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Free Variable Tableaux forPropositional Modal LogicsBernhard Beckert� Rajeev Gor�e��http://i12www.ira.uka.de/modlean� Address: University of Karlsruhe, Institute for Logic, Complexity and DeductionSystems, D-76128 Karlsruhe, Germany. Email: beckert@ira.uka.de.�� Address: Automated Reasoning Project, Australian National University, Can-berra, ACT, 0200, Australia. Email: rpg@arp.anu.edu.au.AbstractWe present a sound, complete, modular and lean labelled tableau cal-culus for many propositional modal logics where the labels contain \free"and \universal" variables. Our \lean" Prolog implementation is not onlysurprisingly short, but compares favourably with other considerably morecomplex implementations for modal deduction.1 IntroductionFree variable semantic tableaux are a well-established technique for �rst-ordertheorem proving|both theoretically and practically. Free variable quanti�errules [18, 7] are crucial for e�ciency since free variables act as a meta-linguisticdevice for tracking the eigenvariables used during proof search.Traditional tableau-based theorem provers developed during the last decadefor �rst-order logic have been complex and highly sophisticated, typi�ed by sys-tems like Setheo [15] and 3TAP [1]. On the other hand, free variable tableaux,and their extensions like universal variable tableaux, have been used successfullyfor lean Prolog implementations, as typi�ed by leanTAP [2]. A \lean" implemen-tation is an extremely compact (and e�cient) program that exploits Prolog'sbuilt-in clause indexing scheme and backtracking mechanisms instead of relyingon elaborate heuristics. Such compact lean provers are much easier to under-stand than their more complex stablemates, and hence easier to adapt to specialneeds.Simultaneously, Kanger's meta-linguistic indices for non-classical logics [14]have been generalised by Gabbay into Labelled Deductive Systems [9]. And Mas-sacci [16] and Russo [19] have recently shown the utility of using ground labels forobtaining modular modal tableaux and natural deduction systems (respectively);see [10] for an introduction to labelled modal tableaux.1



2 By allowing labels to contain free (and universal) variables, we obtain e�-cient and modular tableaux systems for all the 15 basic propositional modal log-ics. Furthermore, our leanTAP style implementation compares favourably withexisting fast implementations of modal tableau systems like LWB [12].Our object language uses labelled formulae like � :A, where � is a label and Ais a formula, with intuitive reading \the possible world � satis�es the formula A";see [6, 17, 10] for details. Thus, 1 :2p says that the possible world 1 satis�esthe formula 2p. Our box-rule then reduces the formula 1 :2p to the labelledformula 1:(x) : p which contains the universal variable x in its label and has anintuitive reading \the possible world 1:(x) satis�es the formula p". Since di�erentinstantiations of x give di�erent labels, the labelled formula 1:(x) : p e�ectivelysays that \all successors of the possible world 1 satisfy p", thereby capturing theusual Kripke semantics for 2p (almost) exactly. But the possible world 1 mayhave no successors; so we enclose the variable in parentheses and read � :A as\for all instantiations of the variables in �, if the world corresponding to thatinstantiation of � exists then the world satis�es the formula A".Similar approaches using labels containing variables have been explored byGovernatori [11] and D'Agostino et al. [4]. But D'Agostino et al. relate thelabels to modal algebras, instead of to �rst-order logic as we do. And whereasGovernatori uses string uni�cation over labels to detect complementary formulae,we use Prolog's matching, since string uni�cation cannot be implemented in alean way. Our variables are of a simpler kind: they capture all immediate childrenof a possible world (in a rooted tree model), but do not capture all R-successors ;see [16, 10]. As a consequence, we can make extensive use of Prolog features likeuni�cation and backtracking in our implementation. Note, however, that a non-lean extension of our calculi using string uni�cation is perfectly feasible.The following techniques, in particular, are crucial:Free variables: Applying the traditional ground box-rule requires guessing thecorrect eigenvariables. Using (free) variables in labels as \wildcards" thatget instantiated \on demand" during branch closure allows more intelligentchoices of these eigenvariables. To preserve soundness for worlds with noR-successors, variable positions in labels must be conditional.Universal variables: Under certain conditions, a variable x introduced by aformula like 2A is \universal" in that an instantiation of x on one branchneed not a�ect the value of x on other branches, thereby localising thee�ects of a variable instantiation to one branch. The technique entailscreating and instantiating local duplicates of labelled formulae instead ofthe originals.Finite diamond-rule: Applying the diamond-rule to3A usually creates a newlabel. By using (a G�odelisation of) the formula A itself as the label instead,we guarantee that only a �nite number of di�erent labels (of a certainlength) are used in the proof. In particular, di�erent (identically labelled)occurrences of 3A generate the same unique label.The paper is structured as follows: In Sections 2 and 3 we introduce thesyntax and semantics of labelled modal tableaux. In Section 4 we introduce our



3calculus and present an example; we prove its soundness and completeness inSections 5 and 6, respectively. In Section 7 we describe our implementation andpresent experimental results; and in Section 8 we present our conclusions anddiscuss future work.2 SyntaxThe formulae of modal logics are built in the usual way from a denumerablenon-empty set P of primitive propositions, the classical connectives ^ (conjunc-tion), _ (disjunction), : (negation),! (implication), and the non-classical unarymodal connectives 2 (\box") and 3 (\diamond").To reduce the number of tableau rules and the number of case distinctionsin proofs, we restrict all considerations to implication-free formulae in negatednormal form (NNF); thus negation signs appear in front of primitive propositionsonly. Using NNF formulae is no real restriction since every formula can betransformed into an equivalent NNF formula in linear time.Labels are built from natural numbers and variables, with variables intendedto capture the similarities between the 8 quanti�er of �rst-order logic and the2 modality of propositional modal logic. However, whereas �rst-order logic for-bids an empty domain, the 2 modality tolerates possible worlds with no succes-sors.1 To capture this (new) behaviour, variable positions in labels are made\conditional" on the existence of an appropriate successor by enclosing theseconditional positions in parentheses.De�nition 1 Let Vars be a set of variables, and let N be the set of naturalnumbers. Let x; y; z range over arbitrary members of Vars, let n and m rangeover arbitrary members of N, and let l range over arbitrary members of Vars [N.Then, the string 1 is a label; and if � is a label, then so are �:m and �:(l). Thelength of a label � is the number of dots it contains plus one, and is denotedby j�j. The constituents of a label � are called positions in � and terms like \the1st position" or \the n-th position" are de�ned in the obvious way. A positionis conditional if it is of the form (l), and a label is conditional if it contains aconditional position. By ipr(�) we mean the set of all non-empty initial pre�xesof a label �, excluding � itself. A label is ground if it consists of (possiblyconditional) members of N only. Let L be the set of all ground labels.When dealing with ground labels, we often do not di�erentiate between thelabels �:n and �:(n), and we use �:[n] to denote that the label may be of eitherform. Note also that �:x (parentheses around x omitted) is not a label: theparentheses mark the positions that contain variables, or that used to containvariables before a substitution was applied.De�nition 2 A set � of labels is strongly generated if:1. there is some (root) label � 2 � such that � 2 ipr(�) for all � 2 � n f�g;and1To that extent, modal logics are similar to free logic, i.e., �rst-order logic where the domainsof models may be empty [3].



4 2. � 2 � implies � 2 � for all � 2 ipr(�).Since we deal with mono-modal logics with semantics in terms of rootedframes (see Section 3), we always assume that our labels form a strongly gener-ated set with root � = 1. In any case, our de�nition of labels guarantees that allour labels begin with 1, and it is easy to see that the labels that appear in anyof our tableaux are strongly generated.De�nition 3 A labelled tableau formula (or just tableau formula) is a struc-ture of the form X :� :� :A, where X is a subset of Vars[N, � is a set of labels,� is a label, and A is a formula in NNF. If the set � is empty, we use X : � :Aas an abbreviation for X : ; :� :A. A tableau formula X :� :� :A is ground, if� and all labels in � are ground. If F is a set of labelled tableau formulae, thenlab(F) is the set f� j X :� :� :A 2 Fg.The intuitions behind the di�erent parts of our \tableau formulae" are asfollows: The fourth part A is just a traditional modal formula. The third part �is a label, possibly containing variables introduced by the reduction of 2 modal-ities. If the label � is ground, then it corresponds to a particular path in theintended rooted tree model; for example, the ground label 1:1:1 typically repre-sents the leftmost child of the leftmost child of the root 1. If � contains variables,then it represents all the di�erent paths (successors) that can be obtained bydi�erent instantiations of the variables, thereby capturing the semantics of the2 modalities that introduced them. Our rule for splitting disjunctions allows usto retain these variables in the labels of the two disjuncts, but because 2 doesnot distribute over _, such variables then lose their \universal" force, meaningthat these \free" variables can be instantiated only once in a tableau proof.We use the �rst component X to record the variables in the tableau formula �that are \universal", meaning that � can be used multiply in the same proofwith di�erent instantiations for these variables. The free variables in � (that donot appear in X) can be used with only one instantiation since they have beenpushed through the scope of an _ connective. The second part �, which can beempty, has a signi�cance only if our calculus is applied to one of the four logicsKB, K5, KB4, and K45 (that are non-serial, but are symmetric or euclidean,see Section 3). It is empty for the other logics. The intuition of � is that theformula A has to be true in the possible world called � only if the labels in �name legitimate worlds in the model under consideration. This feature has to beused, if (a) rule applications may shorten labels, which is the case if the logic issymmetric or euclidean, and (b) the logic is non-serial and, thus, the existenceof successor worlds is not guaranteed. The set � can contain both universal andfree variables, and some of them may appear in �.De�nition 4 Given a tableau formula � = X :� :� :A, Univ(�) = X is the setof universal variables of �, while Free(�) = fx appears in � or � j x 62 Xg isthe set of free variables of �. These notions are extended in the obvious wayto obtain the sets Free(T ) and Univ(T ) of free and universal variables of a giventableau T (see Def. 5).



