) we reduce the second formula to obtai :pAq, creating
the free variablex;. Applying the conjunctive rule to this formula givesxy: p
and 1x;:g. Next we apply the disjunctive rule to the root and split tabléau
into two branches, the first containing<t+p and the second containing <:q.
We apply the diamond-rule to obtain1t—p on the first branch where.1lis a
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1:0-pVv<o—q
1:[1(:p/\ q)
1x1:pAQ
1.x|1: p
1.x|1:q
1:<>ﬂf }:Oﬂq
1.1|:ﬂp 1.2|:ﬂq
P/l 1xipag
l.xlz: p

1:0-pv<o—Qq
I
1:I:I(|p/\q)
1x:pAdg

I
1x:p

1.>|(:q
VO
1:0=p 1:3—q
1.1|:ﬂp 1.2|:ﬂq
{x/1} {x/2}
(b)

l.xlz g
{x2/2}
@)

Figure 1. Tableau proof (a) without and (b) with universal variablesg Example 4.1).

label new to the tableau. We can now close the left branch tingeg := 1. All
occurrences af; are now bound to 1.

To continue, we apply the diamond-rule tod-»q on the second branch to
obtain 12:—qwhere the label 2 is new to the tableau.

The only potential closure on this second branch is betwegn-fj and 1x; : q
but this closure is not possible singgis bound to 1 so that the latter formula is
actually 11:q, and this does not contradict2t —g. We therefore have to apply
the box-rule once again to I{pA Q) to obtain 1x;: pA g on the second branch
thereby creating a second free variakje Applying the conjunctive rule to this
formula allows us to close the second branch by putting= 2 as shown.

In Figure 1(b) we proceed in exactly the same manner until lagecthe first
branch, except that we create the free varialyigther tharx;. But before proceed-
ing to process the second branch, we undo the binding. fBonsequently we can
close the second branch much sooner by putting 2, without generating the ex-
tra renaming X, : pAqrequired in Figure 1(a). Thus the variablés instantiated
in multiple ways.

How to detect such “universal” variables and use them ongysound manner?
Here is one way. Every variabbeis introduced into a label by the reduction of
a box-formula likeOA. At some later stage of the tableau construction, in some
particular formulap(x) on some particular tableau branshthe variablex will be
“universal” if a renamingd’ = ¢{x:= X'} of ¢ could be added t@ without gener-
ating additional branches. That is, the modified tableauldvba no more difficult
to close than the original. One way to generate the renarsing liepeat the rule
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12 B. Beckert and R. Gore

applications that lead to the generatiorpoktarting from the box-rule application
that createck. Once renaming’ is present ons, the variablex never has to be
instantiated to close because’ could be used instead ¢f thus instantiating(
instead ofx. However, ifx occurs on two separate branches in the tableau then
repeating these rule applications would generate at lgsstadditional branch,
making the new tableau harder to close than the original one.

All variables are obviously universal when they are creaBalhow can a uni-
versal variable become non-universal? The crucial coiter$ that the steps that
generate the copy of x must not cause the creation additional branches to the
tableau. This simply means that all occurrences of the rmalgi must occur on
only one branch. Since the only rule that causes branchitigeidisjunctive rule,
occurrences ok on different branches can be created only by a disjunctile ru
application to a formula containing Therefore, an application of the disjunctive
rule to a formulap causes the universal variablesdoto become “non-universal”
variables. That is, all “non-universal” variables are autesf a disjunction within
the scope of &1, corresponding to the fact thatdoes not distribute over.

Consider 18(pV q) and suppose we reduce this tadpV g. At this point,x is
universal, but it will become “non-universal” once we aptig disjunctive rule to
obtain two branches, the first containingJp and the second containingxlg.

An instantiation ofx to 1 (say) on the first branch must now instantiat® 1 on
the second branch as well sincés no longer universal. But it may also be neces-
sary to reduce IJ(pV Q) once again on the second branch to obtayt AV q

to obtain closure. There is clearly an interaction betwdentox-rule and the
disjunctive rule. We capture this interaction by ensurimat tvhen the disjunctive
rule makes universal variables “non-universal”, an adddi renaming (¥: pV q)

of the disjunctive-formula (X: pV ) that created these “non-universal” variables
is generated by the disjunctive rule itself (rather thanbitve-rule).

The diamond-rule. Our diamond-rule does not introducenawlabel c.n, when

it is applied toX:A:o:OA. Instead, each formul&A is assigned its own unique
label [A] which is a Godelisation oA itself.# This rule is easier to implement than
the traditional one; and it guarantees that (up to renamirfgee variables) only
a limited number of different labels can occur in a proof, ethdepends on the
number of different sub-formulae in the input formula.

The box-rule for symmetric or euclidean logics can shoradels. For example,
the tableau formul':A’:1:A is obtainable fronX:A:1.(1):O0A for symmetric
logics. The semantics for serial logics guarantee thabhbkls define worlds, but
in non-serial logics, the label 1 may be defined whei)lis undefined. To ensure
that the formulaX’:A": 1: A or one of its descendants is used to close a branch only
if the label 1(1) is defined, the label .11) is made part of\’ (see Section 4.3).

4 Similar features were used lsanTAP [7] for first-order predicate logic, and in other labelled
proof systems for modal logics, but within the context ofigrd labels; see [28].
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Free-variable Tableaux for Propositional Modal Logics 13

Such problems do not occur when rule applications alwaygthem labels since
T has to be defined if.| is defined.

All expansion rules are sound am/ertible (some denominator of each rule
is L-satisfiableiff the numerator it -satisfiable). Thus, unlike traditional modal
tableau methods where the order of (their non-invertibld® applications is cru-
cial [12, 16], the order of rule application iimmaterial

The differences in the calculi for different logitsis mainly in the box-rule,
with different denominators for different logics. In addit, a simpler version of
the closure rule can be used if the logic is serial.

4.2. TABLEAU EXPANSION RULES

There are four expansion rules, one for each class of conipdexliteral) formulae
(conjunctive, disjunctive, box-, and diamond-formuldée wanted to avoid the
restriction to NNF, we would have several types of formulaeséch class and,
accordingly, would need several (similar) rules for eaasgl(and an extra rule for
double negation). Since we assume that all our formulaenaXiNiF, we need just
one rule for each of the four classes.

As usual, in each rule, the formula above the horizontal iniégs numerator
(the premiss) and the formula(e) below the horizontal Ipassibly separated by
vertical bars, are itdenominatorgthe conclusions). All expansion rules (including
the box-rule) are “destructive”; that is, once the (appiatp) rule has been applied
to a formula occurrence to expand a branch, that formularosece is not used
again to expand that branch. Note that we permit multipleirences of the same
formula on the same branch (nevertheless, when a brancéritfidd with the set
of formulae it contains, these occurrences collapse to.one)

DEFINITION 4.2. Given atableawr, a new tableaa ' may be constructed from
by applying one of thé -expansion rulesrom Table Il as follows: If the numer-
ator of a rule occurs on a branehin 7, then the brancks is extended by the
addition of the denominators of that rule. For the disjurectule the branch splits
and the formulae in the right and left denominator, respelti are added to the
two resulting sub-branches instead.

