

 Karlsruhe Reports in Informatics 2017,9
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Modular Verification of Information Flow
Security in Component-Based Systems –

Proofs and Proof of Concept

Simon Greiner, Martin Mohr, and Bernhard Beckert

 2017

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Modular Verification of Information Flow
Security in Component-Based Systems – Proofs

and Proof of Concept

Simon Greiner, Martin Mohr, and Bernhard Beckert

{Simon.Greiner, Martin.Mohr, beckert}@kit.edu, Department of Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

1 Introduction

Distributed component-based systems engineering is a method that allows to
modularily implement large and complex systems where the functionality provided
by one component as so-called services, depends on functionality provided by
other components. Systems implemented according to the component-based
system paradigm allow high scalability. In the paper Modular Verification of
Information Flow Security in Component-Based Systems [8] we propose a sound
and modular method that allows to identify and verify flows of information
caused by single services. We show how those individual flows can be formalized
as so-called dependency clusters, and how dependency clusters can be used as
building blocks to modularily construct system-wide security specifications in a
sound way.

This technical report accompanies the original paper and we assume the
reader to be familiar with the original work. We provide here the formal proofs
for the theorems discussed there. Further, we provide a detailed description of
the proof of concept addressed in the original work.

In the next section, we provide the formal proofs for all theorems stated in
[8]. In Section 3 we present the proof of concept for the method described in
[8]. First, we describe in detail the system, the target security specification and
the components which make up the system. Then we discuss the mapping of the
formal model to programs written in Java Enterprise Edition. We then present
how we identify and verify dependency clusters using two different methods, one
based on Joana, one based on KeY, and present the formalizations and proof
obligations for the system-wide non-interference properties. Finally, we provide
the evaluation of the proof of concept in the conclusion.

2 Proofs

We refer to the execution of a service, started in state σ and terminating in state
σ′ by 〈σ; handler serv 〉

t−→ 〈σ′;SKIP 〉, while t represents the trace, i.e. the list of
messages communicated during service execution. To argue about properties of
traces, we use a filter operator t BM yielding a trace which is equal to t after

removing all elements from t which are not in M . The empty trace is denoted by
〈〉,a is the concatenation operation, and ≤ is the prefix operation on traces. We
further introduce the placeholder � and define a message m as invisible, i.e. its
existence is specified high, iff m ∼ �.

For a service to be non-interferent, it must not to reveal its execution, if it
was called using an invisible message. Also, the service must not change the low
part of the state if called with an invisible message, since subsequent service
executions may provide information about this change as outputs and therefore
could indirectly reveal the execution of the secret service call. This property is
formalized in the following definition.

We call a service visibility-preserving, if it only produces invisible outputs
after receiving invisible inputs and does not change the low part of the state.

Definition 1 (Visibility-preserving Service). A service serv is visibility-
preserving with respect to ∼ and ≈, iff

∀σ, σ′, t, t′· 〈handlerserv;σ〉
tat′−−→ 〈SKIP ;σ′〉 =⇒

(t B I ∼ 〈〉 =⇒ t B O ∼ 〈〉)
∧ (ta t′ B I ∼ 〈〉 =⇒ σ ≈ σ′)

Definition 2 (Service Non-Interference(Definition 2 in [8])). A Service
serv is non-interferent with respect to ∼ and ≈, written serv ∈ SNI≈∼ iff it is
visibility-preserving with respect to ∼ and ≈ and

∀σ1, σ2, σ′1, σ′2, t1, t2· σ1 ≈ σ2 (1)

∧ 〈handlerserv;σ1〉
t1−→ 〈SKIP ;σ′1〉 ∧ 〈handlerserv;σ2〉

t2−→ 〈SKIP ;σ′2〉 (2)
=⇒ (3)
(t1 B I ∼ t2 B I =⇒ σ′1 ≈ σ′2) (4)
∧ (∀t′1 ≤ t1, t′2 ≤ t2· t′1 B I ∼ t′2 B I =⇒ (5)

∃t′1a t′′1 ≤ t1, t′2a t′′2 ≤ t2 · t′1a t′′1 ∼ t′2 a t′′2) (6)

A service started in two equivalent states (1) has to terminate (2) in equivalent
states, if the input provided by the environment is equivalent for both runs (4).
Implicitly, this condition encodes a well-behaving environment in the sense that
we assume the environment to not leak any high information.

As a second condition it has to be ensured that the service does not leak
information by providing non-equivalent output to the environment after receiving
equivalent input. (5) to (6) ensure that t1 and t2 are equivalent up to the first
non-equivalent input. For all prefixes of the two traces produced during execution
which got provided equivalent input (5), the traces either are equivalent, or at
least contain further events such that they can become equivalent (6).

Theorem 1 (Compositionality of dependency clusters (Theorem 3 in
[8])). Let (∼1,≈1) and (∼2,≈2) be dependency clusters for a service serv . Then

the composition
(∼1,≈1) + (∼2,≈2) := (∼1 ∩ ∼2,≈1 ∩ ≈2) is a dependency cluster for serv .

Proof (for Theorem 1). Assume serv is non-interferent with respect to (∼1,≈1)
and (∼2,≈2). Let ∼:=∼1 ∩ ∼2 and ≈:=≈1 ∩ ≈2.