5De�nition 5 A tableau is a (�nite) binary tree whose nodes are tableau for-mulae. A branch in a tableau T is a maximal path in T .2 A branch may bemarked as being closed. If it is not marked as being closed, it is open. A tableaubranch is ground if every formula on it is ground, and a tableau is ground if allits branches are ground.Since we deal with propositional modal logics, notions from �rst-order logiclike variables and substitutions are needed only for handling semantic notionslike the accessibility relation between worlds. Speci�cally, whereas substitutionsin �rst-order logic assign terms to variables, here they assign numbers or othervariables (denoting possibles worlds) to variables.De�nition 6 A substitution is a (partial) function � : Vars! N[Vars. Sub-stitutions are extended to labels and formulae in the obvious way. A substitutionis grounding if its domain is the (whole) set Vars and its range is N; that is,if it maps all variables in Vars to natural numbers. A substitution is a variablerenaming if its range is Vars, and it replaces distinct variables by other distinctvariables only. The restriction of a substitution � to a set X of variables isdenoted by �jX .De�nition 7 Given a tableau T containing a tableau formula X :� :� :A, atableau formula X 0 :�0 :�0 :A is a T -renaming of X :� :� :A if there is a vari-able renaming � such that X 0 :�0 :�0 :A = (X :� :� :A)�, and every variableintroduced by � is new to the tableau T .3 SemanticsIn this section we �rst introduce the Kripke semantics for modal logics, and thenextend these semantics to labelled tableau formulae and tableau.De�nition 8 A Kripke frame is a pair hW;Ri, where W is a non-empty set(of possible worlds) and R is a binary relation on W . A Kripke model is atriple hW;R; V i, where the valuation V is a mapping from primitive propositionsto sets of worlds. Thus, V (p) is the set of worlds at which p is \true" underthe valuation V . We write wRw0 i� (w;w0) 2 R, and we say that world w0 isreachable from world w, and that w0 is a successor of w. A world w 2 W isidealisable if it has a successor in W .De�nition 9 Given some model hW;R; V i, and some w 2 W , we write w j= pi� w 2 V (p). This satisfaction relation j= is then extended to more complexformulae as usual. We say that w satis�es a formula A i� w j= A. A formulaA is valid in a model hW;R; V i, written as hW;R; V i j= A, i� every world in Wsatis�es A. A formula A is valid in a frame hW;Ri, i� it is valid in every modelhW;R; V i based on that frame. An axiom A is valid in a frame hW;Ri, i� everyformula instance of it is valid in hW;Ri.2Where no confusion can arise, we identify a tableau branch with the set of tableau formulaeit contains.



6 Name Axiom Property(K) 2(A! B)! (2A! 2B) |(T) 2A! A reexive(D) 2A! 3A serial(4) 2A! 22A transitive(5) 3A! 23A euclidean(B) A! 23A symmetricTable 1: Basic axioms and their corresponding restrictions on the reachabilityrelation.The �rst two columns of Table 2 show the axiomatisations of the 15 basiclogics that can be formed from the axioms shown in Table 1.De�nition 10 Given one of the logics L listed in Table 2, a frame hW;Ri is anL-frame if each axiom of L is valid in hW;Ri. A model hW;R; V i is an L-modelif hW;Ri is an L-frame.It is well-known that the axioms listed in Table 1 are characterised by theproperties of R listed next to them; see [10] for details. Thus, all KT-frames willhave a reexive accessibility relation R, and if a frame has a reexive accessibilityrelation then it will validate axiom (T). Therefore, we associate these propertieswith logics as well, and say, for example, that a logic L is serial if all L-frameshave a serial accessibility relation. Some care is needed here: for example theaxiom (D) is not an axiom of KT, but it is valid in all KT-frames since it isimplied by (T). Consequently the reachability relation R of all KT-models isserial.As we shall soon see, ground labels capture a basic reachability relation be-tween the worlds they name, where the world named by �:[n] is reachable fromthe world named by �. A set of strongly generated ground labels can be viewedas a tree with root �, where �:[n] is an immediate child of � (hence the name\strongly generated"). We formalise this as follows.De�nition 11 Given a logic L and a set � of strongly generated ground labelswith root � = 1, a label � 2 � is L-accessible from a label � 2 �, written as� � � , if the conditions set out in Table 2 are satis�ed. A label � 2 � is anL-deadend, if no � 2 � is L-accessible from �.The following lemma shows that the L-accessibility relation � on labels cap-tures the reachability relation R of L-frames exactly; see [10] for a proof. Inparticular, � has the properties like reexivity, transitivity, etc. that are appro-priate for the axioms of L (see Table 1).Lemma 12 If � is a strongly generated set of ground labels with root � = 1,then h�;�i is an L-frame.The traditional notion of satisfaction relates a world in a model with a formulaor a set of formulae. When formulae are annotated with ground labels, the notion



7Logic Axioms � � � Logic Axioms � � �K (K) � = �:[n] KT (KT) � = �:[n] or � = �KB (KB) � = �:[n] or� = �:[m] K4 (K4) � = �:�K5 (K5) � = �:[n], orj�j � 2, j� j � 2 K45 (K45) � = �:�, orj�j � 2, j� j � 2KD (KD) K-condition, or� is a K-deadendand � = � KDB (KDB) KB-condition, orj�j = 1 and� = � = 1KD4 (KD4) K4-condition, or� is a K-deadendand � = � KD5 (DK5) K5-condition, orj�j = 1 and� = � = 1KD45 (KD45) K45-cond., orj�j = 1,� = � = 1 KB4 (KB4) j�j � 2B (KTB) � = �, or� = �:[n], or� = �:[m] S4 (KT4) � = �:� or � = �S5 (KT5) for all �; �Table 2: Basic logics, axiomatic characterisations, and L-accessibility �.of satisfaction must be extended by a further \interpretation function" that mapsground labels to worlds; see [7, 10]. If the labels are allowed to contain freevariables, and in particular, universal variables, then the notion of satisfactionmust also allow for all possible instantiations of the universal variables, thuscatering for many di�erent \interpretation functions". The goal, as usual, is tode�ne the notion of satis�ability so that our tableau expansion rules preservethis notion, and such that a \closed tableau" is not satis�able.We proceed incrementally by de�ning satis�ability for: ground labels; groundtableau formulae; non-ground tableau formulae; and �nally for whole tableaux.But �rst we enrich models by the \interpretation function" that maps labels toworlds. Note that such interpretations give a meaning to all ground labels, notjust to those that appear in a particular tableau.De�nition 13 An L-interpretation is a pair hM; Ii, where M = hW;R; V i, is aKripke L-model and I is a function I : L ! W [ f?g interpreting ground labelssuch that:(i) I(1) 2 W ;(ii) I(�:(n)) = I(�:n) for all �:n and �:(n) in L;(iii) for all � 2 L, if I(�) = ? for some � 2 ipr(�) then I(�) = ?;(iv) if � � � , I(�) 2 W , I(�) 2 W , and I(�) is idealisable, then I(�)RI(�).



8De�nition 14 An L-interpretation hM; Ii, where M = hW;R; V i, satis�es aground label �, if for all labels �:n 2 ipr(�) [ f�g (that end in an unconditionallabel position): I(�) 2 W implies I(�:n) 2 W . The L-interpretation hM; Iisatis�es a ground tableau formula X :� :� :A, if(a) I(�) = ?, or I(�) = ? for some � 2 �, or I(�) j= A;(b) if I(�) 2 W for all � 2 �, then hM; Ii satis�es �.Thus, a tableau formula is satis�ed by default if its label � is unde�ned (thatis, if I(�) = ?) or if one of the labels in � is unde�ned. But because we dealonly with strongly generated sets of labels with root 1, the twin requirementsthat every L-interpretation hM; Ii de�ne the label 1, and condition (b) in theabove de�nition force the interpretation function I to \de�ne" as many membersof ipr(�) as is possible. However, for a conditional ground label of the form �:(n),where n is parenthesised, it is perfectly acceptable to have I(�:(n)) = ? even ifI(�) 2 W .Example 15 If hM; Ii satis�es � = 1:1:1, then I(1), I(1:1), and I(1:1:1) mustbe de�ned. If � = 1:(1):1, then I(1:(1)) need not be de�ned; but if it is, thenI(1:(1):1) must be de�ned.The domain of every interpretation function I is the set of all ground labels L,but our tableaux contain labels with variables. We therefore introduce a de�-nition of satis�ability for non-ground tableau formulae capturing our intuitionsthat a label �:(x) stands for all possible successors of the label �, and takinginto account the special nature of universal variables.De�nition 16 Given an L-interpretation hM; Ii and a grounding substitution �,a (non-ground) tableau formula � is satis�ed by hM; I; �i, written as hM; I; �i j=�, if for all grounding substitutions �, the ground formula ��jX� is satis�ed byhM; Ii (Def. 14). A set F of tableau formulae is satis�ed by hM; I; �i, if everymember of F is simultaneously satis�ed by hM; I; �i.In the above de�nition, a ground formula ��jX� is constructed from � in twosteps, such that the de�nition of satis�ablity for ground formulae can be applied.To cater for the di�erences between the free variables and universal variables,we use two substitutions: a �xed substitution � and an arbitrary substitution �.The �rst step, applying �jX to � instantiates the universal variables x 2 X . Thesecond step, applying � to ��jX , instantiates the free variables. Therefore, theinstantiation of universal variables x 2 X is given by the arbitrary substitution �,and the instantiation of free variables x 62 X is given by the �xed substitution �.Note, that in the following de�nition of satis�able tableaux, there has to bea single satisfying L-interpretation for all grounding substitutions �.De�nition 17 A tableau T is L-satis�able if there is an L-interpretation hM; Iisuch that for every grounding substitution � there is some open branch B in Twith hM; I; �i j= B.