The box-rule(s) shown in Table Il require explanation. Tétwan of the rule is
determined by the indek in the accompanying table. But some of the denomi-
nators have side conditions that determine when they adeable. For example,
the constrainos = 1.Is means that (5) is part of the denominator only when the
numerator of the box-rule is of the ford:A: 1.1s5: OA. Similarly, the constraints
02 = To.lo and oy = 14.14 for the (4) and (B) denominators mean these rules can
be used only for a numerator of the fork:A:o:0OA where |o| > 2, thereby
guaranteeing that thetrictly shorterlabelst, andt, that appear in the respective
denominators are properly defined. The table indicatesttieatules for a logid
and its serial versiol.D are identical because these logics are distinguished by
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Table Ill. Tableau expansion rules.
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X:A:0:ANB
X:A:0:A
X":N':0':B
X:A:0:AVB
0:Aq1:01:A 0:A1:01:B
Xo:02:02:AVB| X3:A3:03:AVB

X:A:0:O0A
X:A:0:0A
XU{x}:A:0.(X):A (K)
XpU{x}:01:01.(x1):0A  (4)
Xo:ApU{o2}:12:OA (4"
X3:03:03:A )
Xq:Dq4U{04}:14:A (B)

XsU{xs}:A5U{0s5}:1.(x5):0A (5)

Conjunctive rule. X:A': 0’ :Bis a7 -renam-
ing of X:A:0:B.

Disjunctive ruleTheX;:Aj:cj:AVBareT -
renamings ofX:A:0:AVB (for 1<i<3)
with disjoint X;. If X = 0 then the renamings
fori =2 andi = 3 are omitted.

Diamond-rule.[-] is an arbitrary but fixed
bijection from the set of formulae .

Box-rule.The formulaeX; : Aj: oj: OAareT -
renamings oX:A:o:0Afor 1<i <5. The
variablesx, x;,Xs € Vars are new to7 . The
setsX U {X}, XU {Xl}, Xo, X3, Xg, X5 U {X5}

are disjoint. Alsogs = T2.1, 04 = T4.14, and

o5 = 1ls.

The form of the denominator depends on the
logicL, and is determined by including every
denominator corresponding to the entryffor

in the table below.

Logics Box-rule denominator Logics Box-rule denominator
K,D (K) K45, K45D  (K), (4), (4)2

T (K), (T) K4B, (K), (B)?, (4), (4)?
KB,KDB (K), (B)? B (K), (1), (B)2

K4,KD4  (K), (4) s4 (K), (7). (4)

K5 KD5  (K), (4)3, (4)3, (5)° S5 (K), (T), (4), (4)2

a Only included if|o] > 2.

b Only included if|o| = 2.

the form of our closure rule; see Definition 4.5. Various otivays to define the

calculi for serial logics exist; see [16].

The expansion rules rename the universal variables in themdimators to en-
sure that no two literals in a tableau, which may be used foswk, share the
same universal variables. This is important because osuorule uses a sin-
gle instantiation of all universal variables. We could daheut renamings if the
closure rule used separate instantiations of the univeesébles of the closing
literals (including those literals used for justificatiofhis is a technicality since
all proofs would still go through with minor changes.

modlean.tex; 19/12/2000; 18:14; p.14



Free-variable Tableaux for Propositional Modal Logics 15
4.3. THE SUBSTITUTION RULE AND THE CLOSURERULE

By definition, the substitution rule allows us to applyy substitution atnytime
to a tableau. In practice, however, it makes sense to apy“‘oseful” substitu-
tions; that is, those most general substitutions whichwaltoclose a branch of the
tableau.

DEFINITION 4.3. Substitution rule:Given a tableaw , a new tableaw’' = 7
may be constructed frorm by applying a substitutiopto 7 that instantiates free
variables in7 with other free variables or natural numbers.

In tableaux for modal logics without free variables as wsllim free-variable
tableaux for first-order logic, a tableau branch is closetddbntains complemen-
tary literals since this immediately implies the existen€an inconsistency. Here,
however, this is not always the case because the labels obthglementary literals
may be conditional. For example, the (apparently conttadiy pair 0:1.(1):p
and0:1.(1) :—p is not necessarily inconsistent since the wadidl.(1)) may not
exist in the chosen model. Before declaring this pair to berisistent, we therefore
have to ensure thdt(1.(1)) # L for all L-interpretations satisfying the tableau
branch3 that is to be closed. Fortunately, this knowledge can be chtifrom
other formulae ons. Thus in our example, a formula likg = X:1.1:A on 3
would “justify” the use of the literal paif:1.(1):p and0:1.(1):—p for closing
the branchs since anyL -interpretation(M, 1) satisfyings has to satisfyp, and,
thus,l (1.(1)) =1(1.1) # L has to be a world in the chosen modél The crucial
point is that the label .1 of { is unconditionalexactly in theconditional positions
of 0:1.(1): pand0:1.(1) : —~p. These observations are now extended to the general
case of arbitrangroundlabels.

DEFINITION 4.4. A ground labeb with j-th position[n;] (1 < j <|0]) is justi-
fied on a branchs if there is some se¥ C 3 of tableau formulae such that for
everyj:

1. some label iab(# ) has (an unconditional but otherwise identicgth posi-
tion nj; and

2. forallt e lab(r ):if |t| > j then thej-th position int is n; or (n;).

DEFINITION 4.5. Given a tableau and a substitution : Univ(7 ) — N that in-
stantiates universal variablesdnwith natural numbers, thie-closure ruleallows
to construct a new tableat/ from 7 by markings in 7 as closed provided that:

1. the branchsA of 7 A contains a paiX:A:o:p andX':A":a:—-p of comple-
mentary literals; and

2. (a) the logid. is serial, or (b) all labels ifa} UAUA' are ground and justified
on BA.
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16 B. Beckert and R. Gore

Note: the substitution that instantiates universal variablesst applied to the
tableau when the branch is closed; it must merely exist.

By definition, only complementatjterals close tableau branches, but in theory,
pairs of complementargomplex formulaeould be used as well (that, however,
would lead to additional choice points in the proof search).

4.4, TABLEAU PROOFS

We now have the ingredients to define the notion of a tableaof pr

DEFINITION 4.6. A sequenca®,...,7" of tableaux is arl_-proof for the L-
unsatisfiability of a formula if:

1. 70 consists of the single node 0:1:A;

2. for 1< m<r, the tableaur ™ is constructed fronr ™ by applying anL -
expansion rule (Def. 4.2), the substitution rule (Def. 4d8){theL -closure rule
(Def. 4.5); and

3. all branches i " are marked as closed.

Theorems 4.7 and 4.9 state soundness and completeness fraauus with
respect to the Kripke semantics for lodi¢ proofs in Sections 5 and 6.

THEOREMA4.7. (Soundness)Let A be a formula in NNF. If there is aln-proof
70 ..., 7" for theL-unsatisfiability of A (Def. 4.6), then A is-unsatisfiable.

We prove completeness for the non-deterministic and uict=st version of the
calculus, and also for all tableau procedures based ondhislas that determin-
istically choose the next formula for expansion (ifaa way) and that only apply
most general closing substitutions.

DEFINITION 4.8. Given an open tablean, atableau procedurdV deterministi-
cally chooses an open branshin 7 and a non-literal tableau formutpon 3 for
expansion.

The tableau procedutd is fair if, in the (possibly infinite) tableau constructed
usingW¥ (where no substitution is applied and no branch is closedyydormula
is used for expansion of every branch on which it occurs.