We first show that serv is visibility-preserving w.r.t. (∼,≈). Select arbitrarily
σ, σ′, t, t′ such that 〈handlerserv;σ〉

tat′−−→ 〈SKIP ;σ′〉 and t B I ∼ 〈〉. By
definition of ∼ and ≈, this implies t B I ∼1 〈〉 and t B I ∼2 〈〉. Since d1 and
d2 are dependency clusters for serv, this means t B O ∼1 〈〉 and t B O ∼2 〈〉,
and by definition of ∼ also t B O ∼ 〈〉.

Now, we assume ta t′ B I ∼ 〈〉. Again, by definition of ∼ and ≈, this implies
ta t′ B I ∼1 〈〉 and ta t′ B I ∼2 〈〉 and since d1 and d2 are dependency
clusters σ ≈1 σ

′ and σ ≈2 σ
′ which implies by definition of ≈ also σ ≈ σ′.

Therefore serv is visibility preserving w.r.t. ∼ and ≈.
Now we show non-interference.
Select σ1, σ2, σ′1, σ′2, t1, t2 arbitrarily such that σ1 ≈ σ2 and 〈handlerserv;σ1〉

t1−→
〈SKIP ;σ′1〉 and 〈handlerserv;σ2〉

t2−→ 〈SKIP ;σ′2〉
Now assume t1 B I ∼ t2 B I, which, by definition of ∼ means t1 B I ∼1 t2 B

I and t1 B I ∼2 t2 B I.
Since serv is non-interferent w.r.t. (∼1,≈1) and (∼2,≈2), we know that

σ′1 ≈1 σ
′
2 and σ′1 ≈2 σ

′
2, and therefore by definition of ≈ also σ′1 ≈ σ′2.

With an argument of the same structure, we also get ∀t′1 ≤ t1, t′2 ≤ t2· t′1 B
I ∼ t′2 B I =⇒ ∃t′1a t′′1 ≤ t1, t′2a t′′2 ≤ t2· t′1a t′′1 ∼ t′2 a t′′2)

And therefore d1 + d2 is a dependency cluster for serv.

Theorem 2 ((Theorem 4 in [8])). Let C be a callable set for service serv and
F an assignable set for serv . A pair (∼g,≈g) is a dependency cluster for serv if
there is a dependency cluster (∼serv,≈serv) for serv such that, for all messages
m,m′ and states σ, σ′, σp, σ′p,

if m ∼g m
′ then m ∼serv m

′, and if σ ≈g σ
′ then σ ≈serv σ

′ (7)
if m ∼serv m

′ and m ∈ C then m ∼g m
′ (8)

if σ ≈g σ
′ and σp ≈serv σ

′
p then anon(σ,F, σp) ≈g anon(σ

′,F, σ′p) (9)

where anon(σ, V, σ′) yields a state σanon such that σanon(v) evaluates to σ′(v) if
v ∈ V and to σ(v) otherwise.

Proof (for Theorem 2). Assume we have ∼g,≈g and ∼serv,≈serv, such that
conditions 7 to 9 hold.

We first show that serv is visibility-preserving with respect to ∼g,≈g. Let

σ, σp, t, t
′ such that 〈handlerserv;σ〉

tat′−−→ 〈SKIP ;σp〉, t B I ∼g 〈〉. So, for all
input messages m in t it holds that m ∼g � and since condition 7 holds, it also
holds m ∼serv �, and therefore t B I ∼serv 〈〉. Since (∼serv,≈serv) is dependency
cluster for serv, we know t B O ∼serv 〈〉. Since C is callable set for serv, we
know for all output messages m in t by Theorem 2, condition 8 we also know
m ∼serv � =⇒ m ∼g � and therefore t B O ∼g 〈〉.

Further, we know σ ≈serv σp and since F is an assignable set, we know that
σp = anon(σ,F, σp).

Since ≈g is an equivalence relation, we know σ ≈g σ and since (∼serv,≈serv)
is a dependency cluster for serv, we know σ ≈serv σp. With Theorem 2 condition
9, we get anon(σ,F, σ) ≈g anon(σ,F, σp) , i.e. σ ≈g σp.

Now we show equivalence of the post states: Assume σ ≈g σ
′ and furthermore

〈handlerserv;σ〉
t−→ 〈SKIP ;σp〉 and 〈handlerserv;σ′〉

t′−→ 〈SKIP ;σ′p〉. Due to
Theorem 2, 7, also σ ≈serv σ

′ and since (∼serv,≈serv) is a dependency cluster
for serv, also σp ≈serv σ′p holds. Since F, we know that σp = anon(σ,F, σp)
and σ′p = anon(σ′,F, σ′p) and therefore with Theorem 2 condition 9 we know
σp ≈g σ

′
p.

Finally we show equivalence of the communicated traces: Assume t1 ≤ t and
t′1 ≤ t′ such that t1 B I ∼g t

′
1 B I. Due to Theorem 2 condition 7, it also holds

that t1 B I ∼serv t
′
1 B I and since (∼serv,≈serv) is dependency cluster for serv,

there exists t2, t′2 such that t1a t2 ≤ t and t′1a t′2 ≤ t′ and t1a t2 ∼g t
′
1a t

′
2. Since

C is a callable set for serv, we know for all m,m′ in t1a t2 and t′1a t′2 respectively
m,m′ ∈ C and by Theorem 2 condition 8 we know m ∼serv m

′ =⇒ m ∼g m
′

and therefore t1a t2 ∼g t
′
1a t

′
2.

So combined, (∼g,≈g) is dependency cluster for serv.

Theorem 3 ((Theorem 5 in [8])). Let serv be a service that is non-interferent
w.r.t. (∼,≈) and ∼w a weakening of ∼. Then serv is non-interferent w.r.t. (∼w

,≈).