94 The Calculus4.1 OverviewWe now present an overview of our calculus, highlighting its main principles.Our calculus is a refutation method. That is, to prove that a formula A isa theorem of logic L, we �rst convert its negation :A into NNF obtaining aformula B, and then test if B is L-unsatis�able. To do so, we start with theinitial tableau whose single node is ; :; : 1 :B and repeatedly apply the tableauexpansion rules, the substitution rule, and the closure rule until a closed tableauhas been constructed. Since our rules preserve L-satis�ability of tableaux, aclosed tableau indicates that B is indeed L-unsatis�able, and hence that itsnegation A is L-valid. Since L-frames characterise the logic L we then knowthat A is a theorem of logic L. Constructing a tableau for ; :; : 1 :B can beseen as a search for an L-model for B. Each branch is a partial de�nition ofa possible L-model, and di�erent substitutions give di�erent L-models. Ourtableau rules extend one particular branch using one particular formula, thusdi�ering crucially from the systematic methods in [6, 10] where a rule extendsall branches that pass through one particular formula.Free variables are used in the labels so that when the box-rule is applied in aworld, the actual ground label of the successor world does not have to be guessed.Instead, free variables can be instantiated immediatedly before a branch is closedto make that closure possible. Note, however, that one single instantiation of thefree variables has to be found that allows us to close all branches of a tableausimultaneously, and that instantiating a free variable (in the wrong way) to closeone branch, can make it impossible to close other branches.Because a world may have no successor, variable positions in labels have tobe conditional to preserve soundness for non-serial logics.Every variable is introduced into a label by the reduction of a box-formulalike 2A. Such a variable x in a tableau formula � on branch B is \universal"if a renaming �0 = �fx := x0g of � could be added to B without generatingadditional branches. That is, the modi�ed tableau would be no more di�cultto close than the original. An easy way to generate the renaming is to repeatthe rule applications that lead to the generation of �, starting from the box-ruleapplication that created x. Once the renaming �0 is present on B, the variablex never has to be instantiated to close B because �0 could be used instead of �,thus instantiating x0 instead of x. However, if x occurs on two separate branchesin the tableau, then x is not universal because repeating these rule applicationswould generate at least one additional branch. Since the only rule that causesbranching is the disjunctive rule, the two separate occurrences of x must havebeen created by a disjunctive rule application. Therefore, an application of thedisjunctive rule to a formula  causes the universal variables of  to become freevariables. Thus, all free variables are a result of a disjunction within the scopeof a 2, corresponding to the fact that 2 does not distribute over _.When the disjunctive rule \frees" universal variables, additional copies of thebox-formula that generated them are needed. However, these additional copiesare not generated by the box-rule, but by the disjunctive rule itself.



10 Our diamond-rule does not introduce a new label �:n, when it is applied toX :� :� :3A. Instead, each formula 3A is assigned its own unique label dAewhich is a G�odelisation of A itself. This rule is easier to implement than thetraditional one; and it guarantees that the number of di�erent labels (of a certainlength) in a proof is �nite, thus restricting the search space.The box-rule for symmetric and euclidean logics can shorten labels. Forexample, the tableau formula X 0 :�0 : 1 :A is derived from X : � :1:(1) :2A if thelogic is symmetric. The semantics for serial logics guarantee that all labels de�neworlds, but in non-serial logics, the label 1 may be de�ned even though 1:(1) isunde�ned. To ensure that the formula X 0 : �0 : 1 :A or one of its descendants isused to close a branch only if the label 1:(1) is de�ned, the label 1:(1) is madepart of �0 (see Section 4.3). Such problems do not occur when rule applicationsalways lengthen labels since � has to be de�ned if �:l is de�ned.All expansion rules are sound and invertible (some denominator of each ruleis L-satis�able i� the numerator is L-satis�able). Thus, unlike traditional modaltableau methods where the order of (their non-invertible) rule applications iscrucial [6, 10], the order of rule application is immaterial.The di�erences in the calculi for di�erent logics L is mainly in the box-rule,with di�erent denominators for di�erent logics. In addition, a simpler version ofthe closure rule can be used if the logic is serial.4.2 Tableau Expansion RulesThere are four expansion rules, one for each type of complex (non-literal) formula.If we wanted to avoid NNF we would have four formula classes (�, �, �, �) a laSmullyan [6], and an extra rule for double negation. Since we assume that allour formulae are in NNF, we need just one representative for each of the fourclasses.As usual, in each rule, the formula above the horizontal line is its numerator(the premiss) and the formula(e) below the horizontal line, possibly separatedby vertical bars, are its denominators (the conclusions). All expansion rules(including the box-rule) are \destructive"; that is, once the (appropriate) rulehas been applied to a formula occurrence to expand a branch, that formulaoccurrence is not used again to expand that branch. Note that we permit multipleoccurrences of the same formula on the same branch.De�nition 18 Given a tableau T , a new tableau T 0 may be constructed from Tby applying one of the L-expansion rules from Table 3 as follows: If the nu-merator of a rule occurs on a branch B in T , then the branch B is extended bythe addition of the denominators of that rule. For the disjunctive rule the branchsplits and the formulae in the right and left denominator, respectively, are addedto the two resulting sub-branches instead.The box-rule(s) shown in Table 3 require explanation. The form of the ruleis determined by the index L in the accompanying table. But some of the de-nominators have side conditions that determine when they are applicable. Forexample, the constraint �6 = 1:l6 means that (5) is part of the denominator only



11X :� :� :A ^ BX :� :� :AX 0 : �0 :�0 :B Conjunctive rule. X 0 :�0 :�0 :Bis a T -renaming of X :� :� :B.X :� :� :A _ B; :�1 : �1 :A ; :�1 :�1 :BX2 :�2 :�2 :A _B X3 :�3 :�3 :A _B Disjunctive rule. For 1 � i � 3,the  i = Xi : �i :�i :A _ B are T -renamings of  = X : � :� :A _B(the Xi are pairwise disjoint). IfX = ; then  2;  3 are omitted.X :� :� :3AX : � :�:dAe :A Diamond-rule. d�e is an arbitrarybut �xed bijection from the set offormulae to N.X :� :� :2AX [ fxg :� :�:(x) :A (K)X1 [ fx1g :�1 :�1:(x1) :2A (4)X2 [ fx2g :�2 :�2:(x2) :2A (4d)X3 :�3 [ f�3g : �3 :2A (4r)X4 :�4 :�4 :A (T)X5 :�5 [ f�5g : �5 :A (B)X6 :�6 [ f�6g : 1 :22A (5) Box-rule. For 1 � i � 6, theformulae Xi :�i :�i :2A are T -re-namings ofX :� :� :2A. The vari-ables x; x1; x2 2 Vars are new to T .The sets X [ fxg, X1 [ fx1g, X2 [fx2g, X3, X4, X5, and X6 are pair-wise disjoint. In addition, �3 =�3:l3, �5 = �5:l5, �6 = 1:l6, andj�2j � 2. The form of the denomi-nator depends on the logic L, and isdetermined by including every de-nominator corresponding to the en-try for L in the table below.Logics Box-rule denominatorK, D (K)T (K), (T)KB, KDB (K), (B)K4, KD4 (K), (4)K5, KD5 (K), (4d), (4r), (5) Logics Box-rule denominatorK45, K45D (K), (4), (4r)K4B, (K), (B), (4), (4r)B (K), (T), (B)S4 (K), (T), (4)S5 (K), (T), (4), (4r)Table 3: Tableau expansion rules.



12when the numerator of the box-rule is of the form X :� : 1:l6 :2A. Similarly,the constraints �3 = �3:l3 and �5 = �5:l5 for the (4r) and (B) denominatorsmean these rules can be used only for a numerator of the form X :� :� :2Awhere j�j � 2, thereby guaranteeing that the strictly shorter labels �3 and �5that appear in the respective denominators are properly de�ned. Note that the(4d) denominator is the restriction of the (4) denominator to the case wherej�j � 2. The table indicates that the rules for a logic L and its serial version LDare identical because these logics are distinguished by the form of our closurerule; see De�nition 21. Various other ways to de�ne the calculi for serial logicsexist; see [10].4.3 The Substitution Rule and the Closure RuleBy de�nition, the substitution rule allows us to apply any substitution at anytime to a tableau. In practice, however, it makes sense to apply only \useful"substitutions; that is, those most general substitutions which allow to close abranch of the tableau.De�nition 19 Substitution rule: Given a tableau T , a new tableau T 0 = T �may be constructed from T by applying a substitution � to T that instantiatesfree variables in T with other free variables or natural numbers.In tableaux for modal logics without free variables as well as in free-variabletableaux for �rst-order logic, a tableau branch is closed if it contains comple-mentary literals since this immediately implies the existence of an inconsistency.Here, however, this is not always the case because the labels of the complemen-tary literals may be conditional. For example, the (apparently contradictory)pair ; : 1:(1) : p and ; : 1:(1) ::p is not necessarily inconsistent since the worldI(1:(1)) may not exist in the chosen model. Before declaring this pair to be in-consistent, we therefore have to ensure that I(1:(1)) 6= ? for all L-interpretationssatisfying the tableau branch B that is to be closed. Fortunately, this knowledgecan be deduced from other formulae on B. Thus in our example, a formula like = X : 1:1 :A on B would \justify" the use of the literal pair ; : 1:(1) : p and; : 1:(1) ::p for closing the branch B since any L-interpretation hM; Ii satisfy-ing B has to satisfy  , and, thus, I(1:(1)) = I(1:1) 6= ? has to be a world inthe chosen model M. The crucial point is that the label 1:1 of  is uncondi-tional exactly in the conditional positions of ; : 1:(1) : p and ; : 1:(1) ::p. Theseobservations are now extended to the general case of arbitrary ground labels.De�nition 20 A ground label � with j-th position [nj ] (1 � j � j�j) is justi�edon a branch B if there is some set F � B of tableau formulae such that for every j:1. some label in lab(F) has (an unconditional but otherwise identical) j-thposition nj ; and2. for all � 2 lab(F): if j� j � j then the j-th position in � is nj or (nj).De�nition 21 Given a tableau T and a substitution � : Univ(T )! N that in-stantiates universal variables in T with natural numbers, the L-closure rule



