Free Variable Tableaux for
Propositional Modal Logics

Bernhard Beckert
Rajeev Goré

Interner Bericht 41/96

Universitat Karlsruhe
Fakultat fur Informatik

Free Variable Tableaux for
Propositional Modal Logics

Bernhard Beckert* Rajeev Goré**

http://i12www.ira.uka.de/modlean

* Address: University of Karlsruhe, Institute for Logic, Complexity and Deduction
Systems, D-76128 Karlsruhe, (Germany. Email: beckert@ira.uka.de.
** Address: Automated Reasoning Project, Australian National University, Can-

berra, ACT, 0200, Australia. Email: rpg@arp.anu.edu.au.

Abstract

We present a sound, complete, modular and lean labelled tableau cal-
culus for many propositional modal logics where the labels contain “free”
and “universal” wariables. Our “lean” Prolog implementation is not only
surprisingly short, but compares favourably with other considerably more
complex implementations for modal deduction.

1 Introduction

Free variable semantic tableaux are a well-established technique for first-order
theorem proving both theoretically and practically. Free variable quantifier
rules [18, 7] are crucial for efficiency since free variables act as a meta-linguistic
device for tracking the eigenvariables used during proof search.

Traditional tableau-based theorem provers developed during the last decade
for first-order logic have been complex and highly sophisticated, typified by sys-
tems like Setheo [15] and 474P [1]. On the other hand, free variable tableaux,
and their extensions like universal variable tableaux, have been used successfully
for lean Prolog implementations, as typified by leanTAP [2]. A “lean” implemen-
tation is an extremely compact (and efficient) program that exploits Prolog’s
built-in clause indexing scheme and backtracking mechanisms instead of relying
on elaborate heuristics. Such compact lean provers are much easier to under-
stand than their more complex stablemates, and hence easier to adapt to special
needs.

Simultaneously, Kanger’s meta-linguistic indices for non-classical logics [14]
have been generalised by Gabbay into Labelled Deductive Systems [9]. And Mas-
sacci [16] and Russo [19] have recently shown the utility of using ground labels for
obtaining modular modal tableaux and natural deduction systems (respectively);
see [10] for an introduction to labelled modal tableaux.

By allowing labels to contain free (and universal) variables, we obtain effi-
cient and modular tableaux systems for all the 15 basic propositional modal log-
ics. Furthermore, our leanTAP style implementation compares favourably with
existing fast implementations of modal tableau systems like LWB [12].

Our object language uses labelled formulae like o : A, where ¢ is a label and A
is a formula, with intuitive reading “the possible world o satisfies the formula A”;
see [6, 17, 10] for details. Thus, 1:0p says that the possible world 1 satisfies
the formula Op. Our box-rule then reduces the formula 1:0p to the labelled
formula 1.(z) :p which contains the universal variable 2 in its label and has an
intuitive reading “the possible world 1.(x) satisfies the formula p”. Since different
instantiations of x give different labels; the labelled formula 1.(2):p effectively
says that “all successors of the possible world 1 satisfy p”, thereby capturing the
usual Kripke semantics for Op (almost) exactly. But the possible world 1 may
have no successors; so we enclose the variable in parentheses and read o: A as
“for all instantiations of the variables in o, if the world corresponding to that
instantiation of o exists then the world satisfies the formula A”.

Similar approaches using labels containing variables have been explored by
Governatori [11] and D’Agostino et al. [4]. But D’Agostino et al. relate the
labels to modal algebras, instead of to first-order logic as we do. And whereas
Governatori uses string unification over labels to detect complementary formulae,
we use Prolog’s matching, since string unification cannot be implemented in a
lean way. Our variables are of a simpler kind: they capture all immediate children
of a possible world (in a rooted tree model), but do not capture all R-successors;
see [16, 10]. As a consequence, we can make extensive use of Prolog features like
unification and backtracking in our implementation. Note, however, that a non-
lean extension of our calculi using string unification is perfectly feasible.

The following techniques, in particular, are crucial:

Free variables: Applying the traditional ground box-rule requires guessing the
correct eigenvariables. Using (free) variables in labels as “wildcards” that
get instantiated “on demand” during branch closure allows more intelligent
choices of these eigenvariables. To preserve soundness for worlds with no
R-successors, variable positions in labels must be conditional.

Universal variables: Under certain conditions, a variable # introduced by a
formula like OA is “universal” in that an instantiation of # on one branch
need not affect the value of x on other branches, thereby localising the
effects of a variable instantiation to one branch. The technique entails
creating and instantiating local duplicates of labelled formulae instead of
the originals.

Finite diamond-rule: Applying the diamond-rule to & A usually creates a new
label. By using (a Godelisation of) the formula A itself as the label instead,
we guarantee that only a finite number of different labels (of a certain
length) are used in the proof. In particular, different (identically labelled)
occurrences of G A generate the same unique label.

The paper is structured as follows: In Sections 2 and 3 we introduce the
syntax and semantics of labelled modal tableaux. In Section 4 we introduce our

calculus and present an example; we prove its soundness and completeness in
Sections 5 and 6, respectively. In Section 7 we describe our implementation and
present experimental results; and in Section 8 we present our conclusions and
discuss future work.

2 Syntax

The formulae of modal logics are built in the usual way from a denumerable
non-empty set P of primitive propositions, the classical connectives A (conjunc-
tion), V (disjunction), = (negation), — (implication), and the non-classical unary
modal connectives O (“box”) and < (“diamond”).

To reduce the number of tableau rules and the number of case distinctions
in proofs, we restrict all considerations to implication-free formulae in negated
normal form (NNF); thus negation signs appear in front of primitive propositions
only. Using NNF formulae is no real restriction since every formula can be
transformed into an equivalent NNF formula in linear time.

lLabels are built from natural numbers and variables, with variables intended
to capture the similarities between the ¥V quantifier of first-order logic and the
O modality of propositional modal logic. However, whereas first-order logic for-
bids an empty domain, the O modality tolerates possible worlds with no succes-
sors.! To capture this (new) behaviour, variable positions in labels are made
“conditional” on the existence of an appropriate successor by enclosing these
conditional positions in parentheses.

Definition 1 let Vars be a set of variables, and let N be the set of natural
numbers. Let x,y,z range over arbitrary members of Vars, let n and m range
over arbitrary members of N, and let | range over arbitrary members of Vars U N.
Then, the string 1 is a label; and if o is a label, then so are o.m and o.(l). The
length of a label o is the number of dots it contains plus one, and is denoted
by |o|. The constituents of a label o are called positions in o and terms like “the
1st position” or “the n-th position” are defined in the obvious way. A position
is conditional if it is of the form (1), and a label is conditional if it contains a
conditional position. By ipr(o) we mean the set of all non-empty initral prefizes
of a label o, excluding o itself. A label is ground if it consists of (possibly
conditional) members of N only. Let L be the set of all ground labels.

When dealing with ground labels, we often do not differentiate between the
labels o.n and o.(n), and we use o.[n] to denote that the label may be of either
form. Note also that 0.z (parentheses around 2 omitted) is not a label: the
parentheses mark the positions that contain variables, or that used to contain
variables before a substitution was applied.

Definition 2 A set ' of labels is strongly generated if:

1. there is some (root) label p € T' such that p € ipr(o) for all o € T'\ {p};
and

"To that extent, modal logics are similar to free logic, i.e., first-order logic where the domains
of models may be empty [3].

2. o €l implies T €T for all T € ipr(o).

Since we deal with mono-modal logics with semantics in terms of rooted
frames (see Section 3), we always assume that our labels form a strongly gener-
ated set with root p = 1. In any case, our definition of labels guarantees that all
our labels begin with 1, and it is easy to see that the labels that appear in any
of our tableaux are strongly generated.

Definition 3 A labelled tableau formula (or just tableau formula) is a struc-
ture of the form X : A:o: A, where X is a subset of Vars U N, A is a set of labels,
o is a label, and A is a formula in NNF. If the set A is empty, we use X :0: A
as an abbreviation for X :Q:0: A. A tableau formula X :A:0: A is ground, if
o and all labels in A are ground. If F is a set of labelled tableau formulae, then

lab(F) is the set {o | X:A:0: A € F}.

The intuitions behind the different parts of our “tableau formulae” are as
follows: The fourth part A is just a traditional modal formula. The third part o
is a label, possibly containing variables introduced by the reduction of O modal-
ities. If the label ¢ is ground, then it corresponds to a particular path in the
intended rooted tree model; for example, the ground label 1.1.1 typically repre-
sents the leftmost child of the leftmost child of the root 1. Tf ¢ contains variables,
then it represents all the different paths (successors) that can be obtained by
different, instantiations of the variables, thereby capturing the semantics of the
O modalities that introduced them. Our rule for splitting disjunctions allows us
to retain these variables in the labels of the two disjuncts, but because O does
not distribute over Vv, such variables then lose their “universal” force, meaning
that these “free” variables can be instantiated only once in a tableau proof.
We use the first component X to record the variables in the tableau formula ¢
that are “universal”, meaning that ¢ can be used multiply in the same proof
with different instantiations for these variables. The free variables in ¢ (that do
not appear in X)) can be used with only one instantiation since they have been
pushed through the scope of an V connective. The second part A, which can be
empty, has a significance only if our calculus is applied to one of the four logics
KB, K5, KB4, and K45 (that are non-serial, but are symmetric or euclidean,
see Section 3). It is empty for the other logics. The intuition of A is that the
formula A has to be true in the possible world called o only if the labels in A
name legitimate worlds in the model under consideration. This feature has to be
used, if (a) rule applications may shorten labels, which is the case if the logic is
symmetric or euclidean, and (b) the logic is non-serial and, thus, the existence
of successor worlds is not guaranteed. The set A can contain both universal and
free variables, and some of them may appear in o.

Definition 4 Given a tableau formula ¢ = X :A:o: A, Univ(¢p) = X is the set
of universal variables of ¢, while Free(¢) = {x appears in o or A |z ¢ X} is
the set of free variables of ¢. These notions are extended in the obvious way
to obtain the sets Free(T) and Univ(T) of free and universal variables of a given

tableau T (see Def. 5).

Definition 5 A tableau is a (finite) binary tree whose nodes are tableau for-
mulae. A branch in a tableau T is a mazimal path in T.2 A branch may be
marked as being closed. If it is not marked as being closed, it is open. A tableau
branch is ground if every formula on it is ground, and a tableau is ground if all
its branches are ground.