Proof (for Theorem 3). Follows directly from Definition 2. We strengthen the
left hand side of the inner implication and weaken the right hand side.

3 Proof of Concept

In this section, we describe as a proof of concept the verification of security of a
simple component-based web shop w.r.t. two attackers. The work flow is based
on the results presented in [7] and [8].

We first introduce the web shop system, its interfaces with the environment,
and the entities which are meant to interact with the system via the interfaces.
After this, we describe the input information the entities may gain knowledge
about and specify the outputs the entities have direct access to. This specification
can be seen to be the result of a threat analysis and provides us with an attacker-
motivated specification.

In Subsection 3.1 we describe the components the web shop consists of. We
extract dependency clusters for each service provided by the system’s components
using our extension of the Joana tool. We formalize additional dependency clus-
ters manually where required and prove their validity using KeY. We combine the
extracted and manually created dependency clusters to component-global infor-
mation flow specifications and show that each service is non-interferent w.r.t. the
global specification. Finally, we show that the attacker-motivated specifications
are a weakening of the component-global non-interference specifications.

The full implementation of the web shop system, all specifications and proofs
as well as the versions of the tools used to perform analysis can be found online
at https://formal.iti.kit.edu/greiner/sefm2017/.

3.1 System Description

The system we analyze implements a simple web shop providing interfaces for
selecting products, ordering of selected products, setting and reading customer
information, e.g. name, address, and credit card information. Also, information
can be retrieved from the system as necessary for a billing process and logistics of
product delivery. The system requires a service from a bank in order to perform
payment and access to a product database which stores prices of products. A full
list of services provided and required by the web shop can be found in Figure 1.

Three roles of users are meant to interact with the system. The customer
has access to the interfaces AccountIF and CartIF providing the services
necessary for shopping and ordering. The delivery department can request infor-
mation necessary for shipping products on interface DeliverIF and the billing
department can request information necessary for creating bills after ordering.
The bank, can access information via the required BankIF interface. A list of
who can directly access which interfaces is shown in Figure 2. We assume that
the described entities are the only groups interacting with the system. Further,
we do not care about access control, since it is out of scope of this work. We
assume that enforcement of access control is correct.

3.2 Confidentiality Specification

Each entity interacting with the system only needs a part of all input information
in order to perform its duties. We limit our analysis to the roles Customer,

https://formal.iti.kit.edu/greiner/sefm2017/
https://formal.iti.kit.edu/greiner/sefm2017/

CartIF
Service Parameter Return Value
getCartContent OrderElement []
addToCart int prodId , int amount boolean

AccountIF
orderElementsInCart boolean
setName char[] name
setAdress char[] adr
setCCNr int ccnr
cvc int cvc

BillingIF
getBillsToSend - Bill[]

DeliveryIF
getDeliverySheets - DeliverySheet []

BankIF
makePayment char[] name, int ccnr,

int cvc, int amount
boolean

ProductDBIF
getProductPrice int prodId int

Fig. 1. Interfaces provided and required by the Webshop system

DeliveryDebt, and BillingDebt. We specify for each input which entity may gain
knowledge about it. The decision is made on domain-level, meaning we decide
who may know what based on whether we think from a domain point of view if
the respective information is required by the entity. For example, the delivery
department needs to know the name and the address of the customer as well as
the products he ordered. However, it is irrelevant how much the customer paid
for these products or what the number of the credit card used for payment is.
On a more specific level, it is also irrelevant, whether the customer changed his
credit card and how often he looked at the products already in the cart. The full
list is shown in Figure 3.

Note especially that we use declassification for the credit card information.
While the delivery department must not gain any knowledge about it, the billing
department is meant to be able to print the last four digits of the credit card on
the bill.

The security specification for each role considered as a potential attacker
results from the combination of the confidentiality specification for the inputs
and the accessibility specification for the outputs provided by the interfaces. We
formalized the attacker specific security specification for the delivery department
in the online available file dc_Attacker_Delivery.key in JavaDL.

Role Accessable IF Description
Customer AccountIF , CartIF Browses Products and orders
DeliveryDept DeliveryIF Department responsible for making

packages and sending ordered prod-
ucts

BillingDebt BillingIF Department responsible for printing
bills, sending them to the customers

Bank BankIF Financial Institute responsible for
performing payments

Fig. 2. Roles interacting with the system

3.3 Components of the System

The web shop system consists of five components interacting with each other.
Each component is responsible for a part of the functionality and together, they
provide the functionality to the environment, i.e. the entities described above.

The system consists of the components Cart , Account , OrderDB , as well
as Billing , and Delivery , and the components are connected via the inter-
faces CartToAccountIF , OrderToAccountIF , BillingToAccountIF ,
and DeliveryToAccountIF . The services specified with these interfaces are
shown in Figure 4. The Cart component is responsible for managing the shop-
ping process before the customer actually orders the products. The Account
component serves as the central business logic for all processes happening after
the customer decided to place an order. OrderDB keeps track of the performed
orders, billed orders and delivered orders. Billing and Delivery collect
information from the account, as necessary for the respective departments for
performing their tasks. The components re-organize collected data such that the
delivery and billing departments get the relevant information according to the
business process.