THEOREM4.9. (Completeness).etW be a fair tableau procedure, and let A be an
L -unsatisfiable formula in NNF. Then there is a (finite) talnlemoofTo, e, T
for the L -unsatisfiability of A, where ' is constructed fronr =1 (1 <i <r) by

1. applying the appropriaté -expansion rule to the branch and the formulap
on 3 chosen by from7'~1; or
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2. applying a most general substitution such thatlthelosure rule can be applied
to a previously open branch 'L,

When a tableau proof is constructed according to Theoremi4.9 using a
fair tableau procedure, the remaining choices are (1) veneghbranch (that can
be closed) is closed or further expanded and (2) in case Hrerdifferent pos-
sibilities to close a branch, which of different most gehetasing substitutions
is applied. An implementation has to resolve this non-aeiteism (for example,
using a backtracking mechanism). As long as no branch ied|dbe expansion is
deterministic.

There is clearly an interaction between the box-rule, tleswrie rule and the
disjunctive rule. This interaction can be used to resthiet $earch space by en-
suring that when the disjunctive rule “frees” universali@ales, an additional re-
naming (1y: pV q) of the disjunctive-formula (X: pV q) that created these “non-
universal” variables is generated by the disjunctive rbid,only if demanded by
the closure rule (that is, when the free variaklgets instantiated during branch
closure). Applying this same criterion to the copyy(IpV g) will produce another
copy (1z: pV g), but only upon demand, and so on.

EXAMPLE 4.10. We prove thaA = O(p—q) — (Op— (OgAOp)) is aK-
theorem. To do this, we first transform the negatior\dfito NNF; the result is

B = NNF-A) = O(-pVgAOpA(O-qVO-p) .

The (fully expanded) tableam, that is part of the proof for thi -unsatisfiability
of B is shown in Figure 2. The nodes of the tableau are numberedir &;d] is
attached to thé-th node, the numbej denotes that nodehas been created by
applying an expansion rule to the formula in nodeNote, that by applying the
disjunctive rule to 6, the nodes 11 to 14 are added; 13 andeldeaamings of 6.
The variabley; is no longer universal in 11 and 12.

When the substitutiop= {y1/[—q]} is applied toT, the branches of the re-
sulting tableawr u can be closed as follows, thereby completing the tableaofpro
The left branchs, of 7 4 can be closed using the universal-variable substitution
A1 ={x/[—q|} asB1A1 contains the complementary pair—q]}:1.([—-q]): pand
0:1.([—q]):—pinnodes 7 and 11, respectively. The labg[+q]) of these literals
is justified ons1A1 by label 1[—q]| of formula 10. In this case, the complementary
literals contain conditional labels which are only justifigy a third formula on the
branch, so checking for justification is indispensable. ifiddle branchs, of 7
can be closed using the same universal-variable substithti= A1 = {x/[—q]}
as for the left branch. The branapA, then contains the complementary literals
0:1.([—q]):—gand0:1.([—-q]):q in nodes 10 and 12. The label is again justi-
fied by formula 10, which in this case is one of the complenrgriiterals. Note
that the middle branci, can be closed only by the substitutign= {y1/[—q] },
other choices will not suffice. The right branaty of 7 can be closed using
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18 B. Beckert and R. Gore
1] 0:1:0(=pVg) AOpA (CqV O—p)
[2:1] 0:1:I':I(ﬁp\/q)
31 0:1:0 p/\|(<>ﬂqv O=p)
[4:3] (Z):ll:Dp
(53] 0:1 :<>|ﬂqv O-p
(621 {y}: 1-:(y) =pVq
74 {x}:1.(x):p

— ~—
85 0:1:0—q [9510:1:0-p
I [
[10,8) 0:1.[—-q]:—q (159 0:1.[-p]:—p
B3
[116] 0: 1|. (y1):—p [12;6] 0: I1 (y1):q
[136] {y2}:1.(y2) :=pVq [14:6] {ys} : 1.(ys): =pVq
B1 B2

Figure 2. The tableaw from Example 4.10.

the universal-variable substitutioy = {X/[—p]|} as83A3 then contains the pair
{[-p]}:1(]—-p]):pand{[—p]}:1.[—p] :—p of complementary literals in nodes
7 resp. 15. The label.(/ —p]) of node 7 is justified ors3 by formula 15.

The universal-variable substitution = A, = {x/[—q]|} that closess; and 3,
is incompatible with the substitutiohs = {x/[—p] that closesss. Therefore, if
the variablex were not universal in formula 7, the tableau could not beetlps
second instance of formula 7 would have to be added.

In the above example, the only reason for instantiating fegmbles is to make
the labels of closing literals identical. There are sitagi however, where a free
variable has to be instantiated solely to make sure thatabeld of the closing
literals are justified (and not to make them identical).

EXAMPLE 4.11. This example demonstrates why the second Jaift tableau
formulae is needed. Consider the forméla= OOp — p, which is a theorem of
the serial logidk DB but not of the non-serial logik B. The calculi for both logics
have the same tableau expansion rules (they only differa@nctbsure rule); the
tableau7 for the NNFOOpA —p of —A shown in Figure 3 has been constructed
using these rules.
The (single) branch of contains the complementary literagg=0:0:1:-p

andg = {x}: {1.(x) } : 1:pin nodes 3 and 6. Using the closure rule of the calculus

5 This happens, for example, during the construction of aetabproof for the unsatisfiability of
the formula(0Oq) A (¢O<Cr) A O((CO(PA—P)) V Q).
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1 0:0:1:00pA-p
[2:1] 0: G)l: 1:00p
[3:1] (Z):|0: 1:-p
[4:2] {x} :(Z)l: 1.(x):Op
1541 {X, y} :(Z):: 1L(x).(y):p

6:41 {x}:{1.(X)}:1:p
Figure 3. The tableaw from Example 4.11.

for KDB, that does not require a justification of labels, the brarerh lme closed
with ¢, and @,. Thus, a tableau proof for thi€ DB-unsatisfiability of—A can
be constructed fronT. Using the closure rule of the calculus for the lo¢i®,
however, the branch cannot be closed. That closure ruléresgtine labels of the
two complementary literals to be justified on the branchiuiding all labels in
the setsA; = 0 and A, = {1.(x) }—but neither the label.1x) € A, nor any of its
instances 1n) is justified. No tableau proof for th€B-unsatisfiability ofA can be
constructed, which is correct ad\ is, in fact, K B-satisfiable.

5. Soundness Proof

The following two lemmata, which will be used in the soundnesoof, follow
immediately from the definitions. The first one states thatdeiau formulap and
a renaming)’ of Y are equivalent. The second lemma states that if a labsl
justifiedon a tableau branch satisfied by an interpretatiofM, 1), thenl (o) has
to be a world inM (even ifo is conditional).

LEMMA 5.1. Let (M,I) be anL-interpretation, y a grounding substitutio) a
formula in a tableaur , andy’ a 7 -renaming ofy. Then(M, I, ) = @ if and only

i (M, 1) = 0

LEMMA 5.2. Let(M,I) be anL-interpretation, wheraM = (W,R/ V), let 3 be a
tableau branch, and let be a ground label. If{M, I, ) satisfiess, and the labeb
is justified ons, thenl (o) e W.