Since we deal with propositional modal logics, notions from first-order logic
like variables and substitutions are needed only for handling semantic notions
like the accessibility relation between worlds. Specifically, whereas substitutions
in first-order logic assign terms to variables, here they assign numbers or other
variables (denoting possibles worlds) to variables.

Definition 6 A substitution is a (partial) function p : Vars — NU Vars. Sub-
stitutions are extended to labels and formulae in the obvious way. A substitution
is grounding if its domain is the (whole) set Vars and its range is N; that is,
if it maps all variables in Vars to natural numbers. A substitution is a variable
renamang if its range is Vars, and it replaces distinct variables by other distinct
variables only. The restriction of a substitution u to a set X of variables is
denoted by) x -

Definition 7 Given a tableau T containing a tableau formula X :A:0: A, a
tableau formula X' : A :¢': A is a T-renaming of X : A:c: A if there is a vari-
able renaming p such that X':A':0': A = (X:A:0: A)u, and every variable
introduced by p is new to the tableau T .

3 Semantics

In this section we first introduce the Kripke semantics for modal logics, and then
extend these semantics to labelled tableau formulae and tableau.

Definition 8 A Kripke frame is a pair (W, R), where W is a non-empty set

triple (W, R, V), where the valuation V is a mapping from primitive propositions
to sets of worlds. Thus, V (p) is the set of worlds at which p is “true” under
the valuation V.. We write wRw' iff (w,w’) € R, and we say that world w' is
reachable from world w, and that w' is a successor of w. A world w € W is
tdealisable if it has a successor in W.

Definition 9 Given some model (W, R, V), and some w € W, we write w = p
iff w e V(p). This satisfaction relation = is then extended to more complex
formulae as usual. We say that w satisfies a formula A iff w = A. A formula
A is valid in a model (W, R, V), written as (W, R, V) = A, iff every world in W
satisfies A. A formula A is valid in a frame (W, R), iff it is valid in every model
(W, R,V based on that frame. An aziom A is valid in a frame (W, R), iff every

formula instance of it is valid in (W, R).

2Where no confusion can arise, we identify a tablean branch with the set. of tablean formulae
it contains.

‘ Name ‘ Axiom ‘ Property
(K) | O(A— B) —» (0DA — 0OB)
(T) OA — A reflexive
(D) 04 — OA serial
(4) 0A - O0A transitive
(5) OA = OCA euclidean
(B) | A—DOOCA symmetric

Table 1: Basic axioms and their corresponding restrictions on the reachability
relation.

The first two columns of Table 2 show the axiomatisations of the 15 basic
logics that can be formed from the axioms shown in Table 1.

Definition 10 Given one of the logics L listed in Table 2, a frame (W, R) is an
L-frame if each axiom of L is valid in (W, R). A model (W, R, V) is an L-model
if (W, R) is an L-frame.

It is well-known that the axioms listed in Table 1 are characterised by the
properties of R listed next to them; see [10] for details. Thus, all KT-frames will
have a reflexive accessibility relation R, and if a frame has a reflexive accessibility
relation then it will validate axiom (T). Therefore, we associate these properties
with logics as well, and say, for example, that a logic L is serial if all L-frames
have a serial accessibility relation. Some care is needed here: for example the
axiom (D) is not an axiom of KT, but it is valid in all KT-frames since it is
implied by (T). Consequently the reachability relation R of all KT-models is
serial.

As we shall soon see, ground labels capture a basic reachability relation be-
tween the worlds they name, where the world named by o.[n] is reachable from
the world named by o. A set of strongly generated ground labels can be viewed
as a tree with root p, where o.[n] is an immediate child of ¢ (hence the name
“strongly generated”). We formalise this as follows.

Definition 11 Given a logic L and a set I of strongly generated ground labels
with root p = 1, a label 7 € T" is Li-accessible from a label o € ', written as
o> 7, if the conditions set out in Table 2 are satisfied. A label o € T is an
L-deadend, if no 7 € T' is L-accessible from o.

The following lemma shows that the L-accessibility relation [> on labels cap-
tures the reachability relation R of L-frames exactly; see [10] for a proof. In
particular, > has the properties like reflexivity, transitivity, etc. that are appro-
priate for the axioms of L (see Table 1).

Lemma 12 If ' is a strongly generated set of ground labels with root p = 1,
then (', >) is an L-frame.

The traditional notion of satisfaction relates a world in a model with a formula
or a set, of formulae. When formulae are annotated with ground labels, the notion

lLogic | Axioms o>T logic | Axioms o> T
K (K) T = 0.[n] KT (KT) r=o.n]lorT=0¢
KB (KB) T =o.[n] or K4 (K4) T=o0.0
o= 1.[m]
K5 (K5) T = o.[n], or K45 | (K45) T=o0.0,or
o] > 2, || > 2 o] > 2, I7] > 2
KD (KD) K-condition, or KDB | (KDB) | KB-condition, or
o is a K-deadend T =1 and
and o =171 c=1=1
KD4 | (KD4) | K4-condition, or || KD5 | (DK5) | K5-condition, or
o is a K-deadend T =1 and
and o =171 c=1=1
KD45 | (KD45) | K45-cond., or KB4 | (KB4) ||| >2
=1,
o=1=1
B (KTB) | T=0,0r S4 (KT4) |t=0forT=0
T = o.[n], or
o= 1.[m]
S5 (KT5) | forall o,

Table 2: Basic logics, axiomatic characterisations, and L-accessibility [>.

of satisfaction must be extended by a further “interpretation function” that maps
ground labels to worlds; see [7, 10]. If the labels are allowed to contain free
variables, and in particular, universal variables, then the notion of satisfaction
must also allow for all possible instantiations of the universal variables, thus
catering for many different “interpretation functions”. The goal, as usual, is to
define the notion of satisfiability so that our tableau expansion rules preserve
this notion, and such that a “closed tableau” is not satisfiable.

We proceed incrementally by defining satisfiability for: ground labels; ground
tableau formulae; non-ground tableau formulae; and finally for whole tableaux.
But first we enrich models by the “interpretation function” that maps labels to
worlds. Note that such interpretations give a meaning to all ground labels, not
just to those that appear in a particular tableau.

Definition 13 An L-interpretation is a pair (M, 1), where M = (W, R, V), is a
Kripke Li-model and 1 is a function T: L — W U{ L} interpreting ground labels
such that:

(i) I(1) e W;
(ii) I(o.(n)) = I(o.n) for all o.n and o.(n) in L;
(iii) for allo € L, if I(1) = L for some 1 € ipr(o) then I(o) = L;

(iv) ifor 1, (o) e W, I(r) € W, and I(o) is idealisable, then I(c) RI(T).

Definition 14 An L-interpretation (M, 1), where M = (W, R, V), satisfies a
ground label o, if for all labels T.n € ipr(o) U {o} (that end in an unconditional
label position): I(t) € W implies I(r.n) € W. The L-interpretation (M,T)
satisfies a ground tableau formula X :A:c: A, if

(a) I(e) = L, or I(1) = L for some 7 € A, or I(0) E A;
(b) if I(1) € W for all T € A, then (M, 1) satisfies 0.

Thus, a tableau formula is satisfied by default if its label o is undefined (that
is, if I(¢) = L) or if one of the labels in A is undefined. But because we deal
only with strongly generated sets of labels with root 1, the twin requirements
that every L-interpretation (M,I) define the label 1, and condition (b) in the
above definition force the interpretation function I to “define” as many members
of ipr(o) as is possible. However, for a conditional ground label of the form 7.(n),
where n is parenthesised, it is perfectly acceptable to have I(7.(n)) = L even if

I(r) e W.

Example 15 [f (M, 1) satisfies o = 1.1.1, then I(1), I(1.1), and I(1.1.1) must
be defined. If o = 1.(1).1, then 1(1.(1)) need not be defined; but if it is, then
I(1.(1).1) must be defined.

The domain of every interpretation function Iis the set of all ground labels L,
but our tableaux contain labels with variables. We therefore introduce a defi-
nition of satisfiability for non-ground tableau formulae capturing our intuitions
that a label o.(2) stands for all possible successors of the label o, and taking
into account the special nature of universal variables.

Definition 16 Given an L-interpretation (M, I) and a grounding substitution u,
a (non-ground) tableau formula ¢ is satisfied by (M, 1,), written as (M, 1, u) E
¢, if for all grounding substitutions A, the ground formula ¢A|xp is satisfied by
(M,T) (Def. 14). A set F of tableau formulae is satisfied by (M, 1, 1), if every
member of F is simultaneously satisfied by (M, 1, u).

In the above definition, a ground formula ¢A|xu is constructed from ¢ in two
steps, such that the definition of satisfiablity for ground formulae can be applied.
To cater for the differences between the free variables and universal variables,
we use two substitutions: a fixed substitution g and an arbitrary substitution A.
The first step, applying A|x to ¢ instantiates the universal variables z € X. The
second step, applying p to ¢A|x, instantiates the free variables. Therefore, the
instantiation of universal variables € X is given by the arbitrary substitution A,
and the instantiation of free variables 2 & X is given by the fixed substitution pu.

Note, that in the following definition of satisfiable tableaux, there has to be
a single satisfying L-interpretation for all grounding substitutions u.

Definition 17 A tableau T is L-satisfiable if there is an L-interpretation (M, T)
such that for every grounding substitution u there is some open branch B in T

with (M, I, u) = B.

4 The Calculus

4.1 Overview

We now present an overview of our calculus, highlighting its main principles.

Our calculus is a refutation method. That is, to prove that a formula A is
a theorem of logic L, we first convert its negation —A into NNF obtaining a
formula B, and then test if B is L-unsatisfiable. To do so, we start with the
initial tableau whose single node is §:0:1:B and repeatedly apply the tableau
expansion rules, the substitution rule, and the closure rule until a closed tableau
has been constructed. Since our rules preserve L-satisfiability of tableaux, a
closed tableau indicates that B is indeed L-unsatisfiable, and hence that its
negation A is L-valid. Since L-frames characterise the logic L. we then know
that A is a theorem of logic L. Constructing a tableau for §:0:1:B can be
seen as a search for an L-model for B. FEach branch is a partial definition of
a possible L-model, and different substitutions give different L-models. Our
tableau rules extend one particular branch using one particular formula, thus
differing crucially from the systematic methods in [6, 10] where a rule extends
all branches that pass through one particular formula.

Free variables are used in the labels so that when the box-rule is applied in a
world, the actual ground label of the successor world does not have to be guessed.
Instead, free variables can be instantiated immediatedly before a branch is closed
to make that closure possible. Note, however, that one single instantiation of the
free variables has to be found that allows us to close all branches of a tableau
simultaneously, and that instantiating a free variable (in the wrong way) to close
one branch, can make it impossible to close other branches.