3.4 Mapping from formal model to JavaEE

Our formal framework for component-based systems as presented in [7,8] can be
instantiated for a large subset of components implemented in the Java Enterprise
Edition (JavaEE) [3]. The only exception are so-called message-driven beans
and user-defined synchronization for so-called singleton beans, a special synchro-
nization model which should only be used in an implementation very cautiously.
Whether these exceptions occur in a program can be checked syntactically.

JavaEE is a framework for implementing component-based systems in Java.
Components are implemented as annotated Java objects, called Enterprise Java
Beans (EJB), providing annotated methods, i.e., services. EJBs are executed by
an application container, a middleware that allows easy scalability of JavaEE
applications. EJBs come in four different shapes. Stateless beans are freshly
created each time one of their services is called, stateful session beans manage a
state over the lifetime of a user session. Stateless and stateful session beans are

Customer DeliveryDept BillingDebt
CartIF.getCartContent
call X X X
CartIF.addToCart
call X X X
prodId X X X
amount X X X
AccountIF.orderElementsInCart
call X X X
AccountIF.setName
call X X X
name X X X
AccountIF.setAdress
call X X X
adr X X X
AccountIF.setCCNr
call X X X
ccnr X X %10000

AccountIF.setCVC
call X X X
cvc X X X
BillingIF.getBillsToSend
call X X X
DeliveryIF.getdeliverySheets
call X X X
BankIF.makePayment
result X X X
ProductDBIF.getProductPrice
result X X X

Fig. 3. Specification of the inputs the roles may gain knowledge about (Represents the
low inputs per role)

Service Parameter Returnvalue
CartToAccountIF
getCartElementsForOrder OrderElement []
OrderToAccountIF
makeNewOrder OrderElement [] oe boolean
getOrdersToBill Order[]
getUnshippedOrders Order[]
getAllOrders OrderHistory
BillingToAccountIF
getBillingAdress char[]
getBillingCreditCard int
getBillingName char[]
getOrdersToBill Order[]
DeliveryToAccountIF
getOrdesForDelivery Order[]
getName char[]
getAdress char[]

Fig. 4. Internal interfaces of the webshop system

the main components implementing the business logic in a JavaEE application.
Singleton beans are instantiated exactly once per application, and message-driven
beans can be called asynchronously and do not provide return values. We do not
consider message driven beans.

The application container takes serialized requests for remote service calls,
translates the message into a method call to the respective bean and returns
the return value as a serialized object, similar to messages in our formal model.
Since writing static fields by EJBs is disallowed, each bean’s state is independent
from the state of other beans. The application container also is responsible that
services of one bean are not executed concurrently, and JavaEE prohibits thread
creation and management by beans. Only singleton beans can be specified to
be re-entrant using user-provided annotations. We do not consider singleton
beans with user-defined synchronization. Finally, the application container is
responsible for access control such that bean implementations can assume that
services are only called by authorized users.

We consider the restrictions we make not to be fundamental, because singleton
beans with user-defined synchronization should be rarely used in practice. Message-
driven beans may be more common in practice, however we assume our theoretical
framework to actually also hold for them, although, we do not provide a formal
proof.

In contrast to our formal model, Java is an object oriented programing
language, where the state contains a heap that maps objects and fields to values.
The KeY tool [1] formalizes the state in a Java program such that it contains
one variable of type heap and other variables for local variables, parameters, and
the return value of methods. Since our specification allows to specify equivalence

relations using expressions, we can express declassification and navigation over
field access as side-effect-free expressions in the underlying logic. In [11], a similar
approach was used for specification of non-interference in Java batch programs
without message passing.

For simplicity, we assume each public method of the class under analysis to be
a service provided to the environment. While this assumption does not limit the
applicability of our approach, it frees us from implementing support for JavaEE
specific annotations in our analysis tools.

We apply our method using two different toolings to verify dependency
clusters for services according to the first step of our method. The first tool is
an extension of the theorem prover KeY which uses symbolic execution to verify
properties of Java programs. KeY allows very precise verification of properties,
especially dependency clusters with declassification. KeY supports a major subset
of Java 6, but not JavaEE annotations. The second approach is an extension
of the Joana tool, a tool analyzing information flow in Java programs using
program dependency graphs (PDG). While this static analysis cannot make use
of semantic information for parameters and states, Joana is fully automatic.
Joana supports full Java byte code, except reflection. Thus, we gain language
support for a major subset of Java for free in the context of this work. Finally, we
use the Java-independent part of the KeY tool to prove the first-order formulas
that are constructed in the second and third step of our method.

As a case study, we implemented the simple web shop system explained above
as a JavaEE program. In total, the components implement 21 services with about
130 lines of code combined (not counting specifications, interface declarations,
and comments). In the following, we describe how we instantiated our method to
verify security for the web shop program.

3.5 Automatically derived Dependency Clusters in Components

To automatically derive dependency clusters, we use program dependency graphs
(PDGs), a language-independent representation of the dependencies between the
statements and expressions of a program. To build and use PDGs for our purposes,
we use Joana [6,9], a state-of-the-art information flow analysis tool based on
PDGs. Joana is most suited for batch programs with a single entry point. Recent
work on Joana includes component-based architectures, like Android [10] and
modularization of program dependency graphs (PDG) [5].

The nodes of a PDG represent statements and expressions, while edges model
the dependencies between them. The most important kinds of dependencies are
data dependencies, (a statement using a value produced by another statement)
and control dependencies (a statement or expression controlling whether another
statement is executed or not). Figure 5 shows a small code snippet and the
corresponding part of its PDG. For inter-procedural and object-oriented lan-
guages such as Java, PDGs model – in addition to statements and expressions
– also parameter passing and dependencies through the heap by incorporating
appropriate nodes and dependencies.

