Outline

- Perfect play
- Resource limits
- \(\alpha-\beta\) pruning
- Games of chance
- Games of imperfect information
Games vs. Search Problems

Game playing is a search problem

Defined by

- Initial state
- Successor function
- Goal test
- Path cost / utility / payoff function
Games vs. Search Problems

Game playing is a search problem

Defined by

- Initial state
- Successor function
- Goal test
- Path cost / utility / payoff function

Characteristics of game playing

- “Unpredictable” opponent:
 Solution is a strategy specifying a move for every possible opponent reply

- Time limits:
 Unlikely to find goal, must approximate
Types of Games

<table>
<thead>
<tr>
<th>Perfect Information</th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>backgammon monopoly</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imperfect Information</th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bridge, poker, scrabble nuclear war</td>
</tr>
</tbody>
</table>
Game Tree: 2-Player / Deterministic / Turns
Minimax

Perfect play for deterministic, perfect-information games

Idea

Choose move to position with highest minimax value, i.e., best achievable payoff against best play
Minimax: Example

2-ply game

MAX

MIN

B. Beckert: KI-Programmierung – p.8
Properties of Minimax

Complete
Yes, if tree is finite (chess has specific rules for this)

Optimal
Yes, against an optimal opponent. Otherwise??

Time
$O(b^m)$ (depth-first exploration)

Space
$O(bm)$ (depth-first exploration)
Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time $O(b^m)$ (depth-first exploration)

Space $O(bm)$ (depth-first exploration)

Note

Finite strategy can exist even in an infinite tree
Resource Limits

Complexity of chess

\[b \approx 35, \ m \approx 100 \quad \text{for "reasonable" games} \]

Exact solution completely infeasible
Resource Limits

Complexity of chess

\[b \approx 35, \ m \approx 100 \text{ for “reasonable” games} \]

Exact solution completely infeasible

Standard approach

- Cutoff test
 e.g., depth limit (perhaps add quiescence search)

- Evaluation function
 Estimates desirability of position
Evaluation Functions

Typical evaluation function for chess

Weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s) \]
Cutting Off Search

Does it work in practice?

\[b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4 \]
Cutting Off Search

Does it work in practice?

\[b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4 \]

Not really, because . . .

4-ply \ \approx \ \text{human novice} \quad (\text{hopeless chess player})

8-ply \ \approx \ \text{typical PC, human master}

12-ply \ \approx \ \text{Deep Blue, Kasparov}
α-β Pruning Example

```
MAX

MIN

3

3

12

8

≥ 3
```
$\alpha-\beta$ Pruning Example

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pruning_example}
\end{figure}
Properties of α-β

Effects of pruning

- Reduces the search space
- Does not affect final result
Properties of $\alpha-\beta$

Effects of pruning

- Reduces the search space
- Does not affect final result

Effectiveness

Good move ordering improves effectiveness

Time complexity with “perfect ordering”: $O(b^{m/2})$

Doubles depth of search

For chess:
Can easily reach depth 8 and play good chess
Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.
Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess

Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess

Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Go

Human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Nondeterministic Games in General

Chance introduced by dice, card-shuffling, etc.

Simplified example with coin-flipping

```
MAX

ChANCE

MIN
```

```
2
4
7
4
6
0
5
-2
```

```
2
4
0
5
-2
```

```
3
0.5
0.5
-1
```

```
-2
```

B. Beckert: KI-Programmierung – p.23
Algorithm for Nondeterministic Games

\textbf{EXPECTMINIMAX} gives perfect play

if \textit{state} is a \texttt{MAX} node then
return the highest \texttt{EXPECTMINIMAX} value of \texttt{SUCCESSORS}(\textit{state})

if \textit{state} is a \texttt{MIN} node then
return the lowest \texttt{EXPECTMINIMAX} value of \texttt{SUCCESSORS}(\textit{state})

if \textit{state} is a chance node then
return average of \texttt{EXPECTMINIMAX} value of \texttt{SUCCESSORS}(\textit{state})
Nondeterministic Games in Practice

Problem

$\alpha-\beta$ pruning is much less effective

Dice rolls increase b

21 possible rolls with 2 dice

Backgammon

≈ 20 legal moves

$$\text{depth 4} = 20^4 \times 21^3 \approx 1.2 \times 10^9$$

TDGammon

Uses depth-2 search + very good $EVAL \approx$ world-champion level
Games of Imperfect Information

Idea for computing best action

Compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals

Requires information on probability the different deals

Special case

If an action is optimal for all deals, it’s optimal.
Games of Imperfect Information

Idea for computing best action

Compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals.

Requires information on probability the different deals.

Special case

If an action is optimal for all deals, it’s optimal.

Bridge

GlB, current best bridge program, approximates this idea by

- generating 100 deals consistent with bidding information
- picking the action that wins most tricks on average
Proper Analysis

Note

Value of an actions is NOT the average of values for actual states computed with perfect information

With partial observability, value of an action depends on the information state the agent is in

Leads to rational behaviors such as

- Acting to obtain information
- Signalling to one’s partner
- Acting randomly to minimize information disclosure
Summary

- Games are to AI as grand prix racing is to automobile design
- Games are fun to work on (and dangerous)
- They illustrate several important points about AI
 - perfection is unattainable, must approximate
 - it is a good idea to think about what to think about
 - uncertainty constrains the assignment of values to states