Because a world may have no successor, variable positions in labels have to
be conditional to preserve soundness for non-serial logics.

Every variable is introduced into a label by the reduction of a box-formula
like OA. Such a variable 2 in a tableau formula ¢ on branch B is “universal”
if a renaming ¢ = ¢{x = 2’} of ¢ could be added to B without generating
additional branches. That is, the modified tableau would be no more difficult
to close than the original. An easy way to generate the renaming is to repeat
the rule applications that lead to the generation of ¢, starting from the box-rule
application that created . Once the renaming ¢’ is present on B, the variable
x never has to be instantiated to close B because ¢’ could be used instead of ¢,
thus instantiating =’ instead of #. However, if occurs on two separate branches
in the tableau, then = is not universal because repeating these rule applications
would generate at least one additional branch. Since the only rule that causes
branching is the disjunctive rule, the two separate occurrences of x must have
been created by a disjunctive rule application. Therefore, an application of the
disjunctive rule to a formula 1 causes the universal variables of ¢ to become free
variables. Thus, all free variables are a result of a disjunction within the scope
of a O, corresponding to the fact that O does not distribute over V.

When the disjunctive rule “frees” universal variables, additional copies of the
box-formula that generated them are needed. However, these additional copies
are not generated by the box-rule, but by the disjunctive rule itself.

10

Our diamond-rule does not introduce a new label o.n, when it is applied to
X:A:0:OA. Instead, each formula O A is assigned its own unique label [A]
which is a Gdédelisation of A itself. This rule is easier to implement than the
traditional one; and it guarantees that the number of different labels (of a certain
length) in a proof is finite, thus restricting the search space.

The box-rule for symmetric and euclidean logics can shorten labels. For
example, the tableau formula X’ : A’:1: A4 is derived from X : A :1.(1): O0A if the
logic is symmetric. The semantics for serial logics guarantee that all labels define
worlds, but in non-serial logics, the label 1 may be defined even though 1.(1) is
undefined. To ensure that the formula X’: A’:1: A4 or one of its descendants is
used to close a branch only if the label 1.(1) is defined, the label 1.(1) is made
part of A’ (see Section 4.3). Such problems do not occur when rule applications
always lengthen labels since 7 has to be defined if 7./ is defined.

All expansion rules are sound and invertible (some denominator of each rule
is L-satisfiable iff the numerator is L-satisfiable). Thus, unlike traditional modal
tableau methods where the order of (their non-invertible) rule applications is
crucial [6, 10], the order of rule application is immaterial.

The differences in the calculi for different logics L is mainly in the box-rule,
with different denominators for different logics. In addition, a simpler version of
the closure rule can be used if the logic is serial.

4.2 Tableau Expansion Rules

There are four expansion rules, one for each type of complex (non-literal) formula.
If we wanted to avoid NNF we would have four formula classes (o, 38, v, 7) a la
Smullyan [6], and an extra rule for double negation. Since we assume that all
our formulae are in NNF, we need just one representative for each of the four
classes.

As usual, in each rule, the formula above the horizontal line is its numerator
(the premiss) and the formula(e) below the horizontal line, possibly separated
by vertical bars, are its denominators (the conclusions). All expansion rules
(including the box-rule) are “destructive”; that is, once the (appropriate) rule
has been applied to a formula occurrence to expand a branch, that formula
occurrence is not used again to expand that branch. Note that we permit multiple
occurrences of the same formula on the same branch.

Definition 18 Given a tableau T, a new tableau T' may be constructed from T
by applying one of the Li-expansion rules from Table 3 as follows: If the nu-
merator of a rule occurs on a branch B in T, then the branch B is extended by
the addition of the denominators of that rule. For the disjunctive rule the branch
splits and the formulae in the right and left denominator, respectively, are added
to the two resulting sub-branches instead.

The box-rule(s) shown in Table 3 require explanation. The form of the rule
is determined by the index L in the accompanying table. But some of the de-
nominators have side conditions that determine when they are applicable. For
example, the constraint o5 = 1./g means that (5) is part of the denominator only

X:A:c:ANB
X:A:g: A
X':A':0':B
X:A:c:AVB
D:Aj:0: A D:Ay:01:B
Xy:Ag:o9: AV B | X3:A3:03: AV B
X:A:g:OA
X:A:o[A]: A
X:A:0:0A4
XU{z}: Ao (z): A (K)
XqU{a i Aviop(zq):0A (4)
XoU{ao}: Agiog.(ag):0A (4d)
X3:Az3U{o3}:7m3:0A4 (47)
Xa:As:04: A (T

Xs:AsU{o5}:75: A (
Xg:AgU{og}:1:00A4 (5)

11

Conjunctive rule. X':A’:¢’':B
is a T-renaming of X :A:0:B.

Disjunctive rule. For 1 < i < 3,
the ©¥; = X;:A;:0,: AV B are T-
renamings of v = X:A:6: AV B
(the X; are pairwise digjoint). If
X = 0 then 1)y, 1h3 are omitted.

Diamond-rule. [-]is an arbitrary
but fixed bijection from the set of
formulae to N.

Box-rule. For 1 < i < 6, the
formulae X;:A;:0;:0A4 are T-re-
namings of X : A:o:0A. The vari-
ables #, 21,29 € Vars are new to 7.
The sets X U{x}, Xy U{z1}, XoU
{22}, X3, X4, X5, and Xg are pair-
In addition, o3 =
73.03, 05 = T15.05, 06 = 1.lg, and
|oa] > 2. The form of the denomi-
nator depends on the logic L, and is

wise disjoint.

determined by including every de-
nominator corresponding to the en-
try for L in the table below.

logics ‘ Box-rule denominator H logics ‘ Box-rule denominator ‘
K,D (K) K45, K45D | (K), (4), (47)

T (K), (1) K48, (K), (B), (4), (V)
KB, KDB | (K), (B) B (K), (1), (B)

K4, KD4 | (K), (4) S4 (K), (T), (4)

K5, KD5 | (K), (47), (47), (5) S5 (K), (T), (4), (47)

Table 3: Tableau

expansion rules.

12

when the numerator of the box-rule is of the form X :A:1.g:0A. Similarly,
the constraints o3 = 73.l3 and o5 = 75.[5 for the (47) and (B) denominators
mean these rules can be used only for a numerator of the form X :A:0:0A4
where |o| > 2, thereby guaranteeing that the strictly shorter labels 73 and 75
that appear in the respective denominators are properly defined. Note that the
(4%) denominator is the restriction of the (4) denominator to the case where
|| > 2. The table indicates that the rules for a logic L and its serial version LD
are identical because these logics are distinguished by the form of our closure
rule; see Definition 21. Various other ways to define the calculi for serial logics
exist; see [10].

4.3 The Substitution Rule and the Closure Rule

By definition, the substitution rule allows us to apply any substitution at any
time to a tableau. In practice, however, it makes sense to apply only “useful”
substitutions; that is, those most general substitutions which allow to close a
branch of the tableau.

Definition 19 Substitution rule: Given a tableau T, a new tableau T' = To
may be constructed from T by applying a substitution o to T that instantiates
[free variables in T with other free variables or natural numbers.

In tableaux for modal logics without free variables as well as in free-variable
tableaux for first-order logic, a tableau branch is closed if it contains comple-
mentary literals since this immediately implies the existence of an inconsistency.
Here, however, this is not always the case because the labels of the complemen-
tary literals may be conditional. For example, the (apparently contradictory)
pair §:1.(1):p and @:1.(1):=p is not necessarily inconsistent since the world
I(1.(1)) may not exist in the chosen model. Before declaring this pair to be in-
consistent, we therefore have to ensure that I(1.(1)) # L for all L-interpretations
satisfying the tableau branch B that is to be closed. Fortunately, this knowledge
can be deduced from other formulae on 5. Thus in our example, a formula like
= X:1.1: A on B would “justify” the use of the literal pair @:1.(1):p and
0:1.(1):=p for closing the branch B since any L-interpretation (M, T) satisfy-
ing B has to satisfy ¢, and, thus, I(1.(1)) = I(1.1) # L has to be a world in
the chosen model M. The crucial point is that the label 1.1 of % is uncondi-
tional exactly in the conditional positions of @:1.(1):p and 0:1.(1):—=p. These
observations are now extended to the general case of arbitrary ground labels.

Definition 20 A ground label o with j-th position [n;] (1 < j < |o|) is yustified
on a branch B if there is some set F C B of tableau formulae such that for every j:

1. some label in lab(F) has (an unconditional but otherwise identical) j-th
position n;; and
2. for all 7 € lab(F): if |T| > j then the j-th position in T is n; or (n;).

Definition 21 Given a tableau T and a substitution p : Univ(T) — N that in-
stantiates universal variables in T with natural numbers, the L-closure rule

13

allows to construct a new tableau T’ from T by marking B in T as closed pro-
vided that:

1. the branch Bp of Tp contains a pair X :AN:o:p and X' : AN 10 :-p of com-
plementary literals; and

2. (a) the logic L is serial, or (b) all labels in {o} U AUA’ are ground and
justified on Bp.

Note that the substitution p that instantiates universal variables is not actu-
ally applied to the tableau when the branch is closed; it only has to exist.

By definition, only complementary literals close tableau branches, but in
theory, pairs of complementary complex formulae could be used as well.

4.4 Tableau Proofs

We now have all the ingredients we need to define the notion of a tableau proof.

Definition 22 A sequence T°,...,T" of tableauz is an L-proof for the L-
unsatisfiability of a formula A if:

1. T consists of the single node () :():1:A;

2. for 1 < m < r, the tableau T™ is constructed from T™ " by applying an
L-expansion rule (Def. 18), the substitution rule (Def. 19), or the L-closure
rule (Def. 21); and

8. all branches in T are marked as closed.

Theorems 23 and 25 state soundness and completeness for our calculus with

respect to the Kripke semantics for logic L; the proofs can be found in Sections
5 and 6.

Theorem 23 (Soundness) let A be a formula in NNF. If there is an L-proof
TO, ..., T" for the L-unsatisfiability of A (Def. 22), then A is L-unsatisfiable.

We prove completeness for the non-deterministic and unrestricted version
of the calculus, and also for all tableau procedures based on this calculus that
deterministically choose the next formula for expansion (in a fair way) and that
only apply most general closing substitutions.

Definition 24 Given an open tableau T, a tableau procedure U deterministi-
cally chooses an open branch B in T and a non-literal tableau formula ¢ on B
for expansion.