1 x = 1;
2 y = 2x - 5;
3 if (y > 42)
4 z = 1;
5 else
6 z = 2;

x = 1 y = 2x - 5 y > 42

z = 1

z = 2data dep.

control dep.

Fig. 5. A code snippet and its PDG

int p;
int foo(int y) {

int t = p; p += y;
return t; }

Fig. 6. A small example service and the graph produced by slicing its PDG

Given a node n of the PDG, the backwards slice of n contains all nodes from
which n is reachable in the PDG. For sequential programs, it has been shown
[13] that a node not contained in the backwards slice of n cannot influence n,
hence PDG-based slicing on sequential programs guarantees non-interference [4].
This makes PDGs suitable for our purposes: By computing slices, we obtain a
graph like the one shown in Figure 6. To extract dependency clusters from this
graph, we in principle perform a reachability analysis, but additionally adhere to
the fact that for precision reasons, Joana distinguishes between the pre-state
and the post-state. Hence, if during the reachability analysis we arrive at a node
belonging to the pre-state, we also have to consider the dependencies of the
corresponding node in the post-state. This ensures that also those information
flows are covered which occur only if a service is executed multiple times. In our
example, p in the pre-state depends on p in the post-state, so once we consider
the dependencies of p in the pre-state, we also have to consider what p in the
post-state depends on.

We used Joana to extract dependency clusters from the implementation of
each component. In total, we gain this way 245 dependency clusters for Account ,
27 for Billing , 36 for Cart , 21 for Delivery , and 151 for OrderDB . Each of
these dependency clusters, we (automatically) formalize in JavaDL as equivalence
relations.

Note that the dependency clusters in the context of this work are a mere
technicality, which we require to show security of our system against an attacker.
We therefore do not discuss any semantic meaning for the different clusters.

3.6 Fine-Grained Dependency Clusters

The dependency clusters extracted automatically from the implementation are not
sufficient to show security against an attacker. We require additional dependency

clusters with higher precision, which we formalize manually. We use the program
analysis capabilities of the theorem prover KeY to verify manually identified,
precise dependency cluster. KeY is a theorem prover designed for the verification
of properties in Java programs against specifications formalized in the Java
Modeling Language (JML) or Java Dynamic Logic (JavaDL). The KeY system
was previously used for verification of non-interference properties in Java batch
programs without events [11] and implements support for better scalability of
proofs and object-orientation [12,2]. Our implementation is influenced by these
previous results. For a full account of KeY and JavaDL, we refer to [1,14].

JavaDL contains function symbols for local program variables, instance and
static fields, method parameters, and operations of primitive Java data types. In
addition to general functions and predicates known from first-order logic, JavaDL
also contains constructs for programs which allow symbolic execution.

We extend JavaDL, and therefore KeY, by elements representing events. We
use a constructor function with parameters indicating whether the event is an
initial or terminating event, whether it is an input or output, the component
providing the called service, a function symbol identifying the service, a sequence
of the communicated parameters or return values, and the heap required for
evaluating expressions over the parameters. The method, the calling object, the
direction, and the object type in combination represent the channel according to
our formal model. The formal definition can be found in Figure 7.

event(Calltype ct, CallDirection cd, Object o, Method m, Seq s, Heap h)

Fig. 7. Constructor Function for Events

We use a static ghost variable, i.e., a specification-only variable, to record the
history of events passed during execution of a service. When during symbolic
execution the service is called, the method contract is applied instead of actually
symbolically executing the service. We formalize the general assumptions ensured
by the application container according to JavaEE as method contracts. This
includes that service calls do not change the local state of the calling component
except for object creation during deserialization of return values, and that the
history is extended by one call event and one termination event. Further, we do
not require the calling component to ensure the object invariant of the called
component to hold. A method contract for service Bank.trans () is shown in
Figure 8.

We verified all dependency clusters necessary for verification of security of
the program in the proof of concept, which we could not automatically derive
using Joana, as described in the previous section.

Some of the manually created dependency clusters are necessary due to im-
precision of Joana. We assume some of these imprecisions can be fixed in a more
mature, non-prototype version. Other manually specified dependency clusters, es-
pecially those handling the declassification of the credit card information, can not

/*@ public normal_behaviour
@ requires true;
@ ensures
@ Main.hist == \old(Main.hist) +

5 @ event(servcall , out , this , Bank_trans ,
@ (s,c,p), heap)+
@ event(servterm , in, this , Bank_trans ,
@ (\ result), heap);
@ modifies Main.hist; */

10 public /*@ helper */ int trans(int a);

Fig. 8. Method contract of service Bank.trans() (Simplified notion)

be found by Joana. We require semantic knowledge in order to show correctness
of these dependency clusters, which Joana can not deal with by construction.

We therefore guess additional 3 dependency clusters for services provided
by OrderDB , 3 for a service provided by Cart, 1 for the service provided by
Delivery , and 15 for services provided by Account . Each of these clusters is
formalized in JavaDL. An example of the formalization of a dependency cluster in
JavaDL is shown in Figure 9. Formalization of predicates representing equivalence
relations is uniform and can be generated automatically, given a specification for
the dependency cluster. The full definition of the dependency clusters and their
formalization can be found in the online available material.