The crux of the proof is to show that-satisfiability is preserved by the ex-
pansion rule (Lemma 5.5), the substitution rule (Lemma,&6)l the closure rule
(Lemma 5.7). Consequently, if the initial tableau consgsidf the input formulaA
is L-satisfiable, then all tableaux féx are L-satisfiable. None can be closed as
closed tableaux are nbtsatisfiable. Hence, the existence of a closed tablea for
implies thelL -unsatisfiability ofA.
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20 B. Beckert and R. Gore

For the soundness proof we restrict all considerationstamdard interpre-
tations, where (ground) labels are interpreted “in thetrighy,” such that the
diamond-rule preservds-satisfiability (in standard models). Moreover, for serial
logics, all ground labels are assigned a world by the inggpion function, which
helps the closure rule to presenvesatisfiability.

DEFINITION 5.3. AnL-interpretation{M, ), whereM = (W,R,V), is astandard
interpretation provided that:

1. For all ground labels.[n]:
if 1(1) e W andI (1) | OA,, thenl(1.[n]) € W andl (t.[n]) = An,

whereA, is the formula for whicl = [A,] (]-] is the bijection from the set of
formulae to the set of natural numbers used for the diamate)-r

2. If the logicL is serial, therl (o) € W for all ground labelsy.

The restriction to standard interpretations makes sensey &-modelM that
satisfies a formulé can be combined with a label interpretatigrsuch thaf{M, I
is a standard interpretation and satisfies the initial &able0:1:A.

LEMMA 5.4. Given a formula A in NNF and ah-modelM that satisfies A, there
is a standardL -interpretation (M, ) that satisfies the tableau consisting of the
singleton tableau formul@: 0:1:A.

PROOF AsM = (W,R V) satisfiesA, we know that there is some wond, € W
such thatv; = A. Now, forn > 1, letA, be the formula for whicim = [A,] (where
[-] is the bijection from the set of formulae to the set of natumaimbers used
for the diamond-rule) and crealtes follows. Put (1) = wy, and for every ground
label of the formt.n: (a) if there is a worldv € W such that (T)Rwandw = A,
then putl(t.n) = 1(1.(n)) = w; (b) else, if there is no such world, but there is
a worldw that is reachable frorh(t), then putl (t.n) = I(1.(n)) = w/; (c) else, if
there is no world reachable froh(t), putl(t.n) =1(1.(n)) = L.
TheL-interpretation(M, 1) is a standard interpretation by way of its definition,

and in addition satisfies the tableau consistingppt 0:0:1:A. To prove this,
we have to show that for all grounding substitutionthere is a brancks in this
tableau such that for all substitutioAsthe ground formulagA gl is satisfied by
(M. 1). Since@A gt = @ this reduces to showing that (B)1) = L or I(1) = A,
and (b) (M, 1) satisfies the label 1. Condition (a) is satisfied sihcB = A by
choice, and Condition (b) holds because there are no labeis ipr (1) U{1}. O

Next we prove that satisfiability by standard interpretagids preserved by the
tableau expansion rules, the substitution, and the clasige
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In the proofs of Lemmata 5.5-5.7 we make use of the fact thaildiini-
tion, a tableau formulX:A:o:F is satisfied by(M,I, ) iff for all grounding
substitutionsh:

1(G) = L, orl (&) = L for someE € A, or | (G) =F; (*)

and
if 1(E) # L forall £ € A, then(M, ) satisfiess; (%)

whereg = OAjxH andA = AN xp. We can also formulate) as:
If 1(G) # L andl (&) # L for all £ € A, thenl (G) = F.

LEMMA 5.5. If the tableaur is satisfied by the standatd-interpretation(M, 1),
and 7' is constructed fronT by applying arL -expansion rule, thefM, |) satis-
fiesT' as well.

PROOF.  We show that for each grounding substitutipnthere is a brancks’
in 7' that is satisfied byM, 1).

By assumption{M, 1, ) satisfies some branch of 7. If 7' is constructed
from 7 by expanding a branch other than thens is a branch ofr’ as well,
and we are through. For the case thdtis constructed fromr by expanding
the branchas, we show thafM, |, ) satisfies one of the branchesof by cases
according to the expansion rule applied.

Conjunctive ruleLet o= X:A:0:(AAB) be the formula ons, such thatr’ is
constructed fromr by addingg; = X:A:0:Aand@, =X':A':0':B to 3. Be-
cause(M, 1, =@, (x) and =) hold for all grounding substitutiona where
G ={=0AxH, A= ANxp, andF = AAB. As1({) = AABimpliesl({) =Aand
I(¢) = B, the same is true fdf = Aand forF = B. Therefore(M, |, ) satisfiesp
and¢, and, by Lemma 5.1, the renamigy; thus,(M, |, ) satisfiess U {¢1,@,},
which is a branch imr’.

Disjunctive rule.Let 9= X:A:0:(AVB) be the formula in3, such that7' is
constructed fronz by addingq, =0:A;1:01:Aand@ =X;:02:A2:AVB to 8
obtaining 8; and adding@, = 0:A;:01:B and ¢ = X3:A3:03:AVB to 3 ob-
taining 5. (M, 1,1) = @ implies that bothg and ¢’ are satisfied byM, I, )
(using Lemma 5.1), and it implies thaf)(and =) hold for all grounding substitu-
tionsA’ whered = { = o\ x, A = ANxp, andF = AV B. Sincel ({) = AV Bim-
plies thatl ({) = Aor () = B, the same is true fdf = A or for F = B. In partic-
ular, if we chose\’ equal toy, then &) and ) hold foro = Olx L= Ol = OAglL,
A= AN ;x L= DAjpl, andF = A or F = B, whereA is anarbitrary grounding sub-
stitution. This implies thatM,1,) satisfiesg; or ¢ and thus, by Lemma 5.1,
(at least) one of the renamingt and¢,. Therefore,(M, 1, ) satisfies one of the
branchess; and 3, in 7.
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Table IV. Formulae added by the box-rule.

U] o A F Condition
P) = XU{x}:A10.(X):A ¢.(n)  DAxp A —
P4y = XU{x}:A:0.(x):0A ¢.(n)  DAxu OA L transitive, or
L euclidean ando| > 2
@y =X:AU{o}:T:0A ¢ (AU{o})Ax DA L euclidean
@) =XU{x}:AU{o}:1.(x):0A 1(n) (AU{o})Axp OA L euclidean ando|=2
Q) =X:A:0:A C DA M A L reflexive
@) = X:AU{C}:T:A 4 (AU{oPAxH A L symmetric

where n=p(x), o=tl, Z:o}\‘xp, Z’:TA‘Xp.

Diamond-rule.Let @= X:A:0: <A be the formula ons, such thatr’ is con-
structed fromz by addingg; = X:A:0.[A]:Ato 3. (M, 1, ) = @implies that ¢)
and =) hold for all grounding substitutions whereg = { = OAx I, A= AN,
andF = ©A. Considering£), | ({) = L impliesl (¢.[A]) = L; andl () = ¢Aim-
plies thatw = A for somew € W reachable fron({). BecauséM, I) is a standard
interpretation,l ({.[A]) € W and|(Z.[A]) = A. Considering £x), if 1(§) # L for
all & € A\, then(M, 1) satisfie; in that case, (a) if({) = L, then(M, 1) satis-
fiesC.[A] as well, becauséhas to be conditional, (b) If{) # L, thenl () = OA,
which implies by definition of standard interpretationstth@.[A]) € W. There-
fore, () and ¢+) hold with 6 = o.[A]A xpandF = A as well, which implies that
(M, I, satisfiesp; and, therefore, satisfies the brargh {¢@,} in 7'.

