PdF: Modular verification of neural networks

Background

Neural networks are state of the art in numerous ma-
chine learning tasks ranging from image classification
to beating world-class human players in the games
of chess and go. These achievements have led to
the implementation of neural networks in safety crit-
ical domains like aircraft controllers and autonomous
driving. In these areas, failures can have dramatic
consequences. Therefore, provable guarantees about
the behaviour of the corresponding neural networks
are necessary. Although the verification problem for
ReLU-NNs is trivially decidable by enumerating all
affine regions, it is unfortunately NP-complete [6].

Idea

In traditional program verification, large programs
are broken down into submodules, which are easier to
verify resulting in auxiliary statements. These state-
ments can then be used to verify a property of the
overall program.

The goal of this work is to explore this idea in the
context of neural network verification. Challenges
that arise in this context include specifying assump-
tions on partitions of the NN that 1. hold for the
partitions (and are easy enough to be verified) and
2. are strong enough to prove the overall property (or
at least assist in speeding up the verification). Manu-
ally obtaining specifications for submodules is already
tedious for traditional software. For NNs it’s nearly
impossible, as their sub-symbolic reasoning renders
them (mostly) incomprehensible for humans.

It is therefore a promising idea to sample activa-
tion values for the NN at hand and use machine
learning approaches to generate specification candi-
dates. To this end, it may be worth-while to con-
sider approaches for invariant learning for classical
programs [2} |3 [1] as well as previous work on modu-
lar bounded model checking [7].

Further relevant literature: [4], [5] and [8]

Supervisors

Philipp Kern, philipp.kern@kit.edu, Room 203 (Geb.
50.34)
Samuel Teuber, teuber@kit.edu, Room 203 (Geb.
50.34)

References

[1] Jialu Bao et al. “Data-Driven Invariant Learning
for Probabilistic Programs”. In: Computer Aided
Verification. Ed. by Sharon Shoham et al. Cham:
Springer International Publishing, 2022, pp. 33—
54.

[2] Michael D. Ernst et al. “The Daikon system
for dynamic detection of likely invariants”. In:
Science of Computer Programming 69.1 (2007).
Special issue on Experimental Software and
Toolkits, pp. 35-45. 1SSN: 0167-6423.

[3] Cormac Flanagan et al. “Houdini, an Annotation
Assistant for ESC/Java”. In: FME 2001: Formal
Methods for Increasing Software Productivity.
Ed. by José Nuno Oliveira et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 500—
517.

[4] Divya Gopinath et al. “Finding Invari-
ants in Deep Neural Networks”. In: ArXiv
abs/1904.13215 (2019).

[5] Yuval Jacoby et al. “Verifying Recurrent Neural
Networks using Invariant Inference”. In: ATVA.
2020.

6] Guy Katz et al. “Reluplex: a calculus for rea-
soning about deep neural networks”. In: Formal
Methods in System Design (2021), pp. 1-30.

[7] Marko Kleine Biining et al. “Automatic Modu-
larization of Large Programs for Bounded Model
Checking”. In: Formal Methods and Software
Engineering. Ed. by Yamine Ait-Ameur et al.
Cham: Springer International Publishing, 2019,
pp. 186-202.

[8] Christian Sprecher et al. “Shared Certificates for
Neural Network Verification”. In: CAV. 2022.


mailto:philipp.kern@kit.edu
mailto:teuber@kit.edu