13allows to construct a new tableau T 0 from T by marking B in T as closed pro-vided that:1. the branch B� of T � contains a pair X : � :� : p and X 0 :�0 :� ::p of com-plementary literals; and2. (a) the logic L is serial, or (b) all labels in f�g [ � [ �0 are ground andjusti�ed on B�.Note that the substitution � that instantiates universal variables is not actu-ally applied to the tableau when the branch is closed; it only has to exist.By de�nition, only complementary literals close tableau branches, but intheory, pairs of complementary complex formulae could be used as well.4.4 Tableau ProofsWe now have all the ingredients we need to de�ne the notion of a tableau proof.De�nition 22 A sequence T 0; : : : ; T r of tableaux is an L-proof for the L-unsatis�ability of a formula A if:1. T 0 consists of the single node ; :; : 1 :A;2. for 1 � m � r, the tableau T m is constructed from T m�1 by applying anL-expansion rule (Def. 18), the substitution rule (Def. 19), or the L-closurerule (Def. 21); and3. all branches in T r are marked as closed.Theorems 23 and 25 state soundness and completeness for our calculus withrespect to the Kripke semantics for logic L; the proofs can be found in Sections5 and 6.Theorem 23 (Soundness) Let A be a formula in NNF. If there is an L-proofT 0; : : : ; T r for the L-unsatis�ability of A (Def. 22), then A is L-unsatis�able.We prove completeness for the non-deterministic and unrestricted versionof the calculus, and also for all tableau procedures based on this calculus thatdeterministically choose the next formula for expansion (in a fair way) and thatonly apply most general closing substitutions.De�nition 24 Given an open tableau T , a tableau procedure 	 deterministi-cally chooses an open branch B in T and a non-literal tableau formula  on Bfor expansion.The tableau procedure 	 is fair if, in the (possibly in�nite) tableau that isconstructed using 	 (where no substitution is applied and no branch is closed),every formula has been used for expansion of every branch on which it occurs.Theorem 25 (Completeness) Let 	 be a fair tableau procedure, and let Abe an L-unsatis�able formula in NNF. Then there is a (�nite) tableau proofT 0; : : : ; T r for the L-unsatis�ability of A, where T i is constructed from T i�1(1 � i � r) by



14 [1;{] ; : 1 :2(:p _ q) ^2p ^ (3:q _3:p)[2;1] ; : 1 :2(:p _ q)[3;1] ; : 1 :2p^ (3:q _3:p)[4;3] ; : 1 :2p[5;3] ; : 1 :3:q _3:p[6;2] fyg : 1:(y) ::p _ q[7;4] fxg : 1:(x) : p[8;5] ; : 1 :3:q[10;8] ; : 1:d:qe ::q[11;6] ; : 1:(y1) ::p[13;6] fy2g : 1:(y2) ::p _ q"B1 [12;6] ; : 1:(y1) : q[14;6] fy3g : 1:(y3) ::p _ q"B2 [9;5] ; : 1 :3:p[15;9] ; : 1:d:pe ::p"B3Figure 1: The tableau T from Example 26.1. applying the appropriate L-expansion rule to the branch B and the formula on B chosen by 	 from T i�1; or2. applying a most general substitution such that the L-closure rule can beapplied to a previously open branch in T i�1.Example 26 We prove that A = 2(p ! q) ! (2p ! (2q ^ 2p)) is a K-theorem. To do this, we �rst transform the negation of A into NNF; the result isB = NNF(:A) = 2(:p_q)^2p^(3:q_3:p). The (fully expanded) tableau T ,that is part of the proof for the K-unsatis�ability of B is shown in Figure 1. Thenodes of the tableau are numbered; a pair [i; j] is attached to the i-th node, thenumber j denotes that node i has been created by applying an expansion rule tothe formula in node j. Note, that by applying the disjunctive rule to 6, the nodes11 to 14 are added; 13 and 14 are renamings of 6. The variable y1 is no longeruniversal in 11 and 12.When the substitution � = fy1=d:qeg is applied to T , the branches of theresulting tableau T � can be closed as follows, thereby completing the tableauproof: The left branch B1 of T � can be closed by the universal variable sub-stitution �1 = fx=d:qeg because B1�1 then contains the complementary pairfd:qeg : 1:(d:qe) : p and ; : 1:(d:qe) ::p in nodes 7 and 11, respectively. The label1:(d:qe) of these literals is justi�ed on B1�1 by label 1:d:qe of formula 10. In this



15case, the complementary literals contain conditional labels which are only justi�edby a third formula on the branch, so checking for justi�cation is indispensable.The middle branch B2 of T � can be closed using the same universal variable sub-stitution �2 = �1 = fx=d:qeg as for the left branch. The branch B2�2 then con-tains the complementary literals fd:qeg : 1:(d:qe) : q and ; : 1:(d:qe) ::q in nodes10 and 12. The label is again justi�ed by formula 10, which in this case is one ofthe complementary literals. Note that the middle branch in T can be closed onlyby the substitution � = fy1=d:qeg, other choices will not su�ce. The right branchB3 of T � can be closed using the universal variable substitution �3 = fx=d:peg asB3�3 then contains the pair fd:peg : 1:(d:pe) : p and fd:peg : 1:d:pe ::p of com-plementary literals in nodes 7 resp. 15. The label 1:(d:pe) of node 7 is justi�edon B3 by formula 15.The universal variable substitution �1 = �2 = fx=d:qeg that closes B1 and B2is incompatible with the substitution �3 = fx=d:pe that closes B3. Therefore, ifthe variable x were not universal in formula 7, the tableau could not be closed; asecond instance of formula 7 would have to be added.5 SoundnessFirst, we introduce notation for the concatenation of substitutions:De�nition 27 The concatenation � � � of substitutions � and � is de�ned by(� � �)(x) = �(�(x))for all variables x 2 Vars.Note, that O(� � �) = O�� for all objects O.The following two lemmata, which will be used in the soundness proof, followimmediately from the de�nitions. The �rst one states, that a tableau formula  and a renaming  0 of  are equivalent. The second lemma states that if a label �is justi�ed on a tableau branch B and B is satis�ed by an interpretation hM; Ii,then I(�) has to be a world in M (even if � is conditional).Lemma 28 Let hM; Ii be an L-interpretation, � a grounding substitution,  aformula in a tableau T , and  0 a T -renaming of  . Then hM; I; �i j=  if andonly if hM; I; �i j=  0.Lemma 29 Let hM; Ii be an L-interpretation, where M = hW;R; V i, let B bea tableau branch, and let � be a ground label. If hM; I; �i L-satis�es B, and thelabel � is justi�ed on B, then I(�) 2 W .De�nition 30 An L-interpretation hM; Ii, where M = hW;R; V i, is canonicalprovided that:1. For all ground labels � = �:[n]:if I(�) 2 W and I(�) j= 3An, then I(�) j= An,where An is the formula for which n = dAne (d�e is the bijection from theset of formulae to the set of natural numbers used for the diamond-rule).



16 2. If the logic L is serial, then I(�) 2 W for all ground labels �.The restriction to canonical interpretations only makes sense because every L-modelML-satisfying a formula A can be combined with a label interpretation I,such that hM; Ii is canonical and L-satis�es the intial tableau ; : ; : 1 :A.Lemma 31 Given a formula A in NNF and an L-model ML-satisfying A, thereis a canonical L-interpretation hM; Ii that L-satis�es the tableau consisting ofthe singleton tableau formula ; :; : 1 :A.Proof. Since M = hW;R; V i L-satis�es A, we know that there is some worldw1 2 W such that w1 j= A. Now, for n � 1, let An be the formula for whichn = dAne (where d�e is the bijection from the set of formulae to the set of naturalnumbers used for the diamond-rule) and create I as follows: Put I(1) = w1, andfor every ground label of the form �:n:� if there is a world w 2 W such that I(�)Rw and w j= An then putI(�:n) = I(�:(n)) = w;� else, if there is no such world w, but there is a world w0 that is reachablefrom I(�), then put I(�:n) = I(�:(n)) = w0;� else, if there is no world reachable from I(�), put I(�:n) = I(�:(n)) = ?.The L-interpretation hM; Ii is canonical by way of its de�nition, and in additionL-satis�es the tableau consisting of �0 = ; :; : 1 :A. To prove this, we have toshow that for all grounding substitutions � there is a branch B in this tableau suchthat for all substitutions � the ground formula �0�j;� is L-satis�ed by hM; Ii.Since �0�j;� = �0 this reduces to showing that (a) I(1) = ? or I(1) j= A, and(b) hM; Ii satis�es the label 1. Condition (a) is satis�ed since I(1) j= A bychoice, and Condition (b) holds because there are no labels �:n in ipr(1)[ f1g.The following lemmata state that L-satis�ability by canonical interpretationsis preserved if an expansion rule (Lemma 32), the substitution rule (Lemma 33),or the closure rule (Lemma 34) is applied to a tableau.Lemma 32 If the tableau T is L-satis�ed by the canonical L-interpretationhM; Ii, and T 0 is constructed from T by applying an L-expansion rule, thenhM; Ii L-satis�es T 0 as well.Proof. We show that for each grounding substitution �, there is a branch B0in T 0 that is L-satis�ed by hM; Ii.By assumption, hM; I; �i L-satis�es some branch B of T . If T 0 is constructedfrom T by expanding a branch di�erent from B, then B is a branch of T 0 as well,and we are through. For the case that T 0 is constructed from T by expandingthe branch B, we show that hM; I; �i L-satis�es one of the branches of T 0 bycases according to which expansion rule is applied.Conjunctive rule: Let � = X :� :� : (A^ B) be the formula on B, such that T 0 isconstructed from T by adding �1 = X :� :� :A and �02 = X 0 :�0 :�0 :B to B.hM; I; �i j= � implies that for all grounding substitutions � the followingholds (where & = ��jX�):