Box-rule.Let 9= X:A:0:0A be the formula ing, such thatr' is constructed
from 7 by adding toz—according to Table Ill—renamings of one or more of
the formulaey shown in the first column of Table IV. The respective formulae
are only used if the corresponding conditions in the lastiroml of Table IV is
fulfilled. We show that these conditions imply tHM, |, ) satisfieap and thus, by
Lemma 5.1, the renaming df that is added to the branch. Thyd], I, ) satisfies
the resulting new branch m’.

(M, I, = @ implies that ¢) and ¢x) hold for all grounding substitutiona
wherec ={ = OAjx K A= ANxp, and F = OA. For each of the formulae in
Table IV we prove thatM, |, ) satisfiesp by showing that£) and ¢x) hold with
the corresponding instancesﬁnfﬁ, andF, as shown in columns 2—4 in Table IV.
Throughout the rest of this proof, we make use of the facttti@awariablex does
not occur ino and A and, thus,oAjxpt= { = OAxypg M and AAjx = A jxyx 1
Note also that. (X)Ajxupg = ¢.(n); and{ = {'.[m] where[m] = p(l).

P=@x): (+) If 1(C.(n)) # L thenl(Q) # L and1(Q)RI(Z.(n)). If, in addition,
1(&) # L for all & € AN = AN xupa by then we can conclude thE) = OA. By
the definition of the box-operator, this implie&.(n)) = A. (xx) If 1(§) # L for
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all & € ANk, then (M, 1) satisfies the labef.(n) because it satisfie§ and the
extension(n) is conditional.

W=@a: () If 1(¢.(n)=w # L thenl({) =w# L andwRw. If, in addition,
I(§) # L for all § € AN xpu= DA xuqq s then we can conclude thatf= CA. If w
has no successors, then|= OA for any A vacuously. So letv’ be any world
such thaw'Rw'. (a) If Ris transitive, this immediately impliesRwW'. (b) If Ris
euclidean an¢f| > 2, then there is a world such thatvpRw. We can derivavRw/
as follows:woRw implies wRw, wRwW and wRwimplies wRw, wRw and w Rw'
implieswRw'. Now, sincew = OA we havew’ = A, and sincen’ is an arbitrary
world reachable fromv, w' |= OA. Condition éx) can be proven in the same way
as in the previous sub-case.

P =@ () If 1(Q) = L or there is some labélin AAxp such that (§) = L, then
there is a labeg in (AU{0})A\xt= A\ xuU {} such thatl (§) = L. Otherwise,

if 1({)=wE=0OA, thenl({') =w # L andwRw. If w has no successors, then
w = OA for any A vacuously. So letv' be any world such tha’/Rw'. SinceL

is euclideanw'Rw and wRw' implies wRw' andw’Rw. Thusw = OA implies
w' = A. This holds for allw’ reachable fromw/, so|({') =w = OA. (xx) If
1(§) # L for all & € (AU{0})Axl, then(M, 1) satisfies the lab&] = oA xl and,
thus, the label’ € ipr ().

Y=z () If [(1.(n)) # L thenl(1) # L andI(1)RI(1.(n)). If, in addition,
1(£) # L for all € in A, thenl (oA xupal) =1() # L andI(§) # L for all & in
DA xupx= DA xi, which implies|({) = OA. Also, sincel (¢) = I(1.[m]) # L,
we havel (1)RI({) andI(1.(n))RI(C) because the logic is euclidean. Now, for
all worldsw such that (1.(n)) Rw, we havd ({) Rw(again because the logic is eu-
clidean); andv |= Asincel ({) = DA. This holds for alw reachable fronh(1.(n));
thereforel (1.(n)) = OA. (xx) If 1(&) # L for all & € (AU{0})Ax, then(M, 1)
satisfies the labeA x 1= { = 1.[m] and, thus, ¥ ipr(1.[m]). Because the exten-
sion (n) is conditional,(M, 1) then also satisfies.(h).

W= (+) () =L,orl(&) =L for someg € A\ xy, or 1 () = OA which im-
pliesl (¢) = A (by reflexivity). Condition §x) is trivially satisfied in this sub-case.
W= @p): (*) If 1({) = L or there is some labélin A\ xpsuch that (§) = L, then
there is a labek in (AU {0})A\xp = ANxpU {C} such thatl (§) = L. Otherwise,

if 1(Q)=w}=0OA, thenl({') =w # 1L andwWRw (since{ = {'.[m]). BecauseR

is symmetric this impliesvRw and thusl ({') =w | A. Condition §x) can be
proven in the same way as in the sub-cdise @,). O

LEMMA 5.6. If the tableau7 is satisfied by the standatd-interpretation(M, 1),
and 7' is constructed fronr by applying the substitution rule, théM, 1) satis-
fiesT' as well.

PROOF.  Letv be the substitution applied to derige’ from 7. We must show
that for each grounding substitutiqn there is a brancks’ in 7' that is satisfied
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by (M,l,). Let u be an arbitrary but fixed grounding substitution. By assump-
tion, (M, I, satisfies some branch of 7. Let ¢= X:A:0:A be an arbitrary
formula on3. Let A be an arbitrary grounding substitution, and define the sub-
stitution A’ = A ov. Then the substitutiongo Ax ov andpo A’ x are identical, be-
causev does not instantiate variablesX) and thus\’x = (A ov)‘x =Ajxov. As

(M, 1, ) = @, (+) and ¢+) hold withd = o)’ x4, A= AN x4, andF = A. This im-
plies, becausgioA;x ov = po N, that ) and ¢x) hold as well witho = OVAxH
andA = AVAjx L Thus,(M, 1, 1) satisfiespy. O

LEMMA 5.7. If the tableau7 is satisfied by the standatd-interpretation(M, 1),
and 7' is constructed fron by applying thel -closure rule, thenM, ) satis-
fies7’ as well.

PrROOF. 7'is obtained fromr by marking a brancks in 7 as closed, because it
contains formulaep, = X;:A1:01: pand@ = Xy:A,:02:—p, and there is a sub-
stitution A of the universal variables i such thabiAx, = 02Ax, = & and (a) the
logic L is serial, or (b) all label§ in {&} UA1Ax, UA2Ax, are ground and justified
on 3. Suppose the brancah were satisfied byM, 1, 1) for some grounding substi-
tution . Thenl (Cu) € W, because (1) if the logit is serial, ther () € W since
(M, 1, is a standard interpretation; (2) otherwiges ground and justified, and
thus{u= C andl(¢) € W according to Lemma 5.2. Now we have a contradiction,
becausgM, |, 1) = @ implies! (EW) = [ (1A x, 1) = p, and(M, 1, 1) = @ implies
(W) = 1(02A 3, 1) = —p.

Thus, our assumption is wrong, asds not satisfied byM, I, y) for anyp. But
then there has to be a different brarghin 7 for all y, that occurs inr’ as well
and is not affected by marking the branshas closed. O

Now we have everything needed to prove soundness of ourlgslcu

THEOREM5.8. Let A be a formula in NNF. If there is dn-proof 79,.... 7" for
the L-unsatisfiability of A (Def 4.6), then A is-unsatisfiable.

PROOF.  For a contradiction, suppose there is lasproof 79,...,7" for the

L -unsatisfiability ofA, but thatA is L-satisfiable. Then there is dn-model M
of A and by Lemma 5.4 there is a standardnterpretation ofr °. Lemmata 5.5,
5.6 and 5.7 imply that satisfiability by standdrdinterpretations is preserved in
tableau proofs. Hence the tableal is satisfied by a standatd-interpretation as
well. But by definition of a tableau proof, all brancheszih are marked as closed,
thus the tableaa " cannot possibly bé -satisfiable. O

Note that if a tableau ik -satisfiable then it is satisfied bystandardL -interpre-
tation. Thus L -satisfiability is preserved in general; it is, however,tguifficult
(if not impossible) to prove this directly without using tmetion of standard
interpretations.
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6. Completeness Proof

We now turn to the completeness of our calculus. The compéstetheorem can
be stated in two contraposing ways (ktbe a formula in NNF): “IfAis L-
unsatisfiable, then there is a tableau prodf..., 7" for 0:0: 1:A” or equivalently
“If there is no tableau proof fob: 0:1:AthenAis L -satisfiable.”

We prove the completeness theorem as stated in the papéreti# be a fair
tableau procedure, and I8t be anL-unsatisfiable formula in NNF. Then there
is a (finite) tableau proof ©,..., 7" for the L-unsatisfiability ofA, where7 ' is
constructed fronr'~1 (1 <i <r) by

— applying the appropriate-expansion rule to the branahand the formulap
on 3 chosen by from 7'~: or

— applying a most general substitution such thatlthelosure rule can be ap-
plied to a previously open branchn' 2.

So suppose we are given a fair tableau procediliaed an initial tablea®: 0: 1 :A.
We prove the theorem in a rather roundabout way followingtle¢hod of Beckert
and Posegga [7]:

Step 1:We define the notion of ah-Hintikka set of ground tableau formulae
(Def. 6.1) and show that every Hintikka set is satisfied by saminterpretation
(Lemma 6.2).

Step 2:Consider the sequenda,)n>o deterministically constructed by the fair
tableau procedur#’ without closing branches or applying substitutions, arfthde
the infinite tableaw ,, to be the limit of ther;,.

Assuming thatno substitution of the variables i, gives a closed instance
of 7., we define a particular substitutidh, and show thatr.,6., contains at
least one branch that forms a Hintikka set (Lemma 6.3). Sttyed gives arl. -
satisfiable set, and in particular Brnterpretation satisfying the formukain root
0:0:1:A of 7,6,. Consequently, if there is no substitution that closgesthenA
is L -satisfiable (Lemma 6.4).

Step 3:Contraposing Lemma 6.4 gives:Afis L -unsatisfiable, there is some sub-
stitution 6 that, when applied, allows to close all branchegin Thus, for some
n € N, all branches in the finite tableay6 can be closed.

Step 4:To conclude the completeness proof, we show that,& can be closed,
then the substitutiof can be decomposed so th@t=0'0&, o0&, _10...0&; where
& is a most general closing substitution for the instantra(i@;)&:&>... &1 of
the i-th branch3; in 7,,. (And €' is the part off that is not actually needed to
closer’.) Thus the tableaw;, constructed using the fair procedutecan be closed
by r applications of the substitution and the closure rule.
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6.1. SreEP1: HINTIKKA SETS

DEFINITION 6.1. A setx of ground tableau formulae is dn-Hintikka set, if it
satisfies the following conditions:

1. lab(x) is a strongly generated set of labels with root 1.

2. There is no primitive propositiop such that (aX:A;:0:pandY:Ay:0:—p
are inx, and (b) the logid is serial or all labels i{o} UA; UA; are justified
inx.

3.1 X:A:0:AABe x thenX:A:0:Ae x andX:A:0:Be€ x.
4. If X:A:0:AVBe x thenX:A:g:Aex orX:A:0:Be x.

5. If X:A:0:0A € x, then the following conditions have to be satisfied for the
logic L as determined by Table llI:

(K) condition: XU {n}:A:0.(n):A € x for everyn € N;

(4) condition: XU {n}:A:0.(n):0OA€ x for everyne N (for K5 and KD5
only if o =1.l);

(4") condition: ifo =1.I thenX:AU{o}:T:0A€ x;

(T) condition: X:A:0:A€ x;

(B) condition: ifo =1.I thenX:AU{o}:T:A€ X;

(5) condition: ifo = 1.I thenXU {n}:AU{o}:1.(n):OA€ x.

6. If X:A:0:CA€ x thenX:A:o.n:Ae x for somen e N.
LEMMA 6.2. EveryL-Hintikka setx is satisfied by somie-interpretation(M,1).

PROOF. We define thé.-modelM = (W,R,V) as follows. PuWW = {[o] | o € .}
if L is serial and puW = {[o] | o € lab(x),0 is justified inx } if L is not se-
rial, where[o] is the equivalence class of all labels that are identical tap to
(conditional) parentheses. For &f],[1] € W, let [0]R[1] iff o> T that is, iff T
is L-accessible frono (see Table Il). For each primitive propositignlet V (p)
be defined by: IiL is serial, therV (p) = {[0] | X:A:0:p € x }. Otherwise, ifL
is not serial, thetV (p) = {[0] | X:A:0:p€ x,l(0) e W,I(§) e W for all § € A}.
The (identity) interpretation is defined byl (o) = [o] if [o] e W andl(0) = L
otherwise.

Lemma 3.5 then implies thél is anL-model. According to its construction
(M, 1) is, therefore, am -interpretation.

We show by induction on the degree of tableau formuypae X:A:o: A that
if @€ x then (a)[o] €W, or (b) [§] €W for someg € A, or (c) [o] = A. This
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induction hypothesis implies th@M, ) satisfiesp. Thus.x itself is satisfied by
the L -interpretation(M, I).
Let the degree of a formula be defined syntactically (as usual). The degree
degof a tableau formula is then defined ljeg X:A:0:A) < degX':A':d':A)
iff (@) degA) < degA') or (b)degA) = degA') and|o]| < |d'|.
Base case: Thus the traditional parof @is a literal. In caséA = p, [0] € W,
and[&] e W for all £ € A, we have[o] = p by the definition olV. In caseA = —p,
we must show that ifo] € W and [§] € W for all & € A then[o] = —p. That is,
[0] €V (p). For a contradiction suppose that € V(p). By the definition ofV
there has to be a tableau formMa A’': ¢’ : p € x and, in addition, iL is not serial
then[o'] e W and[g'] e W for all §’ € A'. By definition, ifL is not serial[o’] € W
iff o’ is justified inx . Thus we have two complementary and “completely justified”
atomic formulae inx ; contradicting condition 2 in the definition of Hintikka set
The induction step depends on the form of the fornAila ¢.

A=BAC: According to condition 3 in the definition of Hintikka setbere are
formulaeX:A:0:Be x andX:A:0:C € x. The induction hypothesis applies to
these formulae. Therefore, (B] ¢ W, or (b) [§] ¢ W for someg € A, or [0] =B
and[o] = C which implies|o] =BAC.

A= BVC: Similar to the casé& = BAC.