Since these dependency clusters are manually created and it is unreasonable
to assume that we did not make mistakes when identifying them, we have to
formally show that they are indeed dependency clusters. We therefore have to
show the proof obligation which we gain from Definitions 2 and 3 in [8]. We apply
the KeY tool to verify the resulting JavaDL formula for each manually created
dependency cluster.

We formalize the proof obligations from the first step of our method directly
as a JavaDL formula. A simplified formalization for a service foo can be found
in Figure 10. Lines 1 to 7 formalize the first execution of the service, storing
the post state in variable heapAtPost_A . Line 12 indicates the repetition of a
similar formula formalizing the second execution.

The variable heapAtPre_A represents the pre-state of one execution of the
service. In Line 1, the pre-state of the execution is stored to the program variable
heap, which is used as the program heap during symbolic execution. Line 3
states some technical welldefinedness properties of the heap, which are out of
context for the presentation here. In Line 5 we ensure that the history of the
program execution starts with the event calling the service under analysis. The
actual symbolic execution is performed in Line 7 which is followed by adding the
termination event to the history and storing the heap after execution to a logic
variable heapAtPost_A . The dots thereafter indicate a copy of the formula
discussed so far and replacing A by B, representing the second execution of the
service.

equivEvent_Account_getAdress_dc_1 (
event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1) ,
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2)) :=

(invEvent_Account_getAdress_dc_1 (
5 event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1)) &

invEvent_Account_getAdress_dc_1 (
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2)))

|
((t1 = t2 & m1 = m2 &

10 ! invEvent_Account_getAdress_dc_1 (
event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1)) &

! invEvent_Account_getAdress_dc_1 (
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2)))

&((m1 = DeliveryToAccount_getAdress
15 & t1 = s e r v c a l l & (t rue)) |

(m1 = DeliveryToAccount_getAdress
& t1 = servterm & (true) &

(\ f o r a l l i 0 ; (
((0<= i0 & i0<length (char [] : : seqGet (p1 , 0))))

20 -> (seqGet (p1 , 0) [i 0])@h1 =
(seqGet (p2 , 0) [i 0])@h2)))

))

Fig. 9. Formalization of a dependency cluster in JavaDL (call is visible and all elements
of return array are low)

The actual proof obligation starts in Line 14. wellformedListCoop is a
predicate ensuring that all service terminations represented in the history have
the same visibility as the previous service call. The predicate coopListEquiv
formalizes that for both executions of the service all visible events representing a
service termination are equivalent, if the respective service calls are equivalent.
The two predicates in combination formalize cooperative environments. We ensure
that the service under analysis is called with two equivalent initial events (Line
18) and in equivalent pre-states (Line 21).

If these assumptions hold, it has to be shown (Line 23) that the two executions
produce equivalent traces, and the service terminates in equivalent post-states
(Line 25). The predicate equivHistory and state equivalence depend on the
specification of dependency clusters. Their full definitions can be found in the
online available material. We can verify formulas as in Figure 10 using KeY.

3.7 Component Specifications

To show secure information flow for an entire component, we have to find a
component-global non-interference specification according to Theorem 2. However,
we additionally want to show security for the entire system, which is composed

{heap:=heapAtPre_A}
< . . . >

3 & self_A.<inv>@heap
& Main . hist@heap = <(event (s e r v c a l l , in , self_A ,

Shop_buy , <a_A, b_A, c_A) , heap)>
& \[{ result_A =

self_A . buy (prodId_A , price_A)@Shop ; }\]
8 {Main . h i s t := seqConcat (Main . h i s t ,

<event (servterm , out , self_A , Shop_buy ,
s eqS ing l e t on (result_A) , heapAtPost_A)>)}

(selfAtPost_A = self_A & heapAtPost_A = heap))
& < . . . second execut ion . . . >

13 ->
(wel l formedListCoop (Main . hist@heapAtPost_A)
& wel l formedListCoop (Main . hist@heapAtPost_B)
& coopListEquiv (f i l t e r V i s i b l e (Main . hist@heapAtPost_A) ,

f i l t e r V i s i b l e (Main . hist@heapAtPost_B))
18 & equivEvent (Main . hist@heapAtPost_A [0] ,

Main . hist@heapAtPost_B [0])
& self_A . dc1_buy@heapAtPre_A =

self_B . dc1_buy@heapAtPre_B
-> (equ ivHis tory (Main . hist@heapAtPost_A ,

23 Main . hist@heapAtPost_B)
& self_A . dc1_buy@heapAtPost_A =

self_B . dc1_buy@heapAtPost_B
)

)

Fig. 10. JavaDL version of the proof obligation for a dependency cluster for service
buy (simplified)

of several components. From Theorem 2 in [7], we know that non-interference is
compositional for components with synchronized communication.

We therefore aim for a system-wide non-interference specification for messages
and a component-wide non-interference specification for states. We construct
our specification the following way. Given components c1, ..., cn with services
s1ci, ..., smci for the component ci. For each service sk of component ci, we
select a set of dependency clusters (∼1

skci,≈ 1
skci), ..., (∼

p
skci,≈

p
skci). We construct

a dependency cluster for each service by intersecting the selected dependency
clusters (∼loc

skci,≈loc
skci) := (∼1

skci,≈ 1
skci) + ... + (∼p

skci,≈
p
skci). For each service

the JavaDL formalization of the service’s composed dependency cluster can be
found online in the dc_Classname_methodname_aggregate1.key files
for each method. Since each element of this composition is a dependency cluster
of the respective service, we know according to Theorem 1 that the composition
is a dependency cluster for the service as well. No additional property has to be
shown.