The tableau procedure V is fair if, in the (possibly infinite) tableau that is
constructed using W (where no substitution is applied and no branch is closed),
every formula has been used for expansion of every branch on which it occurs.

Theorem 25 (Completeness) let W be a fair tableau procedure, and let A
be an L-unsatisfiable formula in NNF. Then there is a (finite) tableau proof
TO ..., T" for the L-unsatisfiability of A, where T' is constructed from T
(1<i<r)by

14

(1;10:1:0(=pV ¢) AOp A (O=g V O=p)
2] 0:1:0(=pV q)
(311 0:1:0p A (O=g Vv Omp)
[4:3] (Z)!] :Op
5:3] 0:1:OmgV O—p

[6:21 {y}:1.(y):~pVyq

(7:4] {x}:1.(x):p

/ \

[8:5 0:1: 0 [9:5] 0:1:O-p
| |
}] 0:1.[=q¢]:—q (15:9] 0:1.[—p]:—p
/l\
[11;6] @:]l.(y1) tap [12;6] @2|1-(.U1) iq Bs
3:6] {y2}:1.(y2):—p Vg 46] {ys}:1.(ys):—pVyq

T T
B] 82

Figure 1: The tableau T from FExample 26.

1. applying the appropriate L-expansion rule to the branch B and the formula
¥ on B chosen by W from T''; or

2. applying a most general substitution such that the L-closure rule can be
applied to a previously open branch in T' .

Example 26 We prove that A = O(p — ¢) — (Op — (Og A Op)) is a K-
theorem. To do this, we first transform the negation of A into NNF; the result is
B = NNF(=A) =0(=pVq) AOpA (O—gV O=p). The (fully expanded) tableau T,
that is part of the proof for the K-unsatisfiability of B is shown in Figure 1. The
nodes of the tableau are numbered; a pair [i;] is attached to the i-th node, the
number j denotes that node i has been created by applying an expansion rule to
the formula in node j. Note, that by applying the disjunctive rule to 6, the nodes
11 to 14 are added; 13 and 1/ are renamings of 6. The variable y, is no longer
universal in 11 and 12.

When the substitution o = {y1/[—ql} is applied to T, the branches of the
resulting tableau To can be closed as follows, thereby completing the tableau
proof: The left branch By of To can be closed by the universal variable sub-
stitution py = {a/[—q|} because Byipy then contains the complementary pair
{[=q]}:1.([~¢]):p and 0 :1.([—q]) : =p in nodes 7 and 11, respectively. The label
1.([—q]) of these literals is justified on Bypy by label 1.[=q] of formula 10. In this

15

case, the complementary literals contain conditional labels which are only justified
by a third formula on the branch, so checking for justification is indispensable.
The middle branch By of To can be closed using the same universal variable sub-
stitution py = p1 = {a/[—q|} as for the left branch. The branch Bypy then con-
tains the complementary literals {[=¢1} :1.([=q¢]) : ¢ and O :1.([=¢]) : =g in nodes
10 and 12. The label is again justified by formula 10, which in this case is one of
the complementary literals. Note that the middle branch in T can be closed only
by the substitution o = {y1/[—q]}, other choices will not suffice. The right branch
Bs of To can be closed using the universal variable substitution ps = {x/[—-p]|} as
Bsps then contains the pair {[—=p|}:1.([-p]) :p and {[=p]}: 1.[-p] :=p of com-
plementary literals in nodes 7 resp. 15. The label 1.(]—p]) of node 7 is justified
on Bz by formula 15.

The universal variable substitution py = py = {2 /[—q]|} that closes By and By
is incompatible with the substitution ps = {x/[—p] that closes Bs. Therefore, if
the variable x were not universal in formula 7, the tableau could not be closed; a
second instance of formula 7 would have to be added.

5 Soundness

First, we introduce notation for the concatenation of substitutions:

Definition 27 The concatenation o A of substitutions u and X is defined by

(1o N)(x) = u(A(x))

for all variables x € Vars.

Note, that O(p o A) = OAp for all objects O.

The following two lemmata, which will be used in the soundness proof, follow
immediately from the definitions. The first one states, that a tableau formula
and a renaming 1)’ of ¢ are equivalent. The second lemma states that if a label &
is justified on a tableau branch B and B is satisfied by an interpretation (M, T),
then I(o) has to be a world in M (even if ¢ is conditional).

Lemma 28 Let (M, 1) be an L-interpretation, u a grounding substitution, i a
formula in a tableaw T, and 0" a T-renaming of . Then (M, I,) = ¢ if and

only if (M, T, i) =o'

Lemma 29 Let (M, 1) be an L-interpretation, where M = (W, R, V), let B be
a tableaw branch, and let o be a ground label. If (M1,) L-satisfies B, and the
label o is justified on B, then I(c) € W.

Definition 30 An L-interpretation (M, I), where M = (W, R, V), is canonical
provided that:

1. For all ground labels o = 7.[n]:
if I(r) € W and I(t) E CA,, then I(o) E A,

where A, is the formula for which n = [A,] ([-] is the bijection from the
set of formulae to the set of natural numbers used for the diamond-rule).

16

2. If the logic L is serial, then I(o) € W for all ground labels .

The restriction to canonical interpretations only makes sense because every L-
model M L-satisfying a formula A can be combined with a label interpretation I,
such that (M, T) is canonical and L-satisfies the intial tableau §:0:1: A.

Lemma 31 Given a formula A in NNF and an L-model M L-satisfying A, there
is a canonical L-interpretation (M, 1) that L-satisfies the tableau consisting of
the singleton tableau formula 0 :1: A.

Proof. Since M = (W, R, V) L-satisfies A, we know that there is some world
wy € W osuch that wy | A. Now, for n > 1, let A,, be the formula for which
n = [A,] (where [-] is the bijection from the set of formulae to the set of natural
numbers used for the diamond-rule) and create I as follows: Put I(1) = wy, and
for every ground label of the form 7.n:

e if there is a world w € W such that I(r)Rw and w [A, then put
I(r.n) = I(r.(n)) = w;

e clse, if there is no such world w, but there is a world w’ that is reachable
from I(7), then put I(r.n) = I(7.(n)) = w’;

e else, if there is no world reachable from I(7), put I(r.n) = I(r.(n)) = L.

The L-interpretation (M, I) is canonical by way of its definition, and in addition
L-satisfies the tableau consisting of ¢g = §:0:1: A. To prove this, we have to
show that for all grounding substitutions p thereis a branch B in this tableau such
that for all substitutions A the ground formula ¢oAgu is L-satisfied by (M, T).
Since ¢oAjgu = ¢o this reduces to showing that (a) I(1) = L or I(1) = A, and
(b) (M, T) satisfies the label 1. Condition (a) is satisfied since I(1) = A by
choice, and Condition (b) holds because there are no labels 7.n in ipr(1)uU {1}.1

The following lemmata state that L-satisfiability by canonical interpretations
is preserved if an expansion rule (Lemma 32), the substitution rule (Lemma 33),
or the closure rule (Lemma 34) is applied to a tableau.

Lemma 32 [If the tableau T is L-satisfied by the canonical L-interpretation
(M, T), and T’ is constructed from T by applying an L-expansion rule, then
(M, I) L-satisfies T' as well.

Proof. We show that for each grounding substitution wu, there is a branch B’
in 7' that is L-satisfied by (M, I).

By assumption, (M, T, i) L-satisfies some branch B of 7. If T is constructed
from T by expanding a branch different from B, then B is a branch of T as well,
and we are through. For the case that 7’ is constructed from 7 by expanding
the branch B, we show that (M, I, u) L-satisfies one of the branches of 7’ by
cases according to which expansion rule is applied.

Conjunctive rule: Tet ¢ = X : A:0: (A A B) be the formula on B, such that 7 is
constructed from T by adding ¢ = X :A:0: 4 and ¢}, = X':A’:0’: B to B.

(M, I, 1) E ¢ implies that for all grounding substitutions X the following
holds (where ¢ = g A|xu):

17

1. (a) I(c) = L5 or (b) I(§) = L for some & € ANxpu; or (¢) I(c) = AA B,
and thus I(c) E A and I(s) = B.

2. I I(E) # L for all £ € AN xp, then (M, T) satisfies <.

This implies that (M, I, u) L-satisfies ¢y = X :A:o: Aand ¢ = X : A:o: B and
thus, according to Lemma 28, the renaming ¢}; therefore, (M, I, u) L-satisfies
the branch BU {¢y, ¢4} in T.

Disjunctive rule: Tet ¢ = X : A:o:(AV B) be the formula in B, such that 77 is
constructed from 7 by adding ¢} = 0:Ay:01:4 and ¢ = Xo:09:A2: AV B
to B obtaining B} and adding ¢4 = 0:Ay:0¢:B and ¢’ = X3:A3:03: AV B
to B obtaining Bj.

(M, 1, u) E ¢ implies that both ¢’ and ¢ are L-satisfied by (M, I, u) (using
Lemma 28), and it implies that for all grounding substitutions A’ the following
holds (where ¢ = o\ xu):

1. (a) I(c) = L, or (b) I(§) = L for some & € AN xpu, or (¢) I(<) = AV B,
which implies that I(¢) = A or I(¢) E B.

2. IWI(E) # L for all £ € AN |xp, then (M, T) satisfies <.

This is in particular true if X is chosen to be equal to u, and thus for the label
¢ =opxp = op=olgu and the sett AN\ xpu = AXjpu, where X is an arbitrary
grounding substitution.

This implies that (M, I, u) L-satisfies ¢1 = 0:A:0: A or it L-satisfies ¢o =
0:A:0:B and thus, according to Lemma 28, (at least) one of the renameings
@) and @; therefore, (M, T, u) L-satisfies one of the branches B} and B in T".

Diamond-rule: Tet ¢ = X:A:0:0A be the formula on B, such that 7' is
constructed from T by adding ¢1 = X : A:0.[A]: A to B.

(M, I, 1) E ¢ implies that for all grounding substitutions X the following
holds (where ¢ = g A|xu):

1. (a) I(c) = L which implies I(c.[A]) = L, or (b) I(§) = L for some £ €
AXxp, or (¢) I(s) = OA which implies that there is a world w € W that
is reachable from I(g), such that w = A; thus, because (M, I) is canonical,
I(c.JA]) € W and I(c.[A]) E A.

2. I I(&) # L for all £ € AXxpu, then (M, T) satisfies ¢; in that case, (a) if
I(c) = L, then (M, I) satisfies ¢.[A] as well, because ¢ has to be conditional,
(b) if I(¢) # L, then I(c) = OA, which implies by definition of canonical
interpretations that I(c.[A]) € W.

This implies that (M, I, u) L-satisfies ¢y = X :A:0.[A]: A and, therefore, L-
satisfies the branch BU {¢} in T".

Box-rule: T.et ¢ = X : A:o:0A be the formula in B, such that 7’ is constructed
from T by adding to B according to Table 3 the formulae

by = XU{r}:A:io(r):A

18

¢z4):¢?4d) = XyU{m}:Arioq.(21):0A
¢;4r) = X3:A3U{o3}:m3:0A4
Csz) = X4:A4:04: A
(bzR) = Xs:AsU{o5}:m4: A
¢;5) = Xg:AgU{og}:1:00A4

(M, I, 1) E ¢ implies that for all grounding substitutions X the following
holds (where ¢ = g A|xu):

1. (a) I(c) = L, or (b) I(§) = L for some £ € AXxpu, or (c) I(c) = OA.

2. I I(E) # L for all £ € AN xp, then (M, T) satisfies <.

e We show that (M, T, u) L-satisfies ¢y = XU{z}:A:0.(2):A. For all
grounding substitutions A the following holds (where n = u(x), and thus

()N xufaipt = 5-(n)):

1. I I(c.(n)) # L then I(¢) # L and I(c.(n)) is reachable from I(c); if,
in addition, I(§) # L for all £ € AXNxu = AN xygmu, then we can
conclude that I(c) = OA. By the definition of the box operator, this
implies I(c.(n)) | A.

2. IFI(&) # L for all £ € AN xp, then (M, T, 1) satisfies the label ¢.(n)

because it satisfies ¢ and the extension (n) is conditional.

° ¢;4) is only part of the numerator of the box-rule for (a) transitive logics
(as (4) numerator of the box-rule) and (b) euclidean logics if |o] > 2 (as
(4%) numerator of the box-rule). We show that if (a) the reachability rela-
tion R of M is transitive or (b) R is euclidean and |o| > 2, then (M, T, u)
L-satisfies ¢4y = X U{z}:A:0.(z):0A and thus (using Lemma 28) L-
satisfies (b24). For all grounding substitutions A the following holds (where

n = p(x), i.e., o.(T) A\ xufaip = <-(n)):

1. I I(s.(n)) = w’ # L then I(¢) = w # L and wRw'; if, in addition,
I(&) # L forall £ € AN xpu = AN xu(mtt, then we can conclude that
w = OA. Suppose w’ has no successors, then w’ = OA for any A
vacuously. If w’ has a successor, then let w” be any world such that
w' Rw”. (a) If R is transitive, this immediately implies wRw”. (b) If
R is euclidean and [¢| > 2, then there is a world wq such that woRw.
We can derive wRw" as follows: wqRw implies wRw, wRw’ and wRw
implies w'Rw, w'Rw and w’ Rw” implies wRw”. Now, since w = OA
we have w” |= A, and since w” is an arbitrary world reachable from w/’,

w' | OA.
2. I 1(&) # L for all £ € ANxpu, then (M, T, u) satisfies the label ¢.(n)

because it satisfies ¢ and the extension (n) is conditional.

° (b?‘”) and ¢y are only part of the numerator of the box-rule for euclidean
logics L. We show that if the reachability relation R of M is euclidean then

19

(M, T,) L-satisfies the tableau formula ¢4y = X : AU {o}:7:0A, where
o = 7.0, and tableau formula ¢y = X :AU{o}:1:00A4, where 0 = 1./,
and thus (using Lemma 28) L-satisfies (b;‘”) and (bzs)' For all grounding
substitutions A the following holds (where TA|xu = <" and [n] = u(l), i.e.,
¢ =d.[n]):

1. IfI(c) = L or there is some label £ in AX xp such that I(§) = L, then

there is a label £ in (AU{a}) A xu = AN xpU{c} such that I(§) = L.
Otherwise, if I(<) = w |E OA, then I(¢) = w’ # 1 and w'Ruw.
Suppose w’ has no successors, then w’ = OA for any A vacuously. If
w’ has a successor, then let w” be any world such that w'Rw”. Since
the logic L is euclidean, w'Rw and w'Rw"” implies wRw"” and w” Rw.
Therefore, w = OA implies w” = A. Since this holds for all worlds
w” reachable from w’, we can conclude I(¢) = v’ = OA.
Moreover, if w” is any world such that w” Rw', then w"” Rw implies
wRw"” and thus w” }= A. Since, again, w"” was chosen arbitrarily,
this implies w” = OA and w’ = OOA. This holds in particular for
the case where o = 1. and w’ = I(1).

2. IWI(E) # L for all £ € AXxp, then (M, T, i) satisfies the label ¢’ €
ipr(c), because it satisfies .

° (sz) is only part of the numerator of the box-rule for reflexive logics L. We
show that if the reachability relation R of M is reflexive, then (M, T, u)
L-satisfies ¢y = X : A:0: A and thus (using Lemma 28) L-satisfies (sz).
For all grounding substitutions A the following holds: I(¢) = L, or I(§) = L
for some £ € AN xp, or I(s) = OA which implies 1(s) = A (because R is

reflexive).

° (bzR) is only part of the numerator of the box-rule for symmetric log-
ics L. We show that if the reachability relation R of M is symmetric
then (M, T, u) L-satisfies ¢p)y = X:AU{o}:7:A, where 0 = 7./, and
thus (using LLemma 28) L-satisfies (bzR)' For all grounding substitutions A
the following holds (where ¢/ = 7A;xp and [n] = lp):

1. If I(c) = L or there is some label £ in AXxp such that I(§) = L,
then there is a label £ in (AU {o})A\xpu = AXxu U {c} such that
I(¢) = L. Otherwise, if I(¢) = w | OA, then I(¢') = w’ # L and
w' Rw (since ¢ =<¢’.[n]). Because R is symmetric this implies wRw’

and thus I(¢/) = v’ E A.

2. I I(&) # L for all £ € ANxp, then (M, T, 1) satisfies the label ¢’ €
ipr(c), because it satisfies .

Lemma 33 [If the tableau T is L-satisfied by the canonical L-interpretation
(M,T), and T is constructed from T by applying the substitution rule, then
(M, T) L-satisfies T' as well.

20

Proof. Tet p be the substitution that has been applied to derive T’ from 7. We
have to show that for each grounding substitution u, there is a branch B in 7’
that is L-satisfied by (M,T).

l.et 4 be an arbitrary but fixed grounding substitution. By assumption,
(M, 1, 1) L-satisfies some branch B of 7. et ¢ = X :A:0:A be an arbitrary
formula on B.

et A be an arbitrary grounding substitution, and define the substitution \’
by A" = Xop. Then the substitutions o xop and po)'|x areidentical, because
p does not instantiate variables in X', and thus M|y = (Ao p)|X = A|x o p.

Because (M, T, i) |= ¢, the following holds (where ¢’ = oM\ xp):

1. (a) I(<") = L, or (b) I(§) = L for some £ € AN |xp, or (c) I(<') | A.
2. IWI(E) # L for all £ € AN |xp, then (M, T) satisfies ¢".

This implies, because po Ajx o p = po Nx, that the following holds (where
<= apA|xi):

1. (a) I(c) = L, or (b) I(§) = L for some £ € ApAxu, or (c) I(<) = A.
2. I I(&) # L for all £ € ApAxp, then (M, T) satisfies <.

Thus, (M, I, u) L-satisfies ¢p. [|

Lemma 34 [If the tableau T is L-satisfied by the canonical L-interpretation
(M, Ty, and T’ is constructed from T by applying the L-closure rule, then (M, T)
L-satisfies T' as well.

Proof. 7' is obtained from 7 by marking a branch B in T as being closed,
because it contains formulae ¢1 = Xy :Aqy:o1:p and ¢3 = X9:Ag:09:—p, and
there is a substitution p of the universal variables in T such that o1px, =
a2p)x, = { and (a) the logic L is serial, or (b) all labels ¢ in {£}UA;p1x, UAsp)x,
are ground and justified on B. Suppose the branch B were L-satisfied by (M, I, i)
for some grounding substitution p. Then I(cu) € W, because

1. if the logic L is serial, then I(cu) € W since (M, I,) is canonical.

2. otherwise, ¢ is ground and justified, and thus ¢u = ¢ and I(¢) € W accord-
ing to Lemma 29.

Therefore, (M, T, u) |= ¢1 implies 1(§u) = I(o1p)x, 1) = p, and (M, T, 1) = 2
implies I({u) = I(o2p x,1) = —p- This, however, is not possible.

Thus, our assumption is wrong, and B is not L-satisfied by (M, I, u) for any p.
But then there has to be a different branch Bg in 7 for all y, that occurs in T’
as well and is not affected by marking the branch B as being closed. | |

Now we have everything at hand that is needed to prove soundness of our
calculus:

Theorem 35 Let A be a formula in NNF. If there is an L-proof T°,....T" for
the L-unsatisfiability of A (Def 22), then A is L-unsatisfiable.

21

Proof. For a contradiction, suppose there is an L-proof 79, ..., 7" for the L-
unsatisfiability of A, but that A is L-satisfiable. Then there is an L-model M
of A and by Lemma 31 there is a canonical L-interpretation of 79 TLemmata
32, 33 and 34 imply that L-satisfiability by canonical L-interpretations is pre-
served in tableau proofs. Hence the tableau 77 is L-satisfied by a canonical
L-interpretation as well. But by definition of a tableau proof, all branches in 7"
are marked as being closed, thus the tableau 7" cannot possibly be L-satisfiable.

Note that if a tableau is L-satisfiable then it is L-satisfiable by a canonical
interpretation. Thus, L-satisfiability is preserved in general; it is, however, quite
difficult (if not impossible) to prove this directly without using the notion of
canonical interpretations.

6 Completeness

We now turn to the completeness of our calculus. The completeness theorem can
be stated in two contraposing ways: Let A be a formula in NNF:

If A is L-unsatisfiable, then there is a tableau proof 79,..., 7" for
0:0:1:A.

or equivalently
If there is no tableau proof for §:0:1: A then A is L-satisfiable.