A = 0B: Suppose (a)o] € W, and (b)[§] € W for all § € A; we then have to prove
that[t] = Bfor all [t] € W such that > 1. We first show that (certain combinations
of) the sub-conditions laid out as part of condition 5 of tledimition of Hintikka
sets imply this property for certajn] € W:

(K) condition: for all T of the formt = o.[n] wheren € N. Proof: By definition
of Hintikka sets, there is som¥':A:0.(n):B € x for everyn € N, to which the
induction hypothesis applies. Thus/if € W, then[t] &= B.

(K) and (4) conditions: for all T of the formtx=0.n;...nx wherek > 1 and
ni,...,Nk € N (for logics K5 and KD5 only provided that/c| > 2). Proof: We
use an induction ok. We show, that for alk > 0 (with 19 = 0) there is a for-
mulaXg:A:1¢: OB € x (for someXy). Using the same argument as above for the
(K) condition, this implieg[tk] =B if [t] € W for all k> 1. Fork =0 we have
Xo:A:1p:OB=X:A:0:A€ x by assumption. Induction stepi:A:1x:OB € x
implies Xg11:A: Ty 1: 0B € x (with X1 = XU {ng}), by the (4) condition.

(T) condition: for T = o. Proof: There has to be a formuka A:0:B € x that the
induction hypothesis applies to. Thus|af € W, then[o] |= B.

(B) condition: for T s.t.0 = 1.l. Proof: There has to be a formua AU {c}:1:B

in x that the induction hypothesis applies to. Thustlife W, then|t] |= B.

(K), (4), (&), (5) conditions for all T such that/t| > 2 in case|o| > 2, and for

all T of the form 1n wheren € N otherwise (i.e., in case = 1). Proof: If|o| > 2,

we prove by induction on the length afusing the(4") condition that for all

T € ipr(o) there is a formula&:A:1: 0B € x. Using the same argument as above
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for the (K) condition this impliest] = B for all T such thatt| = 2 and[t] e W. In
addition, we haveX:A:1.m:0OB € x for someme N (where 1m € ipr(0)); thus
the (5) condition implies that U {n}:AUo:1.(n):OB € x for all n € N. Now, we
can provdt] = Bfor all T such thatt| > 3 and[t] € W as in the case of the (K) and
(4) conditions. Ifo = 1, we can derivéo.n| |= B for all n € N and[o.n] € W using
the (K) condition (see above).

(K), (4), (4") conditions:for all T such thatt| > 2. Proof: We prove by induction
on the length of using the(4") condition that for allt € ipr(o) there is a formula

X:A:1:0OB€ x. In particular, we haveX:A:1:0B € x. Now, we can proceed to
prove 1] = B for all T such thaft| > 2 and[t] € W as in the case of the (K) and
(4) conditions.

(K), (T), (4), (&) conditions:for all T. Proof: Similar to the case of conditions
(K), (4) and(4") we prove by induction that for all such thaft] € W there is a
formula X:A:1:0B € x, which then, using the same argument as above for the
(T) condition implies[t] = B.

By checking Table Il, it is obvious that the sub-conditiows hox-formulae that
apply to anL -Hintikka set imply: if[t] € W ando > 1, then|t] |= B.

A= <©B: According to condition 6 in the definition of Hintikka setere is a
formulaX:A:0.n:B e x. The induction hypothesis applies to this formula. There-
fore, (a)[o.n] €W or (b) [§] €W for someg € A; or [0.n] = B. Now, since the
label o.n itself occurs inlab(x), [0.n] € W implies thato.n is not justified inx.
Since the last position af.n is unconditional this implies that is not justified

in x. Hence[a] ¢ W. Furthermore, ifo.n] = B then[o] = ©B sinceo > o.n for

all L. Together, we have enough to prove that[¢)Z W or (b) [§] ¢ W for some

& e Aor(c)[o] =B as desired. m|

6.2. STEP 2: CONSIDERING AN INFINITE TABLEAUX

Let 71, 75, etc. be the sequence of tableaux deterministically coctstd using¥
without closing branches or applying a substitution. Thddeaux approximate
the infinite tree7 ..

Now suppose that no substitution allows, to be closed. Thus we can choose
any substitutior®, and we are guaranteed that0 will contain some open branch.
The branch may differ according to the choicefof

We now define a particular substituti®y, as follows: Let{3;,3,,...} be an
enumeration of all the branches of.. Let® = {@1,@,...} be an enumeration of
the disjunctive formulae (formulae of the fork:A;:o;i:Bj VC) in 7 excluding
renamings For every disjunctive formula, iy occurs onsy then let@ be the
j-th renaming ofg on thek-th branch.

The labelo; of @ will be of finite length. Thus, the set of all ground instances
of i is enumerable: lefat, 02, ...} be such an enumeration.
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Let x be a variable inXjjx and suppose it occurs in tigeth position ofgjjx.
Note that the setX;jx of universal variables are all pairwise disjoint (even ifyon
one of the formulae in the numerator of the conjunctive rsileehamed). To ensure
that thek-th branchay is a potential source of ah-model we ensure that the
occurrences ofg on B, “cover” all the instances 06;. So choosel. so that
8. (X) = n, wheren is the value of thep-th position ofa]. Thus ifx is in the p-th
position ofgj, its value “covers”oil, if it is in the p-th position ofgjy, its value
“covers” aZ, and so on.

LEMMA 6.3. If B is defined as above, arklis an open branch of the tableau,
that cannot be closed whé, is applied then

X ={P\x6s | = X:A:0:Als aformula ons, and
A is a grounding substitution

is anL-Hintikka set.

PROOE We have to check each clause of Definition 6.1 for thexset

Condition 1.1t is obvious that the root is 1, and fairly easy to see that lwags
produce a strongly generated set.

Condition 2.Suppose this condition is violated by Then there have to be formu-
lae @y = X1:01:01:p, @ = X2:02:02:—-p on 8 and grounding substitutions;
andA»,, such thalol)\l‘xlem = ozkz‘xzem = ¢, and (b) the logid. is serial or all
labels in{z}uAlxl‘xlequZAMem are justified inx. Our expansion rules al-
ways user -renamings of universal variables in their numerator, Beac) X; = 0.
Therefore, there is a single grounding substitutiorof the universal variables
in 7w, such thatoA = 01)\1‘)(1 and oo\ = 02)\2‘)(2. In addition,A 06, = 6., oA,
sinceB., only instantiated free variables in.. Thus the brancks canbe closed
using the substitutiorA of the universal variables i, which contradicts the
choice of3.

Condition 3.We must show that for athp= X:A:0:AAB € 3 and all grounding
substitutions\, and thus for all formulae of the foriph x 6, the formulaep A x 8.
and@A x0. are inx, whereg = 0:A:o:Aandg, = 0:A:0:B. Since the appro-
priate rule has been appliedgpthe formulaeX:A:g:AandX':A':¢’:B are both
on 3. Thus,@Ax8. € x. For @, let p be the substitution renaming the variables
in X such thatX':A":0’:B= (X:A:0:B)y, and put\’ = (Ao p), which implies
Nx = Ajx o . The substitution\’ is grounding. Therefore, by definition the set
contains the formulg,\'|x/ 8., which is identical tapA x 8c.

Condition 4.We have to show, that for afi= X:A:0:AV B € 3 and all grounding
substitutionsA, and thus for all formulae of the formA x6.., one of the for-
mulae @A x0. and @A x8. is in x, where@ =0:A:0:Aand@, =0:A:0:B.