equivEvent_Account_getAdress_aggregate (
event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1) ,
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2)) :=

(invEvent_Account_getAdress_dc_aggregate1 (
5 event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1)) &

invEvent_Account_getAdress_dc_aggregate1 (
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2)))

| ((t1 = t2 & m1 = m2 &
! invEvent_Account_getAdress_dc_aggregate1 (

10 event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1)) &
! invEvent_Account_getAdress_dc_aggregate1 (

event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2))) &
equivEvent_Account_getAdress_dc_1 (

event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1) ,
15 event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2))

& equivEvent_Account_getAdress_dc_2 (
event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1) ,
event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2))

& equivEvent_Account_getAdress_dc_3 (
20 event (t1 , d ir1 , c a l l e e 1 , m1, p1 , h1) ,

event (t2 , d ir2 , c a l l e e 2 , m2, p2 , h2))))

Fig. 11. Aggregation of three dependency clusters for a service in JavaDL

Then, we construct for each component a component-global equivalence
relation for states by intersecting the equivalence relation of the composed
dependency clusters: ≈g

ci:=≈loc
s1ci ∩...∩ ≈loc

smci. Similarly, we retrieve a system-
global equivalence relation for messages by intersecting all equivalence relations
for messages of the services: ∼sys:=∼loc

s1c1 ∩...∩ ∼loc
smc1 ∩...∩ ∼loc

s1cn ∩...∩ ∼loc
spcn.

We have to show for each service that it is non-interferent w.r.t. this global non-
interference specification according to Theorem 2. The service local dependency
cluster, called (∼serv,≈serv) in the theorem is for each service the composed
cluster (∼loc

skci,≈loc
skci). For the component-global tuple, called (∼g,≈g), we use

(∼sys,≈g
ci) for all services implemented by component ci. An example for the

JavaDL formalization of an aggregated dependency cluster is shown in Figure 11.
We formalize again the proof obligation implied by Theorem 2 as JavaDL formula.

We would like to consider here two specific predicates and two fields more
closely. The predicate equiv_g(Event , Event) encodes the component-
global equivalence for messages. It is provided by the construction explained
above. The predicate equiv_l(Event , Event) represents the service-local
equivalence specification gained by intersecting dependency clusters for a service.
We define it directly as the intersection:

equiv_l(e1, e2) := equiv_foo_dc1(e1, e2) & equiv_foo_dc2(e1, e2)

We use ghost fields like dc1_foo directly declared as JML specifications
to formalize equivalence relations for states. Equivalence relation for the state

(equiv_g (event (ct1 , cd1 , self_A , met1 , param1 , heap1) ,
event (ct2 , cd2 , self_A , met2 , param2 , heap2))

-> equiv_l (event (ct1 , cd1 , self_A , met1 , param1 , heap1) ,
event (ct2 , cd2 , self_A , met2 , param2 , heap2))

5)
& (self_A . dc_global@heap1 = self_A . dc_global@heap2

->
self_A . dc_local@heap1 = self_A . dc_local@heap2)

& ((equiv_l (event (ct1 , cd1 , self_A , met1 , param1 , heap1) ,
10 event (ct2 , cd2 , self_A , met2 , param2 , heap2)) &

\elementOf (met1 , self_A . ca l l ab l e_ foo [j] @heap1) &
\elementOf (met2 , self_A . ca l l ab l e_ foo [j] @heap2))

-> equiv_g (event (ct1 , cd1 , self_A , met1 , param1 , heap1) ,
event (ct2 , cd2 , self_A , met2 , param2 , heap2)))

15 & ((self_A . dc_global@heap1 = self_A . dc_global@heap2 &
self_A . dc_local@heap1p = self_A . dc_local@heap2p)
->
self_A . dc_global@anon (heap1 ,

self_A . assignable_foo@heap1 , heap1p)
20 = self_A . dc_global@anon (heap2 ,

self_A . assignable_foo@heap2 , heap2p))

Fig. 12. Proof obligation for Theorem 2

according to the global specification is directly encoded as the intersection of the
local equivalence relations for the state. In a similar way, the equivalence relation
for the state according to the global specification is directly encoded as a list of
expressions in the field dc_global . The low-part of the state according to the
local specification is given as the concatenation of the state equivalence relation of
dependency clusters, for example as dc_local := dc1_foo . dc2_foo ,
where . is the concatenation operation on sequences. The callable set of the
service foo is encoded as a list of function symbols in field callable_foo ,
and the assignable set is a given as a set of locations (the Java equivalent of
variables) encoded as a field assignable_foo . We used Joana to identify
both of these sets for each service.

The formula in Figure 12 is a straight forward encoding of Theorem 2 in
JavaDL. In Line 1 the proof obligation requires the message equivalence of
the local specification to be implied by the global one. Similar, in Line 6 the
same implication is required for the low-part of the state. This is followed by
the reverse direction, i.e. global equivalence of messages and states are implied
by the local specification under consideration of the assignable and callable
sets. Line 9 requires that a message either cannot be communicated by the
service, i.e. the channel is not an element of the encoding of the callable set
self_A.callable_foo[j]@heap1 , or the message is equivalent according
to the global specification. Similarly, Line 15 formalizes that if the service started
in two globally equivalent states, results after execution in states heap1p and

heap2p . If the two post-states are equivalent according to local specification,
then the resulting state, expressed by anonymization, is also locally equivalent.