171. (a) I(&) = ?; or (b) I(�) = ? for some � 2 ��jX�; or (c) I(&) j= A ^ B,and thus I(&) j= A and I(&) j= B.2. If I(�) 6= ? for all � 2 ��jX�, then hM; Ii satis�es & .This implies that hM; I; �i L-satis�es �1 = X :� :� :A and �2 = X :� :� :B andthus, according to Lemma 28, the renaming �02; therefore, hM; I; �i L-satis�esthe branch B [ f�1; �02g in T 0.Disjunctive rule: Let � = X : � :� : (A _B) be the formula in B, such that T 0 isconstructed from T by adding �01 = ; :�1 :�1 :A and �0 = X2 :�2 :�2 :A _Bto B obtaining B01 and adding �02 = ; :�1 :�1 :B and �00 = X3 :�3 :�3 :A _Bto B obtaining B02.hM; I; �i j= � implies that both �0 and �00 are L-satis�ed by hM; I; �i (usingLemma 28), and it implies that for all grounding substitutions �0 the followingholds (where & = ��0jX�):1. (a) I(&) = ?, or (b) I(�) = ? for some � 2 ��0jX�, or (c) I(&) j= A _ B,which implies that I(&) j= A or I(&) j= B.2. If I(�) 6= ? for all � 2 ��0jX�, then hM; Ii satis�es & .This is in particular true if �0 is chosen to be equal to �, and thus for the label& = ��jX� = �� = ��j;� and the set ��0jX� = ��j;�, where � is an arbitrarygrounding substitution.This implies that hM; I; �i L-satis�es �1 = ; :� :� :A or it L-satis�es �2 =; :� :� :B and thus, according to Lemma 28, (at least) one of the renameings�01 and �02; therefore, hM; I; �i L-satis�es one of the branches B01 and B02 in T 0.Diamond-rule: Let � = X : � :� :3A be the formula on B, such that T 0 isconstructed from T by adding �1 = X :� :�:dAe :A to B.hM; I; �i j= � implies that for all grounding substitutions � the followingholds (where & = ��jX�):1. (a) I(&) = ? which implies I(&:dAe) = ?, or (b) I(�) = ? for some � 2��jX�, or (c) I(&) j= 3A which implies that there is a world w 2 W thatis reachable from I(&), such that w j= A; thus, because hM; Ii is canonical,I(&:dAe) 2 W and I(&:dAe) j= A.2. If I(�) 6= ? for all � 2 ��jX�, then hM; Ii satis�es & ; in that case, (a) ifI(&) = ?, then hM; Ii satis�es &:dAe as well, because & has to be conditional,(b) if I(&) 6= ?, then I(&) j= 3A, which implies by de�nition of canonicalinterpretations that I(&:dAe) 2 W .This implies that hM; I; �i L-satis�es �1 = X :� :�:dAe :A and, therefore, L-satis�es the branch B [ f�1g in T 0.Box-rule: Let � = X :� :� :2A be the formula in B, such that T 0 is constructedfrom T by adding to B|according to Table 3|the formulae�(K) = X [ fxg : � :�:(x) :A



18 �0(4) = �0(4d) = X1 [ fx1g :�1 :�1:(x1) :2A�0(4r) = X3 :�3 [ f�3g : �3 :2A�0(T) = X4 :�4 :�4 :A�0(B) = X5 :�5 [ f�5g : �4 :A�0(5) = X6 :�6 [ f�6g : 1 :22AhM; I; �i j= � implies that for all grounding substitutions � the followingholds (where & = ��jX�):1. (a) I(&) = ?, or (b) I(�) = ? for some � 2 ��jX�, or (c) I(&) j= 2A.2. If I(�) 6= ? for all � 2 ��jX�, then hM; Ii satis�es & .� We show that hM; I; �i L-satis�es �(K) = X [ fxg :� :�:(x) :A. For allgrounding substitutions � the following holds (where n = �(x), and thus�:(x)�jX[fxg� = &:(n)):1. If I(&:(n)) 6= ? then I(&) 6= ? and I(&:(n)) is reachable from I(&); if,in addition, I(�) 6= ? for all � 2 ��jX� = ��jX[fxg�, then we canconclude that I(&) j= 2A. By the de�nition of the box operator, thisimplies I(&:(n)) j= A.2. If I(�) 6= ? for all � 2 ��jX�, then hM; I; �i satis�es the label &:(n)because it satis�es & and the extension (n) is conditional.� �0(4) is only part of the numerator of the box-rule for (a) transitive logics(as (4) numerator of the box-rule) and (b) euclidean logics if j�j � 2 (as(4d) numerator of the box-rule). We show that if (a) the reachability rela-tion R of M is transitive or (b) R is euclidean and j�j � 2, then hM; I; �iL-satis�es �(4) = X [ fxg :� :�:(x) :2A and thus (using Lemma 28) L-satis�es �0(4). For all grounding substitutions � the following holds (wheren = �(x), i.e., �:(x)�jX[fxg� = &:(n)):1. If I(&:(n)) = w0 6= ? then I(&) = w 6= ? and wRw0; if, in addition,I(�) 6= ? for all � 2 ��jX� = ��jX[fxg�, then we can conclude thatw j= 2A. Suppose w0 has no successors, then w0 j= 2A for any Avacuously. If w0 has a successor, then let w00 be any world such thatw0Rw00. (a) If R is transitive, this immediately implies wRw00. (b) IfR is euclidean and j& j � 2, then there is a world w0 such that w0Rw.We can derive wRw00 as follows: w0Rw implies wRw, wRw0 and wRwimplies w0Rw, w0Rw and w0Rw00 implies wRw00. Now, since w j= 2Awe have w00 j= A, and since w00 is an arbitrary world reachable from w0,w0 j= 2A.2. If I(�) 6= ? for all � 2 ��jX�, then hM; I; �i satis�es the label &:(n)because it satis�es & and the extension (n) is conditional.� �0(4r) and �0(5) are only part of the numerator of the box-rule for euclideanlogics L. We show that if the reachability relation R ofM is euclidean then



19hM; I; �i L-satis�es the tableau formula �(4r) = X : � [ f�g : � :2A, where� = �:l, and tableau formula �(5) = X :� [ f�g : 1 :22A, where � = 1:l,and thus (using Lemma 28) L-satis�es �0(4r) and �0(5). For all groundingsubstitutions � the following holds (where ��jX� = & 0 and [n] = �(l), i.e.,& = & 0:[n]):1. If I(&) = ? or there is some label � in ��jX� such that I(�) = ?, thenthere is a label � in (�[f�g)�jX� = ��jX�[f&g such that I(�) = ?.Otherwise, if I(&) = w j= 2A, then I(& 0) = w0 6= ? and w0Rw.Suppose w0 has no successors, then w0 j= 2A for any A vacuously. Ifw0 has a successor, then let w00 be any world such that w0Rw00. Sincethe logic L is euclidean, w0Rw and w0Rw00 implies wRw00 and w00Rw.Therefore, w j= 2A implies w00 j= A. Since this holds for all worldsw00 reachable from w0, we can conclude I(& 0) = w0 j= 2A.Moreover, if w000 is any world such that w00Rw000, then w00Rw implieswRw000 and thus w000 j= A. Since, again, w000 was chosen arbitrarily,this implies w00 j= 2A and w0 j= 22A. This holds in particular forthe case where � = 1:l and w0 = I(1).2. If I(�) 6= ? for all � 2 ��jX�, then hM; I; �i satis�es the label & 0 2ipr(&), because it satis�es & .� �0(T) is only part of the numerator of the box-rule for reexive logics L. Weshow that if the reachability relation R of M is reexive, then hM; I; �iL-satis�es �(T) = X :� :� :A and thus (using Lemma 28) L-satis�es �0(T).For all grounding substitutions � the following holds: I(&) = ?, or I(�) = ?for some � 2 ��jX�, or I(&) j= 2A which implies I(&) j= A (because R isreexive).� �0(B) is only part of the numerator of the box-rule for symmetric log-ics L. We show that if the reachability relation R of M is symmetricthen hM; I; �i L-satis�es �(B) = X :� [ f�g : � :A, where � = �:l, andthus (using Lemma 28) L-satis�es �0(B). For all grounding substitutions �the following holds (where & 0 = ��jX� and [n] = l�):1. If I(&) = ? or there is some label � in ��jX� such that I(�) = ?,then there is a label � in (� [ f�g)�jX� = ��jX� [ f&g such thatI(�) = ?. Otherwise, if I(&) = w j= 2A, then I(& 0) = w0 6= ? andw0Rw (since & = & 0:[n]). Because R is symmetric this implies wRw0and thus I(& 0) = w0 j= A.2. If I(�) 6= ? for all � 2 ��jX�, then hM; I; �i satis�es the label & 0 2ipr(&), because it satis�es & .Lemma 33 If the tableau T is L-satis�ed by the canonical L-interpretationhM; Ii, and T 0 is constructed from T by applying the substitution rule, thenhM; Ii L-satis�es T 0 as well.



20Proof. Let � be the substitution that has been applied to derive T 0 from T . Wehave to show that for each grounding substitution �, there is a branch B0 in T 0that is L-satis�ed by hM; Ii.Let � be an arbitrary but �xed grounding substitution. By assumption,hM; I; �i L-satis�es some branch B of T . Let � = X :� :� :A be an arbitraryformula on B.Let � be an arbitrary grounding substitution, and de�ne the substitution �0by �0 = ���. Then the substitutions ���jX �� and ���0jX are identical, because� does not instantiate variables in X , and thus �0jX = (� � �)jX = �jX � �.Because hM; I; �i j= �, the following holds (where & 0 = ��0jX�):1. (a) I(& 0) = ?, or (b) I(�) = ? for some � 2 ��0jX�, or (c) I(& 0) j= A.2. If I(�) 6= ? for all � 2 ��0jX�, then hM; Ii satis�es & 0.This implies, because � � �jX � � = � � �0jX , that the following holds (where& = ���jX�):1. (a) I(&) = ?, or (b) I(�) = ? for some � 2 ���jX�, or (c) I(&) j= A.2. If I(�) 6= ? for all � 2 ���jX�, then hM; Ii satis�es & .Thus, hM; I; �i L-satis�es ��.Lemma 34 If the tableau T is L-satis�ed by the canonical L-interpretationhM; Ii, and T 0 is constructed from T by applying the L-closure rule, then hM; IiL-satis�es T 0 as well.Proof. T 0 is obtained from T by marking a branch B in T as being closed,because it contains formulae �1 = X1 :�1 :�1 : p and �2 = X2 :�2 :�2 ::p, andthere is a substitution � of the universal variables in T such that �1�jX1 =�2�jX2 = � and (a) the logic L is serial, or (b) all labels & in f�g[�1�jX1[�2�jX2are ground and justi�ed on B. Suppose the branch B were L-satis�ed by hM; I; �ifor some grounding substitution �. Then I(&�) 2 W , because1. if the logic L is serial, then I(&�) 2 W since hM; I; �i is canonical.2. otherwise, & is ground and justi�ed, and thus &� = & and I(&) 2 W accord-ing to Lemma 29.Therefore, hM; I; �i j= �1 implies I(��) = I(�1�jX1�) j= p, and hM; I; �i j= �2implies I(��) = I(�2�jX2�) j= :p. This, however, is not possible.Thus, our assumption is wrong, and B is not L-satis�ed by hM; I; �i for any �.But then there has to be a di�erent branch B0 in T for all �, that occurs in T 0as well and is not a�ected by marking the branch B as being closed.Now we have everything at hand that is needed to prove soundness of ourcalculus:Theorem 35 Let A be a formula in NNF. If there is an L-proof T 0; : : : ; T r forthe L-unsatis�ability of A (Def 22), then A is L-unsatis�able.



21Proof. For a contradiction, suppose there is an L-proof T 0; : : : ; T r for the L-unsatis�ability of A, but that A is L-satis�able. Then there is an L-model Mof A and by Lemma 31 there is a canonical L-interpretation of T 0. Lemmata32, 33 and 34 imply that L-satis�ability by canonical L-interpretations is pre-served in tableau proofs. Hence the tableau T r is L-satis�ed by a canonicalL-interpretation as well. But by de�nition of a tableau proof, all branches in T rare marked as being closed, thus the tableau T r cannot possibly be L-satis�able.Note that if a tableau is L-satis�able then it is L-satis�able by a canonicalinterpretation. Thus, L-satis�ability is preserved in general; it is, however, quitedi�cult (if not impossible) to prove this directly without using the notion ofcanonical interpretations.6 CompletenessWe now turn to the completeness of our calculus. The completeness theorem canbe stated in two contraposing ways: Let A be a formula in NNF:If A is L-unsatis�able, then there is a tableau proof T 0; : : : ; T r for; :; : 1 :A.or equivalentlyIf there is no tableau proof for ; : ; : 1 :A then A is L-satis�able.We �rst prove the completeness theorem as stated in the paper viz: Let 	 bea fair tableau procedure, and let A be an L-unsatis�able formula in NNF. Thenthere is a (�nite) tableau proof T 0; : : : ; T r for the L-unsatis�ability of A, whereT i is constructed from T i�1 (1 � i � r) by� applying the appropriate L-expansion rule to the branch B and the formula on B chosen by 	 from T i�1; or� applying a most general substitution such that the L-closure rule can beapplied to a previously open branch in T i�1.So suppose we are given a fair tableau procedure 	 and an initial tableau; : ; : 1 :A. We prove the theorem in a rather roundabout way following themethod of Beckert and Posegga [2]:Step 1 We de�ne the notion of a ground L-Hintikka set (of tableau formulae)and show that every Hintikka set is L-satis�able in some L-interpretationhM; Ii.Step 2 We consider the sequence (Tn)n�0 that results from our fair tableauprocedure 	 without closing branches or applying substitutions, and de�nethe in�nite tableau T1 to be the limit of the Tn.



22Step 3 Assuming that there is no substitution of the variables in T1 that givesa closed instance of T1, we de�ne a particular substitution �1 and showthat T1�1 contains at least one branch that forms a Hintikka set. Step 1then gives us an L-satis�able set, and in particular an L-model for theformula A in root ; : ; : 1 :A of T1�1. This allows us to prove a lemmastating that if there is no substitution that closes T1 then A is L-satis�able.Step 4 The contrapositive of this lemma is: If A is L-unsatis�able, then there isat least one substitution � that, when applied, allows to close all branchesin T1. Thus there is an n such that all branches in the �nite tableau T n�can be closed. We construct another tableau T 0n from T n by starting atthe end of each branch and removing all formulae that are not needed toclose the corresponding branch in T n� (that includes justi�cation). Notethat T 0n� is still closed but is unlikely to be of uniform depth.Step 5 We prove that if T 0� is closed, then the substitution � can be decomposedso that: � = �0��r��r�1�:::��1 where �i is a most general closing substitutionfor the instantiation (Bi)�1�2:::�i�1 of the i-th branch Bi in T 0. And �0 isthe part of � that is not actually needed to close T 0.Step 6 We prove the restriction to a fair tableau procedure and to using mostgeneral closing substitutions is complete.6.1 Step 1: Labelled Hintikka Sets and L-satis�ability.De�nition 36 A set X of ground labelled formulae is an L-Hintikka set, if itsatis�es the following conditions:1. lab(X ) is a strongly generated set of labels with root 1.2. There is no primitive proposition p such that (a) both X :�1 :� : p andY :�2 :� ::p are in X , and (b) the logic L is serial or all labels in f�g [�1 [�2 are justi�ed in X .3. If X :� :� :A ^B 2 X then X :� :� :A 2 X and X :� :� :B 2 X .4. If X :� :� :A _B 2 X then X :� :� :A 2 X or X :� :� :B 2 X .5. If X : � :� :2A 2 X , then the following conditions have to be satis�ed,where it is determined by Table 3 which conditions apply for the logic L:(K) condition: X [ fng :� :�:(n) :A 2 X for every n 2 N;(4) condition: X [ fng :� :�:(n) :2A 2 X for every n 2 N;(4d) condition: if � = �:l then X [ fng :� :�:(n) :2A 2 X for all n 2 N;(4r) condition: if � = �:l then X :� [ f�g : � :2A 2 X ;(T) condition: X : � :� :A 2 X ;(B) condition: if � = �:l then X :� [ f�g : � :A 2 X ;(5) condition: if � = 1:l then X :� [ f�g : 1 :22A 2 X .



236. If X :� :� :3A 2 X then X :� :�:n :A 2 X for some n 2N.Lemma 37 If X is an L-Hintikka set, then there is an L-interpretation hM; IiL-satisfying X .Proof. We de�ne the L-model M = hW;R; V i as follows:1. Put W = f[�] j � 2 Lg if L is serial and putW = f[�] j � 2 lab(X ); � is justi�ed in Xgif L is not serial, where [�] is the equivalence class of all labels that areidentical to � up to (conditional) parentheses.2. For all [�]; [� ] 2 W , let [�]R[� ] i� � � � ; that is, i� � is L-accessible from� (see Table 2).3. For each primitive proposition p let V (p) be de�ned by:� If L is serial, then V (p) = f[�] j X : � :� : p 2 Xg.� Otherwise, if L is not serial, thenV (p) = f[�] j X :� :� : p 2 X ; I(�) 2 W; I(�) 2 W for all � 2 �g :The (identity) interpretation I is de�ned by:I(�) = ( [�] if [�] 2 W? otherwiseLemma 12 then implies thatM is an L-model. According to its constructionhM; Ii is, therefore, an L-interpretation.We show by induction on the degree of tableau formulae � = X :� :� :A,that if � 2 X then (a) [�] 62 W , or (b) [�] 62 W for some � 2 �, or [�] j= A.This induction hypothesis implies that hM; Ii L-satis�es �. When the inductionproof is completed, we have shown that all formulae in X and thus X itself areL-satis�ed by the L-interpretation hM; Ii.Let the degree of a modal formula A be de�ned syntactically (as usual). Thedegree deg of a tableau formula is then de�ned bydeg(X :� :� :A) < deg(X 0 :�0 :�0 :A0) i� ( (a) deg(A) < deg(A0) or(b) deg(A) = deg(A0); j�j < j�0jBase case: The induction base are formulae � where A is a literal. In caseA = p, [�] 2 W , and [�] 2 W for all � 2 �, we have [�] j= p by the de�nitionof V .For the case A = :p, we have to show that if [�] 2 W and [�] 2 W forall � 2 � then [�] j= :p. That is, [�] 62 V (p). For a contradiction supposethat [�] 2 V (p). Then by the de�nition of V there has to be a tableau formulaX 0 : �0 :�0 : p 2 X and, in addition, if L is not serial then [�0] 2 W and [�0] 2 Wfor all �0 2 �0. By de�nition, if L is not serial, [�0] 2 W i� �0 is justi�ed in X .



24Thus we have two complementary and \completely justi�ed" atomic formulae inX ; contradicting condition 2 in the de�nition of Hintikka sets.The induction step is separated into cases according to the form of the for-mula A in �:A = B ^ C: According to condition 3 in the de�nition of Hintikka sets, there areformulae X :� :� :B 2 X and X :� :� :C 2 X . The induction hypothesisapplies to these formulae. Therefore, (a) [�] 62 W , or (b) [�] 62 W for some� 2 �, or [�] j= B and [�] j= C which implies [�] j= B ^C. This concludesthe proof for this subcase.A = B _ C: Similar to A = B ^ C.A = 2B: Suppose (a) [�] 2 W , and (b) [�] 2 W for all � 2 �; we then have toprove that [� ] j= B for all [� ] 2 W such that � � � . We �rst show that(certain combinations of) the sub-conditions laid out as part of condition 5of the de�nition of Hintikka sets imply this property for certain [� ] 2 W :(K) condition: for all � of the form � = �:[n] where n 2 N. Proof: Therehas to be a formula X 0 : � :�:(n) :B 2 X for every n 2 N, that theinduction hypothesis applies to. Thus, if [� ] 2 W , then [� ] j= B.(K) and (4) conditions: for all � of the form �k = �:n1 : : :nk where k � 1and n1; : : : ; nk 2 N. Proof: This requires an induction on k. We show,that for all k � 0 (we put �0 = �) there is a formula Xk :� :�k :2B 2X (for some Xk), which then, using the same argument as above forthe (K) condition implies [�k] j= B if [�k] 2 W for all k � 1. Fork = 0 we have X0 :� : �0 :2B = X :� :� :A 2 X by assumption.Induction step: if Xk :� :�k :2B 2 X , then Xk+1 :� : �k+1 :2B 2 X(with Xk+1 = Xk [ fnkg), because the (4) condition applies.(K) and (4d) conditions: for all � of the form �k = �:n1 : : :nk where k � 1and n1; : : : ; nk 2 N, provided that j�j � 2. Proof: similar to that forthe (K) and (4) conditions.(T) condition: for � = �. Proof: There has to be a formula X : � :� :B 2X , that the induction hypothesis applies to. Thus, if [�] 2 W , then[�] j= B.(B) condition: for � such that � = �:l. Proof: There has to be a formulaX : � [ f�g : � :B in X that the induction hypothesis applies to. Thus,if [� ] 2 W , then [� ] j= B.(K), (4d), (4r), (5) conditions: if j�j � 2 then for all � such that j� j � 2,else (if � = 1) then for all � of the form 1:n where n 2 N. Proof:If j�j � 2, then we prove by induction on the length of � using the(4r) condition that for all � 2 ipr(�) there is a formulaX :� : � :2B 2X . Using the same argument as above for the (K) condition thisimplies [� ] j= B for all � such that j� j = 2 and [� ] 2 W . In addition,we have X : � :1:m :2B 2 X for some m 2 N (where 1:m 2 ipr(�);thus the (5) condition implies that X :� : 1 :22B 2 X and (usingthe (K) condition) X :� : 1:n :2B 2 X for all n 2 N. Now, we can