We first prove the completeness theorem as stated in the paper viz: Let U be
a fair tableau procedure, and let A be an L-unsatisfiable formula in NNF. Then
there is a (finite) tableau proof 79 ... 7" for the L-unsatisfiability of A, where
T* is constructed from 7' (1 <i<r) by

e applying the appropriate L-expansion rule to the branch B and the formula
¥ on B chosen by W from 7' '; or

e applying a most general substitution such that the L-closure rule can be
applied to a previously open branch in 7771,

So suppose we are given a fair tableau procedure W and an initial tableau
0:0:1:A. We prove the theorem in a rather roundabout way following the
method of Beckert and Posegga [2]:

Step 1 We define the notion of a ground L-Hintikka set (of tableau formulae)
and show that every Hintikka set is L-satisfiable in some L-interpretation

(M, T).

Step 2 We consider the sequence (7;,)”,20 that results from our fair tableau
procedure W without closing branches or applying substitutions, and define
the infinite tableau 7., to be the limit of the 7.

22

Step 3 Assuming that there is no substitution of the variables in 7., that gives
a closed instance of T, we define a particular substitution 8., and show
that T, contains at least one branch that forms a Hintikka set. Step 1
then gives us an L-satisfiable set, and in particular an L-model for the
formula A in root :0:1:A of T.0.. This allows us to prove a lemma
stating that if there is no substitution that closes 7, then A is L-satisfiable.

Step 4 The contrapositive of this lemma is: If A is L-unsatisfiable, then there is
at least one substitution # that, when applied, allows to close all branches
in Too. Thus there is an n such that all branches in the finite tableau 7,0
can be closed. We construct another tableau 77 from T, by starting at
the end of each branch and removing all formulae that are not needed to
close the corresponding branch in 7,0 (that includes justification). Note
that 77 8 is still closed but is unlikely to be of uniform depth.

Step 5 We prove that if 776 is closed, then the substitution # can be decomposed
so that: § = 0’0, 0, o...0&; where & is a most general closing substitution
for the instantiation (B8;)&1&,...6 1 of the i-th branch B; in 7'. And €' is
the part of § that is not actually needed to close 7.

Step 6 We prove the restriction to a fair tableau procedure and to using most
general closing substitutions is complete.

6.1 Step 1: Labelled Hintikka Sets and L-satisfiability.

Definition 36 A set X' of ground labelled formulae is an L-Hintikka set, if it
satisfies the following conditions:

1. lab(X) is a strongly generated set of labels with root 1.

2. There is no primitive proposition p such that (a) both X :Ay:0:p and
Y:Agy:o:=p are in X, and (b) the logic L is serial or all labels in {o} U
Ay U Ay are justified in X.

3. IfX:Aro:ANBeEX then X:A:o: A€ X and X:A:0:Bec X.
4. If X:A:0:AVBEX then X:A:g:AcX or X:A:0:BeX.

5. If X:A:0:04 € X, then the following conditions have to be satisfied,
where it is determined by Table 3 which conditions apply for the logic L:
(K) condition: X U{n}:A:0.(n): A € X for every n € N;

(4) condition: X U{n}:A:o.(n):0A € X for every n € N;

(4%) condition: if o = 7.0 then X U{n}:A:0.(n):0A € X for all n € N;
(47) condition: if o = 7.0 then X :AU{o}:7:0A4 € X;

(T) condition: X:A:0: A€ X;

(B) condition: if o = 1.0 then X :AU{o}:7: A € X;

(5) condition: if o = 1.0 then X :AU{c}:1:004 € X.

23

6. If X:A:0:OA € X then X:A:om: A€ X for some n € N.

Lemma 37 [f X is an L-Hintikka set, then there is an L-interpretation (M, T)
L-satisfying X .

Proof. We define the L-model M = (W, R, V) as follows:
1. Put W ={[o] | o € L} if L is serial and put
W = {[o] | o € lab(X), o is justified in X'}

if I is not serial, where [0] is the equivalence class of all labels that are
identical to o up to (conditional) parentheses.

2. For all [o],[r] € W, let [o]R[r] iff o > 7; that is, iff 7 is L-accessible from
o (see Table 2).

3. For each primitive proposition p let V(p) be defined by:

e If L is serial, then V(p) = {[¢]| X:A:0:p € X}.

e Otherwise, if L is not serial, then
Vip)=A{lo]| X:A:o:pe X, I(0) e W,I(&) € W forall £ € A} .
The (identity) interpretation I is defined by:

1(0)—{ (0] if [o]eW

1 otherwise

lLemma 12 then implies that M is an L-model. According to its construction
(M, 1) is, therefore, an L-interpretation.

We show by induction on the degree of tableau formulae ¢ = X :A:0: A,
that if ¢ € X then (a) [¢] € W, or (b) [£] € W for some £ € A, or [¢] E A.
This induction hypothesis implies that (M, I) L-satisfies ¢. When the induction
proof is completed, we have shown that all formulae in X and thus A itself are
L-satisfied by the L-interpretation (M, T).

Let the degree of a modal formula A be defined syntactically (as usual). The
degree deg of a tableau formula is then defined by

—

L SN a) deg(A) < deg(A’) or
deg(X :A:o:A) <deg(X':A":0 .A)nCF{ (b) deg(A) = deg(A'), o] < |o']

Base case: The induction base are formulae ¢ where A is a literal. Tn case
A=np, o] € W, and [{] € W for all £ € A, we have [¢] = p by the definition
of V.

For the case A = —p, we have to show that if [¢] € W and [¢] € W for
all &€ € A then [o] E —p. That is, [o] € V(p). For a contradiction suppose
that [0] € V(p). Then by the definition of V' there has to be a tableau formula
X’': A0’ :p e X and, in addition, if L is not serial then [¢'] € W and [¢] e W
for all & € A’. By definition, if L is not serial, [¢/] € W iff ¢’ is justified in X.

24

Thus we have two complementary and “completely justified” atomic formulae in
X'; contradicting condition 2 in the definition of Hintikka sets.
The induction step is separated into cases according to the form of the for-

mula A in ¢:

A= B AC: According to condition 3 in the definition of Hintikka sets, there are
formulae X :A:o0:B € X and X:A:0:C € X. The induction hypothesis
applies to these formulae. Therefore, (a) [o] € W, or (b) [¢] & W for some
&€ Aor[o] E B and [o] E C which implies [o] E B AC. This concludes

the proof for this subcase.
A= BV(': Similar to A = BAC.

A = 0OB: Suppose (a) [o] € W, and (b) [£] € W for all £ € A; we then have to
prove that [r] = B for all [r] € W such that o > 7. We first show that
(certain combinations of) the sub-conditions laid out as part of condition 5
of the definition of Hintikka sets imply this property for certain [7] € W:

(K) condition: for all 7 of the form 7 = o.[n] where n € N. Proof: There
has to be a formula X':A:o.(n): B € X for every n € N, that the
induction hypothesis applies to. Thus, if [r] € W, then [r] E B.

(K) and (4) conditions: for all 7 of the form 7, = o.ny...n where k > 1
and nqy,...,np € N. Proof: This requires an induction on k. We show,
that for all & > 0 (we put 7o = o) there is a formula X*:A:r:0B €
X (for some X*), which then, using the same argument as above for
the (K) condition implies [r] E B if [rx] € W for all & > 1. For
k=0 we have XY:A:7p:0B = X:A:0:A € X by assumption.
Induction step: if X¥:A:r. 0B ¢ X, then Xk A T OB e X
(with X*+1 = X% {n,}), because the (4) condition applies.

(K) and (4d) conditions: for all 7 of the form 7, = o.ny ...ny where k > 1
and nq,...,ng € N, provided that |o| > 2. Proof: similar to that for
the (K) and (4) conditions.

(T) condition: for 7 = o. Proof: There has to be a formula X :A:0:B €
A, that the induction hypothesis applies to. Thus, if [¢] € W, then
o] = B.

(B) condition: for 7 such that o = 7.I. Proof: There has to be a formula
X:AU{e}:7:Bin X that the induction hypothesis applies to. Thus,
if [r] € W, then [7] &= B.

(K), (4%), (47, (5) conditions: if |o| > 2 then for all 7 such that |7| > 2,
else (if o = 1) then for all 7 of the form 1.n where n € N. Proof:
If |o| > 2, then we prove by induction on the length of 7 using the
(47) condition that for all 7 € ipr(o) thereis a formula X :A:7:0B €
X. Using the same argument as above for the (K) condition this
implies [7] = B for all 7 such that |[7| = 2 and [r] € W. In addition,
we have X :A:1.m:0B € X for some m € N (where 1.m € ipr(o);
thus the (5) condition implies that X :A:1:00B € X and (using
the (K) condition) X :A:1.n:0B € X for all n € N. Now, we can

25

procceed to prove [7] = B for all 7 such that |7| > 3 and [r] € W as
in the case of the (K) and (4) conditions. If o = 1, then we can derive
[o.n] E B for all n. € N and [o.n] € W using the (K) condition (see
above).

(4), (47) conditions: for all 7 such that |r| > 2. Proof: We prove
by induction on the length of 7 using the (4”) condition that for all

z

T € ipr(o) there is a formula X :A:7:0B € X. In particular, we
have X :A:1:0B € X. Now, we can procceed to prove [7] = B for
all 7 such that |7| > 2 and [7] € W as in the case of the (K) and (4)
conditions.

z

(T), (4), (47) conditions: for all 7. Proof: Similar to the case of con-
ditions (K), (4) and (47) we prove by induction that for all 7 such
that [7] € W there is a formula X : A:7:0B € X', which then, using
the same argument as above for the (T) condition implies [7] E B.

By checking Table 2, it becomes obvious that the sub-conditions for box-
formulae that apply to an L-Hintikka set, indeed imply: if [r] € W and
o> 7, then [7] E B.

A = OB: According to condition 6 in the definition of Hintikka sets, there is
a formula X:A:om:B € X. The induction hypothesis applies to this
formula. Therefore, (a) [o.n] € W or (b) [¢] ¢ W for some £ € A; or
[o.n] E B. Now, since the label o.n itself occurs in lab(X), [o.n] ¢ W
implies that o.n is not justified in A'. Since the last position of o.n is
unconditional this implies that o is not justified in X. Hence [¢] ¢ W.
Furthermore, if [o.n] = B then [0] = OB since o> o.n for all L. Together,
we have enough to prove that (a) [¢] € W or (b) [] € W for some £ € A
or [0] E OB as desired.

6.2 Step 2: Definition of 7,

Given a fair tableau procedure W and an intial tableaun 70 =0:0:1: A, let T,
T3, ete. be the tableau constructed using W without closing branches or applying
a substitution. These tableaux approximate the infinite tree 7T.,.