If X =0 then this holds immediately by the special case of the disium rule.
Otherwise, according to the constructionzaf and6.,, there has to be a renaming
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@ = @v of pon B (wherev is the renaming substitution) such tfafx ov = Ak,
i.e., @0, = @\ x 6. Since the appropriate rule has been appliegf tmne of the
formulae@, = ;v and @, = @V is on 8 and thusgjA 8 = @ 6. = @1\ xBe OF
A 08w = @A x B IS in X

Condition 5 and 6Since these conditions closely resemble the tableau expans
rules, the proof that they hold for is similar to that for condition 3 (conjunctive
formulae). O

LEMMA 6.4. If there is no substitutio® such that all branches of .0 can be
closed, then the input formula for which the tableau seqedvas been constructed
is L -satisfiable.

PROOF. Since7, cannot be closed using any substitution, it cannot be closed
by applying8. as defined above. Thus there is some open branah.t,. By
Lemma 6.3 this branch forms &nHintikka set. By Lemma 6.2 such a set gives an
L-interpretation(M, 1) that satisfies the rod: 0: 1:A of 7 9. But this means that

in theL-modelM we must havé(1) = A. O

6.3. STEP 3: CONSTRUCTING AFINITE CLOSED TABLEAUX

Contraposing Lemma 6.4 gives: A is L-unsatisfiable, then there is at least one
substitutiond that, when applied, allows to close all brancheg in

LEMMA 6.5. If there is a substitutior® such that all branches of .6 can be
closed, then there is an@N such that all branches in the finite tableayd can
be closed.

PROOF. According to Kbnig's Lemma, the tableauthat results from removing
from 7,0 all formulae that are not needed to close one of the brananeghich
they occur (that includes justification) fimite. Thus, there is a finitea € N such
that7 is an initial subtree of},0.

6.4. SrEP4: DECOMPOSITION OF THECLOSING SUBSTITUTION

LEMMA 6.6. If 7,/8 is closed for some finite n, then the substitutbian be
decomposed so tha:=0'0&,0&, 10...0&; whereg; is a most general closing
substitution for the instantiatio(;)§1&>. .. &;_1 of the i-th branch:;, in 7,/. And
0’ is the part ofd that is not actually needed to closg.

PROOF.  We construct th&; inductively as follows: Definé, = 6. For 1<i <r,
let & be a most general substitution, such that&a) is a specialisation of;;
that is, there is a substitutiof{ such that§;_, =& o&;; and (b)&; is a closing
substitution for(3;)&1&>...&i_1.
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Theng; is a most generatlosing substitution. For otherwise, there must be a
closing substitutiort;’, that is more general thaf. The is-more-general relation
is transitive hencé;’ is more general tha§_,, which contradicts our choice &f
as a most general substitution satisfying the two condition

Finally, define®’ = ¢;. O

We can now conclude the proof of the completeness theoregnpf€m 4.9) as
follows:

The formulaA is L-unsatisfiable and-,, is constructed using a fair proof pro-
cedure so there is a substituti®nsuch that all branches af,8 can be closed
(Lemma 6.4). Then there is a finite tablea@y such that all branches a@f,6 can
be closed (Lemma 6.5). The tableay can be constructed with expansion rule
applications using the proceduge Sinceb can be decomposed intanost general
closing substitutions (Lemma 6.6), a closed tableau cambstucted front;, by
r applications of the substitution and closure rules satigfyhe conditions of the
completeness theorem.

7. Conclusion and Future Work

The advantages of free variablesWe believe that labels with variables deliver
the following advantages:

— The use of variables generates a smaller search spaceasiaioel can now
stand in for all its ground instances. This is in stark cattta the modular
systems of [22, 16], where only ground labels are used.

— The use of a Godelisation function in the diamond-rule detxda smaller
number of labels than in other labelled tableau method® $ime different oc-
currences of the formuld:A:o: CAlead to the same formuda: A:o.[A] - A.
We therefore do not need to delete duplicate occurrencedmfraula as is
done in some tableau implementations for modal logics. Ehgrticularly
important since the world.[A] may be the root of a large sub-model and
duplicating it is likely to be extremely inefficient.

Experiences with a Lean ImplementationTableau-based theorem provers devel-
oped during the last decade for first-order logic have beenptex and highly
sophisticated, typified by systems like Setheo [21] A& [6]. On the other hand,
free-variable tableaux, and their extensions like unalevariable tableaux, have
been used successfully figanProlog implementations, as typified anTAP [7]
andileanTAP [25]. A “lean” implementation is an extremely compact pramgr
that exploits Prolog’s built-in clause indexing scheme &adktracking mecha-
nisms instead of relying on elaborate heuristics. Such emilgan provers are
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much easier to understand than their more complex stabdsmand hence easier
to adapt to special needs.

We have implemented our calculus as a “lean” theorem provigiew in Prolog
(the source code is available id2www.ira.uka.de/beckert/modlean on the
World Wide Web It makes extensive use of Prolog features like unificatod
backtracking. The basic version for the logi€ is calledleanK, and consists of
just eleven Prolog clauses and 45 lines of code. The versidhé logicK D which
does not demand justified labels, is even shorter: it cansisonly 6 clauses and
27 lines of code.

Our initial results with this lean implementation are emaging. However,
as a comparison with state-of-the-art theorem provers fodahlogics [1] has
shown, modal logics differ from first-order logic: the freariable technique is
not enough. Because of the propositional flavour of modatfdechniques such
as simplification [23] are needed to implement an efficienver.

We have developed the theory of how to obtain modular prosfesys based
upon free-variable tableaux for modal logics; but it is fetwork to validate the
usefulness of the free-variable technique in the modal draonk by combining it
with other techniques.

Future work. Our method is really a very clever translation of propositilomo-
dal logics into first-order logic, and most of the complioas arise because some
worlds may have no successors. The new notion of conditiabals allows us to
keep track of these complications, and thus handle the edal$ogics that frus-
trate other “general frameworks” [14, 19]. Nevertheless, method can also han-
dle second-ordef‘provability” logics like G andGrz; see [16]. Furthermore, spe-
cialised versions of these tableau systems can match theetloal lower bounds
for particular logics likeK45, G andGrz if we give up modularity; see [16, 22].
We intend to extend our initial implementationleénK along these lines.

The 15 basic normal modal logics are decidable and techsifjoen [12, 16,
22, 18] can be used to extend our method into a decision puoeg@ve have
reported first results in [3, 4]).

Fitting [11] shows how to view the origindéanTAP program for classical pro-
positional logic as an unusual sequent calcuisseq . He also shows how to
extenddirseq to handle the modal logids, KT, K4, andS4. As with traditional
modal tableaux, howevedjrseq does not handle the symmetric logics li&8
andB. Our work can be extended to give a modular free variabléomf dirseq
that does handle these logics.

It is also possible to extend our method to deal with the matiof global and
local logical consequence [12].

6 When the prover is ported to other languages, the Prolog amisins may have to be imple-
mented; but even then the advantage of lean provers renmaingly that (the main part of) of the
prover is compact and thus easy to understand and to adgptci@mbneeds.
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An alternative approach [17] uses different unificatioroatyms to find com-

plementary labelled literals for branch closure. The extéons between modal-
ities, variable labels, and unification algorithms, howgi® by ho means easy
to disentangle. Extending our method to utilise speciafication algorithms is

perfectly possible, now that correctness and completehnags been proved for
the interactions between modalities and variable labels.
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