Grundbegriffe der Informatik — Aufgabenblatt 5 Lösungsvorschläge

Tutorium Nr.:	Tutor*in:
Matr.nr. 1:	
Nach-, Vorname 1:	,
Matr.nr. 2:	
Nach-,Vorname 2:	,
Ausgabe:	15. November 2019
Abgabe:	26. November 2019, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig • handschriftlich • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor auszufüllen: erreichte Punkte	
Blatt 5: / 21	

Hinweis: Auf den ersten 6 Aufgabenblättern wird man insgesamt genau 120 Punkte erreichen können. Wer den Übungsschein erwerben will, kann dies also nur dann sicher schaffen, wenn auf den ersten 6 Aufgabenblättern mindestens 60 Punkte erreicht werden.

Aufgabe 5.1 (3 Punkte)

Es seien $a,b \in \mathbb{N}_+$ mit $a>b\geq 2$ gegeben. Zeigen Sie: Gibt es einen Homomorphismus $f\colon Z_a^*\to Z_b^*$ mit der Eigenschaft, dass

$$\forall x \in \mathbb{N}_0 : \operatorname{Num}_b(f(\operatorname{Repr}_a(x))) = x, \tag{BE}$$

so gibt es $n \in \mathbb{N}_+$ mit $a = b^n$.

Tipp. Es gilt $1 \in Z_b$. Überlegen Sie sich also zuerst, was f(1) sein kann.

Lösung 5.1

Es sei f mit der Eigenschaft BE gegeben. Es ist Repr_a(1) = 1, also

$$1 = \operatorname{Num}_b(f(\operatorname{Repr}_a(1))) = \operatorname{Num}_b(f(1))$$

und damit $f(1) = 0^m 1$ für ein $m \in \mathbb{N}_0$.

Analog ist $0 = \text{Num}_b(f(\text{Repr}_a(0))) = \text{Num}_b(f(0))$ und folglich $f(0) = 0^n$ für ein $n \in \mathbb{N}_+$.

Um die Homomorphismuseigenschaft von f auszunutzen, kann man nun z. B. f(10) = f(1)f(0) oder f(11) = f(1)f(1) betrachten.

Im ersten Fall ergibt sich

einerseits
$$\operatorname{Num}_b(f(10)) = \operatorname{Num}_b(f(\operatorname{Repr}_a(a)))$$

= a
andererseits $\operatorname{Num}_b(f(10)) = \operatorname{Num}_b(f(1)f(0)) = \operatorname{Num}_b(0^m 10^n)$
= b^n

Wer lieber f(11) betrachtet, kann wegen $\operatorname{Repr}_a(a+1) = 11$ z. B. so rechnen:

$$a + 1 = \text{Num}_b(f(\text{Repr}_a(a+1))) = \text{Num}_b(f(11)) = \text{Num}_b(f(1)f(1)) = \text{Num}_b(0^m 10^m 1)$$

Damit folgt $a + 1 = b^{m+1} + 1$, also $a = b^{m+1}$, was zu zeigen war.

Aufgabe 5.2 (4 Punkte)

Es seien A und B Mengen und $|A|, |B| \ge 2$. Die Abbildungen

$$\pi_A \colon \begin{cases} A \times B \to A \\ (a,b) \mapsto a \end{cases} \quad \text{und} \quad \pi_B \colon \begin{cases} A \times B \to B \\ (a,b) \mapsto b \end{cases}$$

heißen *Projektionen* von $A \times B$ auf A bzw. B.

Jede der folgenden vier Behauptungen ist wahr oder falsch. Geben Sie für jede entweder eine Begründung, warum sie falsch ist, oder geben Sie konkret eine entsprechende Abbildung λ_x bzw. ρ_x an.

- a) Die Abbildung π_A besitzt eine linkssinverse Abbildung λ_A .
- b) Die Abbildung π_A besitzt eine rechtsinverse Abbildung ρ_A .
- c) Die Abbildung π_B besitzt eine linkssinverse Abbildung λ_B .
- d) Die Abbildung π_B besitzt eine rechtsinverse Abbildung ρ_B .

Lösung 5.2

- a) Nein, eine Linksinverse zu π_A kann es nicht geben: Da $|B| \ge 2$ ist, existieren $b_1, b_2 \in B$ mit $b_1 \ne b_2$. Sei außerdem $a_1 \in A$ (existiert, da $|A| \ge 1$). Dann ist $\pi_A(a_1, b_1) = a_1 = \pi_A(a_1, b_2)$, obwohl $(a_1, b_1) \ne (a_1, b_2)$ ist. Also ist π_A nicht injektiv und kann insbesondere keine linksinverse Abbildung besitzen.
- b) Es sei $b_1 \in B$ beliebig (existiert, weil $|B| \ge 1$). Dann ist folgende Abbildung rechtsinvers zu π_A :

$$\rho_A \colon \begin{cases} A \to A \times B \\ a \mapsto (a, b_1) \end{cases}$$