6.3 Step 3: If 7, cannot be closed then ...

Now suppose that there is no substitution that allows T, to be closed. Thus
we can choose any substitution 4 we like, and we are guaranteed that 7.6 will
contain some open branch. The branch may differ according to the choice of 6.

We now define a particular substitution 6, as follows: Let {By, Bs, ...} be an
enumeration of the branches of T.,. Let ® = {¢1, ¢2,...} be an enumeration of
the digjunctive formulae (formulae of the form X;:A;:0,: B; V C;) in T excluding
renamings. For every disjunctive formula, if ¢; occurs on By, then let ¢, be the
7-th renaming of ¢; on the k-th branch.

26

Now, the label o; of ¢; will be of finite length. Therefore, the set of all ground
instances of 7; is enumerable; let {a!, a2, ...} be such an enumeration.

et 2 be a variable in X;;; and suppose it occurs in the p-th position of a;;1.
Note, that the sets Xj;; of universal variables are all pairwise disjoint even if
only one of the formulae in the numerator of the conjunctive rule is renamed. To
ensure that the k-th branch By is a potential source of an L-model we have to
ensure that the occurrences of ¢; on By “cover” all the instances of ;. To this
end choose 0, so that: 8., (z) = n, where n is the value of the p-th position of

ol. Thus if z is in the p-th position of o its value “covers” o}, if it is in the
2

p-th position of ;91 its value “covers” o7, and so on.

Lemma 38 [ff., is defined as above, and B is an open branch of the tableau T,
that cannot be closed when 0, is applied then

X ={dNxb | ¢ = X:A:a: A s a formula on B, and

A is a grounding substitution}

15 an L-Hintikka set.

Proof. We have to check each clause of Definition 36 for the set A.

1. Tt is obvious that the root is 1, and fairly easy to see that we always produce
a strongly generated set.

2. Suppose condition 2 in the definition of Hintikka sets is violated by A.
Then there have to be formulae ¢y = X1 :Aqy:07:p, ¢o = Xo:Ay:09:—p
on B and grounding substitutions Ay and Xy, such that (71/\1|;(1 ., =
T2X2|x,000 = ¢, and (b) the logic L is serial or all labels in {c}UA; A x, 00U
AgAg|x, 00 are justified in . Our expansion rules always use 7-renamings
of universal variables in their numerator, hence X; N Xy = (. Therefore,
there is a single grounding substitution A of the universal variables in T,
such that o4 A = ‘71/\1|X1 and g9\ = ‘72/\2|X2- In addition, Ao b, = 6,0 A,
since 6., only instantiated free variables in 7.,. Thus the branch B can
be closed using the substitution A of the universal variables in 7., which
contradicts the choice of B.

3. We have to show, that for all ¢ = X :A:0:AA B € B and all ground-
ing substitutions A, and thus for all formulae of the form @Axf.., the
formulae ¢1A|x0s and ¢aA|x0 are in X', where ¢y = 0:A:0:A and
¢y = 0:A:0:B. Since the appropriate rule has been applied to ¢, the
formulae X :A:o:A and X':A’:0": B are both on B. Thus, ¢1Ax8s €
X. To prove the same for ¢, let p be the variable renaming such that
X':A":0": B = (X:A:0:B)u, and put X' = (Aop), which implies X'y, =
Ajx o . The substitution A’ is grounding. Therefore, by definition the set
A contains the formula ¢35\ x/0.., which is identical to ¢o)|xfu-

4. We have to show, that for all ¢ = X:A:0: AV B € B and all grounding
substitutions A, and thus for all formulae of the form @A xf.,, one of the
formulae @12 x0 and @2 x 0. is in X', where ¢ = 0:A:0:A and ¢y =

27

0:A:0:B. If X = () then this holds immediately by the special case
of the digjunctive rule. Otherwise, according to the construction of T
and 6, there has to be a renaming ¢’ = ¢p of ¢ on B (where p is the
renaming substitution) such that 0 x 0 p = Ay, i.e., 0 = PA|x O -
Since the appropriate rule has been applied to ¢, one of the formulae

1= ¢1p and @y = ¢ap is on B and thus ¢ Aglee = @10 = G1A|x0x OF
<b’2/\|@000 = ¢2/\|X000 isin X.

Since the other conditions in the definition of Hintikka sets closely resemble the
tableau expansion rules, the proof that these conditions hold for A" is similar to
that for conjunctive formulae. [|

Lemma 39 If there is no substitution that closes the tableau To, for 0:0:1: A,
then A is L-satisfiable.

Proof. Since 7., cannot be closed for any substitution, it cannot be closed for
A as defined above. Thus there is some open branch in T.6.,. By LLemma 38
this branch forms an L-Hintikka set. By Lemma 37 such a set gives an L-
interpretation (M, T) that L-satisfies the root 0:0:1: A of T° But this means
that in the L-model M we must have I(1) = A. ||

6.4 Step 4

The contrapositive of this lemma is: If A is L-unsatisfiable, then there is at least
one substitution 8 that, when applied, allows to close all branches in 7.,. Thus
there is an n such that all branches in the finite tableau 7,6 can be closed. We
construct another tablean 77 from T, by starting at the end of each branch and
removing all formulae that are not needed to close the corresponding branch in
T .0 (that includes justification). Note that 77 6 is still closed but is unlikely to
be of uniform depth.

6.5 Step 5:

Lemma 40 If 70 is closed for some finite n, then the substitution 6 can be
decomposed so that: 0 = 0 0§, 0&,_10...0& where & is a most general closing
substitution for the instantiation (B;)&1&2...6 1 of the i-th branch, B;, in T,.
And @' is the part of 8 that is not actually needed to close T, .

Proof. We construct the & inductively as follows:
Define & = 0. For 1 < i < r, let & be a most general substitution, such that

1. &, is a specialisation of &; that is, there is a substitution & such that
Sio1 =& o&; and
2. & is a closing substitution for (B;)&1&,...6 4.

Then &; is a most general closing substitution. For otherwise, there must be a
closing substitution £, that is more general than &,. The is-more-general relation
is transitive hence &’ is more general than £, which contradicts our choice of
& as a most general substitution satisfying the two conditions.

Finally, define 8 = &.. [|

28

6.6 Step 6

Since W is a fair tableau procedure we have proved the completeness theorem as
stated in the paper.

Our implementation uses a fair tableau procedure and uses backtracking to
resolve any remaining non-determinism; namely which closing substitution to
choose, and whether to close a branch (if possible) or to expand it. Thus it will
find the proof in a finite amount of time.

7 leanK: An Implementation

We have implemented our calculus as a “lean” theorem prover written in Prolog
(the source code is available at http://i12www.ira.uka.de/modlean on the
World Wide Web). The basic version for the logic K is called leanK, and consists
of just eleven Prolog clauses and 45 lines of code. The version for the logic KD
which does not demand justified labels, is even shorter: it consists of only 6
clauses and 27 lines of code. (Below we describe this version for the logic KD
only.)

We use Prolog syntax for formulae: primitive propositions are Prolog terms,

is negation, “;” disjunction, “,” conjunction, the prefix-operator “box” is

w_»

the box-operator, and “dia” is the diamond-operator. Thus, a modal formula
is represented by a Prolog term (for example, the formula p ADO(=pV Op) is
represented by (p,box(-p;dia p))).

The Prolog predicate

prove(Fml,Label,Univ,Lits,UnExp,Free,Limit)

implements our prover; it succeeds if there is a closed tableau (of a certain size)
for the formula bound to Fml. The prover is started with the goal

prove(Fml,[1,01,01,0,[1,Limit)

which succeeds if Fml can be proven inconsistent without using more than Limit
free variables on each tableau branch.?
The meaning of the arguments of prove is:

Fml: The current formula.
Label: The label of the current formula.

Univ: The list of universal variables in the current formula.

*Tf one wants to avoid committing on the number Limit, the predicate prove can be called
with iterative deepening on Limit. The standard solution in Prolog for this is:

inc_prove(Fml,Limit) :- prove(Fml,[1,[1,01,0,[],Limit).
inc_prove(Fml,Limit) :- NewLimit is Limit + 1,

inc_prove (Fml,NewLimit) .

When started with inc_prove (Fml,N), the prover searches with the values N, N+1, ... for Limit.

29

Lits: The set of literals on the branch; in case the current formula is a literal ¢,
this list contains only those literals, that have not been used yet to be uni-
fied with ¢ to close the branch. A literal is stored in the form (Label:Neg),
where Neg is the complement of the literal, and Label is its label.

UnExp: The set of formulae that have not been considered yet. Formulae are
stored in the form (Univ:Label:Fml).

Free: A Prolog term containing all free variables introduced in labels (these can
be instantiated).

Limit: The number of variables, that may still be added (has to be greater
than 0).

The conjunctive rule:

prove((A,B),Label,Univ,Lits,UnExp,Free,Limit) :- !,
copy_term((Label,Univ,Free), (LabelB,UnivB,Free)),
prove(A,Label,Univ,Lits, [(UnivB:LabelB:B) |UnExp]l,Limit).

The disjunctive rule:

prove((4;B),Label,Univ,Lits,UnExp,Free,Limit) :- !,
Limit >= 0,
copy_term((Label,Univ,Free), (LabelA,UnivA,Free)),
copy_term((Label,Univ,Free), (LabelB,UnivB,Free)),
append (UnExp, [UnivA:LabelA: (4;B)],UnExpd),
append (UnExp, [UnivB:LabelB: (4;B)],UnExpB),
length(Univ,Length),
NewLimit is Limit - Length,
prove(A,Label, [1,Lits,UnExpA, (Univ+Free) ,NewLimit),
prove(B,Label, [1,Lits,UnExpB, (Univ+Free) ,NewLimit) .

The box-rule:

prove(box Fml,Label,Univ,Lits,UnExp,Free,Limit) :- !,
prove(Fml, [X|Labell, [X|Univ],Lits,UnExp,Free,Limit).

The diamond-rule:

prove(dia Fml,Label,Univ,Lits,UnExp,Free,Limit) :- !,
prove(Fml, [Fml|Label] ,Univ,Lits,UnExp,Free,Limit).

This clause applies if the current formula is a literal, and tries to close the branch:

prove(Lit,Label,_, [LILits],_,Free,_) :-
copy_term(((Label:Lit),Free), (New,Free)),
(copy_term((L,Free), (New,Free)),
retract(branches(B)), NB is B+1, assert(branches(lNB))
; prove(Lit,Label,_,Lits,[1,0,_,_)
).