We have to do these proves twice for each service, since we show security
against two attackers with different security specifications. When combining local
dependency clusters to global ones, we heavily reuse dependency clusters for both
system-wide specifications.

Since we achieved to prove the formula for all services provided by the
components, we know that all components are non-interferent w.r.t. ∼g, as well
as, according to Theorem 2 in [7], the web shop system.

3.8 Attacker Weakening

It is left to show that the system is secure against the attacker-motivated
specifications we identified in the beginning. We use a formalization of Theorem 3
to show that the two attacker specifications are a weakening of our two system-
wide equivalence relations over messages ∼g again using KeY.

In combination, we have shown that our web shop system is secure against
two attackers from the delivery department and the billing department.

4 Conclusion

We have shown security of a web shop system consisting of five components
to be secure against two attackers who have the abilities of somebody working
in the delivery department and the billing department respectively. They may
know the information supposed to be known, since it is required for the business
processes in the departments. We made heavy use of the results of the framework
as presented in the main paper. Especially reusing dependency clusters for both
attackers was useful, as was the modularization of the proof obligations into
small, service-local problems.

We identified 480 dependency clusters in the components of the web shop
program with Joana automatically. In addition, we manually specified 21 depen-
dency clusters, for which Joana was not sufficiently precise and verified them
with KeY. While the proof process was very fast and mostly automatic, we had
to provide support specifications, like loop invariants, a time-consuming task in
any theorem-prover based program verification task.

The manually verified dependency clusters are distributed over three different
components, while for each service at most two dependency clusters had to be
specified manually. This shows that in the case of evolution of a component, i.e.,
changing the implementation of a service, only few dependency clusters have to
be re-verified and even less with manual interaction using KeY.

We generated the system-wide and component-wide specifications according
to step two of our method by manually selecting the relevant dependency clusters
and automatically generating the JavaDL proof obligation according to Theo-
rem 2. And finally we automatically generated proof obligations according to
Theorem 3, one for each of the two attacker types considered. We performed 42

proofs according to Theorem 2 and two proofs according to Theorem 3. During
verification of the proof obligations with KeY in step two and three, manual
interaction was necessary at many points, since the proof requires several case
distinctions. KeY is, as a program verification tool, not optimized for these kinds
of proof obligations and we assume a high degree of automation if better suited
tools are used for this task, for example SMT solvers.

We first applied all steps of our method for one attacker and then for the
other, which, in total, took about one week of work for verification. Program
analysis with Joana basically does not take any time, and manually specifying
the correct missing dependency clusters for the first attacker took about two days
of the total effort, including repeated attempts to show step two and three of
our method. We required about four days for the verification and specification of
functional support specifications for the program and verification of the manually
specified dependency clusters in the first step. However, we would like to stress
that verifying the security of the second attacker only took about one day of the
total effort, since we could re-use previously verified dependency clusters as well
as already existing functional specifications.

We have shown with this proof of concept that it is possible to use our
framework to verify security of component-based systems w.r.t. to an attacker.
Our tool chain is based on the theorem prover KeY and an extension of Joana,
using program dependency graphs for program analysis. In the combination
we have also shown that dependency clusters are an interesting way of loosely
coupling different tools with different weaknesses and strengths to co-operatively
show information flow properties in component-based systems.

As a result, we find that the more automation for identifying dependency
clusters can be achieved, the more our method scales. Sometimes, it might
be reasonable to omit program verification for some services or components
and instead use testing approaches or code inspection for validation of some
dependency clusters. Also, it would be interesting, if we could automatize the
selection of dependency clusters, identified in step 1, which are relevant for
verification in step 2 and 3, e.g., using SMT solvers.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice. Springer
(2016)

2. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: LOPSTR (2013)

3. EJB 3.1 Expert Group: JSR 318: Enterprise JavaBeans, Version 3.1. Sun Microsys-
tems (2009), https://jcp.org/en/jsr/detail?id=366, accessed 31/08/2016

4. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Security
and Privacy (1982)

5. Graf, J.: Information Flow Control with System Dependence Graphs – Improving
Modularity, Scalability and Precision for Object Oriented Languages. Ph.D. thesis,
Karlsruher Institut für Technologie (2016)

https://jcp.org/en/jsr/detail?id=366

6. Graf, J., Hecker, M., Mohr, M.: Using joana for information flow control in java
programs - a practical guide. In: ATPS (Feb 2013)

7. Greiner, S., Grahl, D.: Non-interference with what-declassification in component-
based systems. In: CSF (2016)

8. Greiner, S., Mohr, M., Beckert, B.: Modular verification of information flow security
in component-based systems. In: SEFM (2017), accepted

9. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Journal
of Information Security (Dec 2009)

10. Mohr, M., Graf, J., Hecker, M.: Jodroid: Adding android support to a static
information flow control tool. In: Gemeinsamer Tagungsband der Workshops der
Tagung Software Engineering, Dresden, 2015. CEUR Workshop Proceedings (2015)

11. Scheben, C., Schmitt, P.H.: Verification of information flow properties of java
programs without approximations. In: FoVeOOS (2011)

12. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition
calculi. In: Formal Methods (2014)

13. Wasserrab, D., Lohner, D.: Proving information flow noninterference by reusing a
machine-checked correctness proof for slicing. In: VERIFY (2010)

14. Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. Ph.D. thesis, Karlsruhe Institute of
Technology (2011)

	2017,9_Titelbl.pdf
	techreport-final.pdf
	Modular Verification of Information Flow Security in Component-Based Systems – Proofs and Proof of Concept