25procceed to prove [� ] j= B for all � such that j� j � 3 and [� ] 2 W asin the case of the (K) and (4) conditions. If � = 1, then we can derive[�:n] j= B for all n 2 N and [�:n] 2 W using the (K) condition (seeabove).(K), (4), (4r) conditions: for all � such that j� j � 2. Proof: We proveby induction on the length of � using the (4r) condition that for all� 2 ipr(�) there is a formula X :� : � :2B 2 X . In particular, wehave X :� : 1 :2B 2 X . Now, we can procceed to prove [� ] j= B forall � such that j� j � 2 and [� ] 2 W as in the case of the (K) and (4)conditions.(K), (T), (4), (4r) conditions: for all � . Proof: Similar to the case of con-ditions (K), (4) and (4r) we prove by induction that for all � suchthat [� ] 2 W there is a formula X :� : � :2B 2 X , which then, usingthe same argument as above for the (T) condition implies [� ] j= B.By checking Table 2, it becomes obvious that the sub-conditions for box-formulae that apply to an L-Hintikka set, indeed imply: if [� ] 2 W and� � � , then [� ] j= B.A = 3B: According to condition 6 in the de�nition of Hintikka sets, there isa formula X : � :�:n :B 2 X . The induction hypothesis applies to thisformula. Therefore, (a) [�:n] 62 W or (b) [�] 62 W for some � 2 �; or[�:n] j= B. Now, since the label �:n itself occurs in lab(X ), [�:n] 62 Wimplies that �:n is not justi�ed in X . Since the last position of �:n isunconditional this implies that � is not justi�ed in X . Hence [�] 62 W .Furthermore, if [�:n] j= B then [�] j= 3B since ���:n for all L. Together,we have enough to prove that (a) [�] 62 W or (b) [�] 62 W for some � 2 �or [�] j= 3B as desired.6.2 Step 2: De�nition of T1Given a fair tableau procedure 	 and an intial tableau T 0 = ; : ; : 1 :A, let T 1,T 2, etc. be the tableau constructed using 	 without closing branches or applyinga substitution. These tableaux approximate the in�nite tree T1.6.3 Step 3: If T1 cannot be closed then ...Now suppose that there is no substitution that allows T1 to be closed. Thuswe can choose any substitution � we like, and we are guaranteed that T1� willcontain some open branch. The branch may di�er according to the choice of �.We now de�ne a particular substitution �1 as follows: Let fB1;B2; : : :g be anenumeration of the branches of T1. Let � = f�1; �2; : : :g be an enumeration ofthe disjunctive formulae (formulae of the formXi :�i :�i :Bi _ Ci) in T excludingrenamings. For every disjunctive formula, if �i occurs on Bk then let �ijk be thej-th renaming of �i on the k-th branch.



26 Now, the label �i of �i will be of �nite length. Therefore, the set of all groundinstances of �i is enumerable; let f�1i ; �2i ; : : :g be such an enumeration.Let x be a variable in Xijk and suppose it occurs in the p-th position of �ijk.Note, that the sets Xijk of universal variables are all pairwise disjoint even ifonly one of the formulae in the numerator of the conjunctive rule is renamed. Toensure that the k-th branch Bk is a potential source of an L-model we have toensure that the occurrences of �i on Bk \cover" all the instances of �i. To thisend choose �1 so that: �1(x) = n, where n is the value of the p-th position of�ji . Thus if x is in the p-th position of �i1k its value \covers" �1i , if it is in thep-th position of �i2k its value \covers" �2i , and so on.Lemma 38 If �1 is de�ned as above, and B is an open branch of the tableau T1that cannot be closed when �1 is applied thenX = f��jX�1 j � = X :� :� :A is a formula on B, and� is a grounding substitutiongis an L-Hintikka set.Proof. We have to check each clause of De�nition 36 for the set X .1. It is obvious that the root is 1, and fairly easy to see that we always producea strongly generated set.2. Suppose condition 2 in the de�nition of Hintikka sets is violated by X .Then there have to be formulae �1 = X1 :�1 : �1 : p, �2 = X2 :�2 :�2 ::pon B and grounding substitutions �1 and �2, such that �1�1jX1�1 =�2�2jX2�1 = & , and (b) the logic L is serial or all labels in f&g[�1�1jX1�1[�2�2jX2�1 are justi�ed in X . Our expansion rules always use T -renamingsof universal variables in their numerator, hence X1 \X2 = ;. Therefore,there is a single grounding substitution � of the universal variables in T1,such that �1� = �1�1jX1 and �2� = �2�2jX2 . In addition, � � �1 = �1 � �,since �1 only instantiated free variables in T1. Thus the branch B canbe closed using the substitution � of the universal variables in T1, whichcontradicts the choice of B.3. We have to show, that for all � = X :� :� :A ^ B 2 B and all ground-ing substitutions �, and thus for all formulae of the form ��jX�1, theformulae �1�jX�1 and �2�jX�1 are in X , where �1 = ; :� :� :A and�2 = ; :� :� :B. Since the appropriate rule has been applied to �, theformulae X :� :� :A and X 0 :�0 : �0 :B are both on B. Thus, �1�jX�1 2X . To prove the same for �2, let � be the variable renaming such thatX 0 :�0 : �0 :B = (X : � :� :B)�, and put �0 = (���), which implies �0jX 0 =�jX � �. The substitution �0 is grounding. Therefore, by de�nition the setX contains the formula �02�0jX 0�1, which is identical to �2�jX�1.4. We have to show, that for all � = X : � :� :A _B 2 B and all groundingsubstitutions �, and thus for all formulae of the form ��jX�1, one of theformulae �1�jX�1 and �2�jX�1 is in X , where �1 = ; :� :� :A and �2 =



27; :� :� :B. If X = ; then this holds immediately by the special caseof the disjunctive rule. Otherwise, according to the construction of T1and �1, there has to be a renaming �0 = �� of � on B (where � is therenaming substitution) such that �1jX 0 � � = �jX , i.e., �0�1 = ��jX�1.Since the appropriate rule has been applied to �0, one of the formulae�01 = �1� and �02 = �2� is on B and thus �01�j;�1 = �01�1 = �1�jX�1 or�02�j;�1 = �2�jX�1 is in X .Since the other conditions in the de�nition of Hintikka sets closely resemble thetableau expansion rules, the proof that these conditions hold for X is similar tothat for conjunctive formulae.Lemma 39 If there is no substitution that closes the tableau T1 for ; : ; : 1 :A,then A is L-satis�able.Proof. Since T1 cannot be closed for any substitution, it cannot be closed for�1 as de�ned above. Thus there is some open branch in T1�1. By Lemma 38this branch forms an L-Hintikka set. By Lemma 37 such a set gives an L-interpretation hM; Ii that L-satis�es the root ; : ; : 1 :A of T 0. But this meansthat in the L-model M we must have I(1) j= A.6.4 Step 4The contrapositive of this lemma is: If A is L-unsatis�able, then there is at leastone substitution � that, when applied, allows to close all branches in T1. Thusthere is an n such that all branches in the �nite tableau T n� can be closed. Weconstruct another tableau T 0n from T n by starting at the end of each branch andremoving all formulae that are not needed to close the corresponding branch inT n� (that includes justi�cation). Note that T 0n� is still closed but is unlikely tobe of uniform depth.6.5 Step 5:Lemma 40 If T 0n� is closed for some �nite n, then the substitution � can bedecomposed so that: � = �0 � �r � �r�1 � ::: � �1 where �i is a most general closingsubstitution for the instantiation (Bi)�1�2:::�i�1 of the i-th branch, Bi, in T 0n.And �0 is the part of � that is not actually needed to close T 0n.Proof. We construct the �i inductively as follows:De�ne �00 = �. For 1 � i � r, let �i be a most general substitution, such that1. �0i�1 is a specialisation of �i; that is, there is a substitution �0i such that�0i�1 = �0i � �i; and2. �i is a closing substitution for (Bi)�1�2:::�i�1.Then �i is a most general closing substitution. For otherwise, there must be aclosing substitution �00i , that is more general than �i. The is-more-general relationis transitive hence �00i is more general than �0i�1, which contradicts our choice of�i as a most general substitution satisfying the two conditions.Finally, de�ne �0 = �0r.



286.6 Step 6Since 	 is a fair tableau procedure we have proved the completeness theorem asstated in the paper.Our implementation uses a fair tableau procedure and uses backtracking toresolve any remaining non-determinism; namely which closing substitution tochoose, and whether to close a branch (if possible) or to expand it. Thus it will�nd the proof in a �nite amount of time.7 leanK: An ImplementationWe have implemented our calculus as a \lean" theorem prover written in Prolog(the source code is available at http://i12www.ira.uka.de/modlean on theWorld Wide Web). The basic version for the logic K is called leanK, and consistsof just eleven Prolog clauses and 45 lines of code. The version for the logic KDwhich does not demand justi�ed labels, is even shorter: it consists of only 6clauses and 27 lines of code. (Below we describe this version for the logic KDonly.)We use Prolog syntax for formulae: primitive propositions are Prolog terms,\-" is negation, \;" disjunction, \," conjunction, the pre�x-operator \box" isthe box-operator, and \dia" is the diamond-operator. Thus, a modal formulais represented by a Prolog term (for example, the formula p ^2(:p _3p) isrepresented by (p,box(-p;dia p))).The Prolog predicateprove(Fml,Label,Univ,Lits,UnExp,Free,Limit)implements our prover; it succeeds if there is a closed tableau (of a certain size)for the formula bound to Fml. The prover is started with the goalprove(Fml,[],[],[],[],[],Limit)which succeeds if Fml can be proven inconsistent without using more than Limitfree variables on each tableau branch.3The meaning of the arguments of prove is:Fml: The current formula.Label: The label of the current formula.Univ: The list of universal variables in the current formula.3If one wants to avoid committing on the number Limit, the predicate prove can be calledwith iterative deepening on Limit. The standard solution in Prolog for this is:inc prove(Fml,Limit) :- prove(Fml,[],[],[],[],[],Limit).inc prove(Fml,Limit) :- NewLimit is Limit + 1,inc prove(Fml,NewLimit).When started with inc prove(Fml,N), the prover searches with the values N, N+1, . . . for Limit.



29Lits: The set of literals on the branch; in case the current formula is a literal �,this list contains only those literals, that have not been used yet to be uni-�ed with � to close the branch. A literal is stored in the form (Label:Neg),where Neg is the complement of the literal, and Label is its label.UnExp: The set of formulae that have not been considered yet. Formulae arestored in the form (Univ:Label:Fml).Free: A Prolog term containing all free variables introduced in labels (these canbe instantiated).Limit: The number of variables, that may still be added (has to be greaterthan 0).The conjunctive rule:prove((A,B),Label,Univ,Lits,UnExp,Free,Limit) :- !,copy_term((Label,Univ,Free),(LabelB,UnivB,Free)),prove(A,Label,Univ,Lits,[(UnivB:LabelB:B)|UnExp],Limit).The disjunctive rule:prove((A;B),Label,Univ,Lits,UnExp,Free,Limit) :- !,Limit >= 0,copy_term((Label,Univ,Free),(LabelA,UnivA,Free)),copy_term((Label,Univ,Free),(LabelB,UnivB,Free)),append(UnExp,[UnivA:LabelA:(A;B)],UnExpA),append(UnExp,[UnivB:LabelB:(A;B)],UnExpB),length(Univ,Length),NewLimit is Limit - Length,prove(A,Label,[],Lits,UnExpA,(Univ+Free),NewLimit),prove(B,Label,[],Lits,UnExpB,(Univ+Free),NewLimit).The box-rule:prove(box Fml,Label,Univ,Lits,UnExp,Free,Limit) :- !,prove(Fml,[X|Label],[X|Univ],Lits,UnExp,Free,Limit).The diamond-rule:prove(dia Fml,Label,Univ,Lits,UnExp,Free,Limit) :- !,prove(Fml,[Fml|Label],Univ,Lits,UnExp,Free,Limit).This clause applies if the current formula is a literal, and tries to close the branch:prove(Lit,Label,_,[L|Lits],_,Free,_) :-copy_term(((Label:Lit),Free),(New,Free)),( copy_term((L,Free),(New,Free)),retract(branches(B)), NB is B+1, assert(branches(NB)); prove(Lit,Label,_,Lits,[],[],_,_)).This clause applies, if there is no literal left on the branch, that one could try tounify the current formula with:



30 prove(Lit,LitLabel,_,Lits,[(Univ:Label:Fml)|UnExpR],Free,Limit) :-!,( (Lit = -Neg; -Lit = Neg) ->prove(Fml,Label,Univ,[(LitLabel:Neg)|Lits],UnExpR,Free,Limit)).The leanK program employs the following fair tableau procedure: Given atableau T , the branch that is expanded next is the left-most open branch, withthe formulae on any particular branch organised as a queue. The �rst formula inthe chosen branch/queue is removed from the queue and is used to update thetableau as follows:� If the chosen formula is not a literal then some (one) rule is applicable to it,and the formulae created by that rule application are added to the queueas follows: if the (traditional part of the) created formula is strictly lesscomplex than the premiss, this new formula is added to the front of thequeue, otherwise it is added to the end of the queue. In particular, thismeans that renamings of formulae added by the disjunctive rule, and theformula labelled (4) and (4r) in the numerator of the box-rule, are addedto the end of the queue.� If the chosen formula in the queue is a literal � and there is a most generalsubstitution � of the free variables in � such that �� and some otherliteral  � on the branch can be used for closure, then there is a choicepoint: (1) the substitution � may be applied and the branch closed, or(2) the literal is removed from the queue and the next formula moves tothe front. There is a further choicepoint if there is more than one closingsubstitution �. In case no closing substitution � exists, option (2) is useddeterministically. If there is a choice, Prolog's backtracking mechanism isused to resolve this non-determinism and explore all choices.Since this procedure is essentially a depth �rst search, a limit is imposedon the number of free variables in a branch, thereby forcing every branch toterminate after some �nite number of rule applications. Prolog's backtrackingmechanism then automatically processes the next branch in the queue. Iterativedeepening is used to preserve completeness by increasing this branch limit, stepby step, as long as no proof can be found.A lean and e�cient implementation is only possible by making use of Prolog'sspecial features: Prolog's backtracking is used to resolve the non-determinismin the tableau procedure; Prolog's built-in uni�cation is used for �nding mostgeneral closing substitutions and for the justi�cation test; and Prolog's indexingmechanism is employed to quickly determine the appropriate tableau rule for thenext formula.To avoid generating useless renamings of disjunctive formulae, the version ofleanK used to obtain Table 4 uses the following restriction: when the disjunctiverule is applied to a formula � = X : � :� :A _B, the (potentially useless) renam-ing �0 created by the disjunctive rule is \protected" from further applications ofthe disjuntive rule until one of the variables in X has been instantiated. That is,



31No. 24 44 46 50 52 55 56 67 72Branches 22251 90 137 43 56 1011 68 26565 154Var.-Limit 10 5 5 4 4 11 4 11 6Time [msec] 4400 50 80 20 30 1000 30 9520 90Table 4: Statistics for set of K-theorems.a renaming is useful only when one of the original variables in X has been usedto close a branch using a descendant of ; :� :� :A or ; :� :� :B.Table 4 shows statistics for a set of 72 K-theorems kindly provided by AlainHeuerding. Of these, leanK could prove 61 in the allotted time of 15 seconds, with52 in less than 10msec (not shown in the table). The program was terminatedif no proof had been found after 15 seconds. The table shows the number ofbranches that were closed, the maximal number of free variables in a branch, andthe proof time (running under SICStus Prolog on a SUN Ultra 1 workstation).The examples that took several seconds to prove show an advantage of leanimplementations: the very high inference rate of about 2500 closed branches persecond. The complexity of these formulae is non-trivial; one of the more complexones, No. 55, is:((2(2(p!2p)!p)!p)^(2(2((2(p!2p)!p)^(2(2(p!2p)!p)!22(2(p!2p)!p))!2((2(p!2p)!p)^(2(2(p!2p)!p)!22(2(p!2p)!p))))!(2(p!2p)!p)^(2(2(p!2p)!p)!22(2(p!2p)!p)))!(2(p!2p)!p)^(2(2(p!2p)!p)!22(2(p!2p)!p)))!2(2(p!2p)!p)!p_2p)Note that although the above formula contains many occurrences of the samesub-formula, it is not just a complex instance of a \vanilla" K-theorem. Thefact that leanK closes branches only on literals rather than on arbitrary complexformulae means that these complex sub-formula occurrences hinder rather thanhelp leanK.8 Conclusion and Future WorkOur initial results, presented in the last section, are very encouraging. We believethat labels with variables deliver the following advantages:{ The use of variables generates a smaller search space since a label cannow stand in for all its ground instances. This is in stark contrast to themodular systems of [16, 10], where only ground labels are used.{ The use of a G�odelisation function in the diamond-rule leads to a smallernumber of labels than in other labelled tableau methods since two dif-ferent occurrences of the formula X :� :� :3A lead to the same formulaX : � :�:dAe :A. We therefore do not need to delete duplicate occurrencesof a formula as is done in some tableau implementations for modal logics.This is particularly important since the world �:dAe may be the root of alarge sub-model and duplicating it is likely to be extremely ine�cient.



32 { Our \lean" implementation is perfect for applications where the deductiveengine must be transparent and easily modi�able.Our method is really a very clever translation of propositional modal logicsinto �rst-order logic, and most of the complications arise because some worldsmay have no successors. The new notion of conditional labels allows us to keeptrack of these complications, and thus handle the non-serial logics that frustrateother \general frameworks" [8, 13]. Nevertheless, our method can also handlesecond order \provability" logics like G and Grz; see [10]. Furthermore, spe-cialised versions of these tableau systems can match the theoretical lower boundsfor particular logics like K45, G and Grz if we give up modularity; see [10, 16].We intend to extend our initial implementation of leanK along these lines.The 15 basic modal logics are known to be decidable and techniques from [6,10, 16, 12] can be used to extend our method into a decision procedure. However,it is not clear that this is possible in a lean way. The extra implementationrestriction mentioned in the previous section is of vital importance here sinceit is essentially a demand driven contraction rule on box-formulae since box-formulae get copied only as the required free variables get instantiated. Andcontrolling contraction is often the key to decidability.Fitting [5] has recently shown how to view the original leanTAP program forclassical propositional logic as an unusual sequent calculus dirseq. He has alsoshown how to extend dirseq to handle the modal logicsK,KT,K4, and S4. Aswith traditional modal tableaux, however, dirseq does not handle the symmetriclogics like S5 and B. We are currently extending our work to give a modularfree variable version of dirseq that does handle these logics.It is also possible to extend our method to deal with the notions of globaland local logical consequence [6].An alternative variable label approach [11] uses di�erent uni�cation algo-rithms to �nd complementary literals for branch closure. However, the inter-actions between modalities, variable labels, and uni�cation algorithms is by nomeans easy to disentangle. Extending our method to utilise special uni�cationalgorithms is perfectly possible, now that correctness and completeness have beenworked out for the interactions between modalities and variable labels alone.References[1] Bernhard Beckert, Reiner H�ahnle, Peter Oel, and Martin Sulzmann. The tableau-based theorem prover 3TAP , version 4.0. In Proceedings, 13th International Con-ference on Automated Deduction (CADE), New Brunswick, NJ, USA, LNCS 1104,pages 303{307. Springer, 1996.[2] Bernhard Beckert and Joachim Posegga. leanTAP : Lean tableau-based deduction.Journal of Automated Reasoning, 15(3):339{358, 1995.[3] E. Bencivenga. Free logic. In D. Gabbay and F. G�unthner, editors, Handbook ofPhilosophical Logic, volume 3. Kluwer, Dordrecht, 1986.[4] Marcello D'Agostino, Dov Gabbay, and Alessandra Russo. Grafting modalities ontosubstructural implication systems. Studia Logica, 1996. To appear.[5] Melvin Fitting. Leantap revisited. Draft Manuscript, January 1996.
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