Rechnung für "rechtinvers" (war nicht verlangt): $\forall a \in A$ gilt

$$\pi_A(\rho_A(a)) = \pi_A(a, b_1) = a$$

- c) Der Fall für π_B ist analog zu π_A : Die Abbildung hat keine Linksinverse, weil sie nicht injektiv ist. Argumentation in Kurzform: $\pi_B(a_1,b_1)=b_1=\pi_B(a_2,b_1)$, aber $(a_1,b_1)\neq (a_2,b_1)$.
- d) Es sei $a_1 \in A$ beliebig (existiert, weil $|A| \ge 1$). Dann ist folgende Abbildung rechtsinvers zu π_B :

$$\rho_B \colon \begin{cases} B \to A \times B \\ b \mapsto (a_1, b) \end{cases}$$

Anmerkung: Wir hatten |A|, $|B| \ge 2$ vorausgesetzt, es lohnt sich aber auch anzuschauen, was geschieht, wenn diese Annahme nicht gemacht wird:

Ist A bzw. B leer, so ist $A \times B = \emptyset$ und damit sowohl π_A und π_B sind gleich die Identität I_{\emptyset} . Insbesondere sind sie also bijektiv und haben links- und rechtsinverse Abbildungen. Es gilt sogar $\lambda_A = \lambda_B = \rho_A = \rho_B = \pi_A = \pi_B$.

Sind A und B nicht leer aber |A|=1 (bzw. |B|=1), so gilt die obere Argumentation zu den Teilaufgaben d) bzw. b). Die von c) bzw. a) trifft aber nicht mehr zu: Sei $a_1 \in A$ (bzw. $b_1 \in B$). Für $(a,b) \in A \times B$ gilt $\pi_B(a,b) = b$ (bzw. $\pi_A(a,b) = a$), es gibt aber kein anderes Urbild zu b (bzw. a), weil zwangsweise $a = a_1$ (bzw. $b = b_1$) ist. Damit ist

$$\lambda_B \colon \begin{cases} B \to A \times B \\ b \mapsto (a_1, b) \end{cases}$$
 bzw. $\lambda_A \colon \begin{cases} A \to A \times B \\ a \mapsto (a, b_1) \end{cases}$

linksinvers zu π_B (bzw. π_A).

Aufgabe 5.3 (1.5 + 1 + 1.5 + 2 = 6 Punkte)

Es sei M eine Menge und $f \colon M \to M$ eine Abbildung. Wir definieren eine Abbildung $\Phi_f \colon M \times \mathbb{N}_0 \to M$ wie folgt:

$$\forall x \in M:$$
 $\Phi_f(x,0) = x$ $\forall x \in M, n \in \mathbb{N}_0:$ $\Phi_f(x,n+1) = \Phi_f(f(x),n)$

Ferner sei $A = \{a, b\}$ und $B = A \cup \{\$\}$, und $f : B^* \to B^*$ sei wie folgt festgelegt:

$$f(\varepsilon) = \varepsilon$$
 und $\forall x \in B \ \forall w \in B^* \colon f(xw) = wx$ \$

a) Geben Sie $\Phi_f(w,3)$ für jedes $w \in \{a,bb,aaaa,bababa\}$ an.

- b) Es sei $N_{\$}(w)$ für beliebiges $w \in B^{*}$ die Anzahl Vorkommen des Zeichens "\$" in w. Geben Sie $N_{\$}(\Phi_{f}(w,n))$ für beliebige $n \in \mathbb{N}_{0}$ und $w \in B^{*}$ an.
- c) Welchen Wert hat $\Phi_f(w, |w|)$ für beliebiges $w \in A^*$?
- d) Betrachten Sie die Abbildung $C \colon B^* \to B^* \colon w \mapsto \Phi_f(w,|w|)$. Sie ist injektiv, also eine Codierung. Nennen Sie zwei aus der Vorlesung bekannten Eigenschaften von Codierungen, die C hat. Begründen Sie Ihre Antwort. Sie dürfen dazu Ihre Behauptung aus Teilaufgabe c) benutzen (ohne sie noch zu beweisen).

Lösung 5.3

- a) $\Phi_f(a,3) = a$$$$ $\Phi_f(bb,3) = bb$$ $\Phi_f(aaaa,3) = aa$a$a$$ $\Phi_f(bababa,3) = abab$a$b$$
- b) $N_{\$}(\Phi_f(w,n)) = N_{\$}(w) + n$, es sei denn, $w = \varepsilon$ ist. Im letzteren Fall ist $N_{\$}(\Phi_f(\varepsilon,n)) = N_{\$}(\varepsilon) = 0$.
- c) ε für $w = \varepsilon$ bzw. $w(0) * w(1) * \cdots w(|w|-1) *$ für $w \in A^+$ Das kann man als Homomorphismus $h \colon B^* \to B^* \colon w \mapsto \Phi_f(w,|w|)$ fassen, wobei h(x) = x * ist für $x \in B$.
- d) Homomorphismus (siehe oben)
 - ε -frei: mit der Homomorphismuscharakterisierung ergibt sich: $\forall w \in A^+: |h(w)| = 2|w| \ge |w| \ge 1$, also $h(w) \ne \varepsilon$
 - präfixfrei: Von h(a) = a\$, h(b) = b\$, und h(\$) = \$\$ ist offensichtlich keines Präfix des anderen.