This clause applies, if there is no literal left on the branch, that one could try to
unify the current formula with:

prove(Lit,LitLabel,_,Lits, [(Univ:Label:Fml) |UnExpR],Free,Limit) :-
! >
((Lit = -Neg; -Lit = Neg) ->
prove(Fml,Label,Univ, [(LitLabel:Neg) |Lits],
UnExpR,Free,Limit)

).

The leanK program employs the following fair tableau procedure: Given a
tableau 7T, the branch that is expanded next is the left-most open branch, with
the formulae on any particular branch organised as a queue. The first formula in
the chosen branch/queue is removed from the queue and is used to update the
tableau as follows:

e If the chosen formula is not a literal then some (one) rule is applicable to it,
and the formulae created by that rule application are added to the queue
as follows: if the (traditional part of the) created formula is strictly less
complex than the premiss, this new formula is added to the front of the
queue, otherwise it is added to the end of the queue. In particular, this
means that renamings of formulae added by the disjunctive rule, and the
formula labelled (4) and (47) in the numerator of the box-rule, are added

to the end of the queue.

e If the chosen formula in the queue is a literal ¢ and there is a most general
substitution p of the free variables in ¢ such that ¢u and some other
literal 2 on the branch can be used for closure, then there is a choice
point: (1) the substitution p may be applied and the branch closed, or
(2) the literal is removed from the queue and the next formula moves to
the front. There is a further choicepoint if there is more than one closing
substitution u. In case no closing substitution p exists, option (2) is used
deterministically. If there is a choice, Prolog’s backtracking mechanism is
used to resolve this non-determinism and explore all choices.

Since this procedure is essentially a depth first search, a limit is imposed
on the number of free variables in a branch, thereby forcing every branch to
terminate after some finite number of rule applications. Prolog’s backtracking
mechanism then automatically processes the next branch in the queue. Tterative
deepening is used to preserve completeness by increasing this branch limit, step
by step, as long as no proof can be found.

A lean and efficient implementation is only possible by making use of Prolog’s
special features: Prolog’s backtracking is used to resolve the non-determinism
in the tableau procedure; Prolog’s built-in unification is used for finding most
general closing substitutions and for the justification test; and Prolog’s indexing
mechanism is employed to quickly determine the appropriate tableau rule for the
next formula.

To avoid generating useless renamings of disjunctive formulae, the version of
leanK used to obtain Table 4 uses the following restriction: when the disjunctive
rule is applied to a formula ¢ = X : A:0: AV B, the (potentially useless) renam-
ing ¢ created by the disjunctive rule is “protected” from further applications of
the disjuntive rule until one of the variables in X has been instantiated. That is,

31

[No. | 24] 44| 46] 50| 52| 55 56| 67] 72|
Branches [22251] 90 137] 43] 56 [1011] 68 [26565 [154
Var.-Limit 10 5 5 4 A1 1 A1 T 6

Time [msec] || 4400 50 80 20 30 | 1000 30 | 9520 90

Table 4: Statistics for set, of K-theorems.

a renaming is useful only when one of the original variables in X has been used
to close a branch using a descendant of :A:o0:Aor §:A:0:B.

Table 4 shows statistics for a set of 72 K-theorems kindly provided by Alain
Heuerding. Of these, leanK could prove 61 in the allotted time of 15 seconds, with
52 in less than 10msec (not shown in the table). The program was terminated
if no proof had been found after 15 seconds. The table shows the number of
branches that were closed, the maximal number of free variables in a branch, and
the proof time (running under SICStus Prolog on a SUN Ultra 1 workstation).

The examples that took several seconds to prove show an advantage of lean
implementations: the very high inference rate of about 2500 closed branches per
second. The complexity of these formulae is non-trivial; one of the more complex
ones, No. b5, is:

=p)ANE(O((O(p—Bp)—p) A(O(B(p—0p) —p)—

)= B((A(p—Dp)—p) A(O(B(p—0p) —p)—>00(B(p—0p) —p)))) —
O(0(p—BOp)—p) = 00(0(p—Hp)—p))) = (O (p—Op)—p) A
—00(0(p—0p)—p)))—0(0(p—0Op)—p)—pVOp)

((O(O(p—Op)—p
O0(0(p—s Op)—p
(O(p—0p)—=p)A(
(O(B(p—D0p)—p)

)
)

Note that although the above formula contains many occurrences of the same
sub-formula, it is not just a complex instance of a “vanilla” K-theorem. The
fact that leanK closes branches only on literals rather than on arbitrary complex
formulae means that these complex sub-formula occurrences hinder rather than
help leanK.

8 Conclusion and Future Work

Our initial results, presented in the last section, are very encouraging. We believe
that labels with variables deliver the following advantages:

The use of variables generates a smaller search space since a label can
now stand in for all its ground instances. This is in stark contrast to the
modular systems of [16, 10], where only ground labels are used.

The use of a Godelisation function in the diamond-rule leads to a smaller
number of labels than in other labelled tableau methods since two dif-
ferent occurrences of the formula X :A:0:0A lead to the same formula
X:A:0.[A]: A. We therefore do not need to delete duplicate occurrences
of a formula as is done in some tableau implementations for modal logics.
This is particularly important since the world o.[A] may be the root of a
large sub-model and duplicating it is likely to be extremely inefficient.

Our “lean” implementation is perfect for applications where the deductive
engine must be transparent and easily modifiable.

Our method is really a very clever translation of propositional modal logics
into first-order logic, and most of the complications arise because some worlds
may have no successors. The new notion of conditional labels allows us to keep
track of these complications, and thus handle the non-serial logics that frustrate
other “general frameworks” [8, 13]. Nevertheless, our method can also handle
second order “provability” logics like G and Grz; see [10]. Furthermore, spe-
cialised versions of these tableau systems can match the theoretical lower bounds
for particular logics like K45, G and Grz if we give up modularity; see [10, 16].
We intend to extend our initial implementation of leanK along these lines.

The 15 basic modal logics are known to be decidable and techniques from [6,
10, 16, 12] can be used to extend our method into a decision procedure. However,
it is not clear that this is possible in a lean way. The extra implementation
restriction mentioned in the previous section is of vital importance here since
it is essentially a demand driven contraction rule on box-formulae since box-
formulae get copied only as the required free variables get instantiated. And
controlling contraction is often the key to decidability.

Fitting [5] has recently shown how to view the original leanTAP program for
classical propositional logic as an unusual sequent calculus dirseq. He has also
shown how to extend dirseq to handle the modal logics K, KT, K4, and S4. As
with traditional modal tableaux, however, dirseq does not handle the symmetric
logics like S5 and B. We are currently extending our work to give a modular
free variable version of dirseq that does handle these logics.

It is also possible to extend our method to deal with the notions of global
and local logical consequence [6].

An alternative variable label approach [11] uses different unification algo-
rithms to find complementary literals for branch closure. However, the inter-
actions between modalities, variable labels, and unification algorithms is by no
means easy to disentangle. Extending our method to utilise special unification
algorithms is perfectly possible, now that correctness and completeness have been
worked out for the interactions between modalities and variable labels alone.

References

[1] Bernhard Beckert, Reiner Hahnle, Peter Oel, and Martin Sulzmann. The tableau-
based theorem prover 4TAP, version 4.0. Tn Proceedings, 13th International Con-
ference on Automated Deduction (CADE), New Brunswick, NJ, USA, LNCS 1104,
pages 303 307. Springer, 1996.

[2] Bernhard Beckert and Joachim Posegga. leanTAP: Tean tableau-based deduction.
Journal of Automated Reasoning, 15(3):339 358, 1995.

[3] E. Bencivenga. Free logic. Tn D. Gabbay and F. Giinthner, editors, Handbook of
Philosophical Logic, volume 3. Kluwer, Dordrecht, 1986.

[4] Marcello D’Agostino, Dov Gabbay, and Alessandra Russo. Grafting modalities onto
substructural implication systems. Studia Logica, 1996. To appear.

[6] Melvin Fitting. Leantap revisited. Draft Manuscript, January 1996.

[6]

33

Melvin C. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169
of Synthese Library. D. Reidel, Dordrecht, Holland, 1983.

Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
second edition, 1996.

Alan Frisch and Richard Scherl. A general framework for modal deduction. TIn
J. Allen, R. Fikes, and E. Sandewall, editors, Proc., 2nd Conference on Principles
of Knowledge Representation and Reasoning. Morgan-Kaufmann, 1991.

Dov Gabbay. Labelled Deductive Systems. Oxford University Press, 1996. To appear.

Rajeev Goré. Tableau methods for modal and temporal logics. Tn Marcello
D’Agostino, Dov Gabbay, Reiner Hahnle, and Joachim Posegga, editors, Handbook
of Tableau Methods, chapter 7. Kluwer, Dordrecht, 1997. To appear.

Guido Governatori. A reduplication and loop checking free proof system for S4. Tn
Short Papers: TABLFEAUX 96, number 154-96 in RI-DSI, Via Comelico 39, 20135
Milan, Ttaly, 1996. Department of Computer Science, University of Milan.

Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann. Efficient loop-check
for backward proof search in some non-classical logics. Tn P. Miglioli, U. Moscato,
D. Mundici, and M. Ornaghi, editors, Proceedings, 5th Workshop on Theorem Prou-
g with Analytic Tableaur and Related Methods, Terrasini, Palermo, Ttaly, TLNCS
1071, pages 210 225. Springer, 1996.

Peter Jackson and Hans Reichgelt. A general proof method for first-order modal
logic. Tn 9th Int. Joint Conference on Artificial Intelligence, pages 942 944, 1987.

S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University of
Stockholm. Almqvist and Wiksell, Sweden, 1957.

Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEQO:
A high-performance theorem prover. Journal of Automated Reasoning, 8(2):183

212, 1992.

Fabio Massacci. Strongly analytic tableaux for normal modal logics. Tn A. Bun-
dy, editor, Proceedings, 12th International Conference on Automated Deduction

(CADE), Nancy, France, LNCS 814, pages 723 737. Springer, 1994.
Grigori Mints. A Short Introduction to Modal Logic. CSLI, Stanford, 1992.

Steve V. Reeves. Semantic tableaux as a framework for automated theorem-proving.
Tn C. Mellish and J. Hallam, editors, Advances in Artificial Intelligence (Proceedings
of AISB-87), pages 125 139. Wiley, 1987.

Alessandra Russo. Generalising propositional modal logic using labelled deductive
systems. In F. Baader and K. Schulz, editors, Proceedings, Frontiers of Combining
Systems (FroCoS), Munich, Germany, volume 3 of Applied Logic Series. Kluwer,
Dordrecht, 1996.