Aufgabe 5.4 (2.5 + 1 + 1.5 = 5 Punkte)

Es sei $A = \{0,1\}$ sowie $d: A^* \to A^*$ der Homomorphismus mit d(0) = 00 und d(1) = 11. Ferner sei $C: A^* \times A^* \to A^*$ wie folgt definiert:

$$\forall x, y \in A^* : C(x, y) = x01d(y)$$

a) Es sei $z \in A^*$ ein Wort, für das es mindestens ein Paar $(x,y) \in A^* \times A^*$ gibt mit z = C(x,y). Beschreiben Sie präzise, wie man solche Wörter x und y bestimmen kann, wenn man nur z gegeben hat. Begründen Sie, warum x und y immer eindeutig bestimmt sind.

Betrachten Sie jetzt die Abbildung:

$$D: \begin{cases} (A^* \times A^*)^2 \to A^* \\ (z_1, z_2) \mapsto C(z_1)C(z_2) \end{cases}$$

- b) Zeigen Sie, dass *D* nicht injektiv ist.
- c) Geben Sie eine Abbildung E mit gleichem Definitions- und Zielbereich wie D an, die injektiv ist. Erleichtern Sie sich möglichst die Arbeit, indem Sie an der Festlegung des Funktionswertes $D(z_1, z_2)$ nur "kleine Änderungen" vornehmen. Begründen Sie, dass Ihr E injektiv ist.

Lösung 5.4

- a) Als Beispiel betrachten wir z = 01001110011.
 - (i) Man zerlege z von rechts in Zweierblöcke, bis zum ersten Mal der Block 01 entsteht. Im Beispiel ergibt sich $z = 010 \cdot 01 \cdot 11 \cdot 00 \cdot 11$

Da das Wort d(y) immer aus Zweierblöcken mit zwei identischen Zeichen besteht, ist dieser Block der eindeutig bestimmte "Trenner" zwischen x und d(y) in C(x,y).

- (ii) Das Präfix *vor* diesem 01-Block ist also das dann eindeutig bestimmte x. Im Beispiel x = 010.
- (iii) Das einzige passende y erhält man, indem man aus jedem Zweierblock rechts des Trenners jeweils eines der beiden gleichen Zeichen löscht. Im Beispiel y = 101.
- b) Es gilt

$$D((\varepsilon,1),(\varepsilon,\varepsilon)) = (\varepsilon \cdot 01 \cdot 11) \cdot (\varepsilon \cdot 01 \cdot \varepsilon) = (\varepsilon \cdot 01 \cdot \varepsilon) \cdot (11 \cdot 01 \cdot \varepsilon) = D((\varepsilon,\varepsilon),(11,\varepsilon)),$$

also ist *D* ist nicht injektiv (und damit keine Codierung).

c) Man könnte D z. B. wie folgt umdefinieren:

$$E \colon \begin{cases} (A^* \times A^*)^2 \to A^* \\ (z_1, z_2) \mapsto C(z_1) \text{old}(C(z_2)) \end{cases}$$

E ist eine Codierung, weil jedes Codewort $w=E(z_1,z_2)$ wie folgt eindeutig unterteilt werden kann:

$$w = x_1 01d(y_1) 01d(x_2) 0011d(d(y_2))$$

wobei $z_1 = (x_1, y_1)$ und $z_2 = (x_2, y_2)$ ist. Die Bestimmung von x_1, y_1, x_2 , und y_2 lässt sich analog zu Teilaufgabe a) durchführen.

Aufgabe 5.5 (1.5 + 1.5 = 3 Punkte)

Sei $A = \{a, b, c, d\}$ und $B = \{0, 1\}$. Zudem sei C die Codierung $C: A^* \to B^*$, die als Homomorphismus wie folgt induziert wird:

$$C(a) = 00$$
, $C(b) = 01$, $C(c) = 10$, $C(d) = 11$

- a) Geben Sie ein Wort $w \in A^*$ minimaler Länge derart an, dass:
 - jedes Zeichen von A mindestens einmal in w vorkommt und
 - jede Huffman-Codierung von w echt kürzer ist als C(w).
- b) Erstellen Sie einen Huffman-Baum zu Ihrem Wort w aus Teilaufgabe a) und geben Sie für jedes Zeichen von A seine Codierung an.

Lösung 5.5

a) Man muss ein $w \in A^6$ wählen, in dem ein Zeichen dreimal vorkommt und jedes andere einmal, also z. B. w = abcddd.

b)
$$\begin{array}{c|c} 6 & 0 \\ \hline 0 / 1 \\ \hline 3 & d,3 \\ \hline 0 / 1 \\ \hline 2 & 1,c \\ \hline 0 / 1 \\ \hline 1,a & 1,b \\ \end{array}$$

Die Zeichen werden dabei wie folgt codiert: