Applications of Formal Verification

Formal Software Design: Modelling in Event-B

Dr. Vladimir Klebanov · Dr. Mattias Ulbrich | SS 2015

Abstraction and Refinement – Introduction
Late fault recovery is expensive

Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay
- ...

Klebanov, Ulbrich – Applications of Formal Verification
SS 2015 5/96
Abstraction

The only tool to master complexity is abstraction.

Cliff Jones
Abstraction and Refinement

Abstract

Refinement

Concrete

Abstraction
Abstraction

- reduce system complexity
- without removing important properties
- make the model susceptible to formal analysis

and the inverse

Refinement

- enrich abstract model with details
- introduce a new particular aspect
- iterative process: add complexity in a stepwise fashion
Abstraction in Engineering

Abstraction is an important tool in engineering

Established means of abstraction

- Mechanical engineering: BLUEPRINTS
- Electrical engineering: DATASHEETS
- CIRCUIT DIAGRAMS
- Architecture: FLOOR PLANS
- ...

Abstract descriptions remove unnecessary details, concentrate on one aspect
Datasheet – Abstraction

Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to
Schematic Diagram vs. PCB Layout

Aspect
“Behaviour” preserved
Beck diagrams (1931)

Aspect
“Route planning” is preserved
Property preservation

Abstraction with focus on particular aspect

System properties w.r.t. that aspect must also hold in the abstraction.

Refinement with focus on particular aspect

Properties of abstract model w.r.t. that aspect must be inherited by the refined model.

That’s what we will formally prove in the next sections.

Examples:

- **Abstraction:** “The shortest tube travel from Liverpool St. to Westminster has 8 stops and 2 changes.”
- **Refinement:** *Abstract*: Input “$a = 1$” gives output “$b = 1$”

 Concrete: High voltage on pin A gives high voltage on pin B
"Conceptual” vs “Technical” Abstraction

Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect

Abstraction as a technique
- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs
 (Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look into in the next sections.
Event-B – Introduction
Event-B

- EventB is a formalism for modelling and reasoning about discrete systems.
 - for their structure (how can their state be described) and
 - for their behaviour (how can the evolution of their state be described)

- Models are formulated using set theory

- Event-based evolution of the original B Method

- Tool-support:
 - **RODIN** – deductive verification, theorem prover: proofs
 - **Pro-B** – model checking, animator: counterexamples
Central Concepts

- **Variables and Events**
 - *Variables* model the current state within the state space.
 - *Events* describe operations to model the system behaviour.

- **Invariants**
 - Properties to be maintained by the system.
 - Formal proof obligations to show that these properties hold.

- **Refinement**
 - Behaviour of the refining model is compatible with the abstract model.
 - Formal proof obligation to show that the refining model satisfies the invariants.
 - Hence, invariants of the abstract model are inherited by the concrete model.
Event-B models

systems state evolution over time, triggered by events

Event-B models consist of contexts and machines:

Contexts

Static, rigid, constant parts that do not change over time.

Machines

Dynamic, volatile, evolving parts that do change over time.
Event-B models consist of contexts and machines:

Contexts
- *Carrier sets* (ground types, universes, “urelements”)
- *Constants* (state-independent symbols, rigid symbols)
- *Axioms* (formulas valid by stipulation)
- *Theorems* (formulas proved valid)

Machines
- *Context references* (which symbols are available)
- *Variables* (state-dependent symbols, non-rigid symbols, program variables)
- *Invariants* (formulas true in every reachable system state)
- *Events* (state transition descriptions)

(Explanations or alternative names in parens)
Students and Exams – Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

→ Identify the context, the state and the events according to the requirements R1–R3.
Exam Context

CONTEXT ExamCtx

SETS

- **STUDENT** // see requirement R1
- **SUBJECT**

CONSTANTS

- maths
- physics
- siblings

AXIOMS

- maths ∈ SUBJECT // type of variables
- physics ∈ SUBJECT
- maths ≠ physics // constants could have same value
- siblings ⊆ STUDENT × STUDENT // function type
- ∀s · s ∈ STUDENT ⇒ (s ↦ s) ∉ siblings // irreflexive
 // ...
MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARINTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ // R3

EVENTS
INITIALISATION ⊳ . . .
ATTEMPT EXAM ⊳ . . . // R2
PASS EXAM ⊳ . . . // R3
FAIL EXAM ⊳ . . . // R3
MACHINE ExamAbstract
VARIABLES passed failed ...

EVENTS
INITIALISATION \(\triangleq \)
\[
\begin{align*}
\text{failed} &:= \emptyset \\
\text{passed} &:= \emptyset
\end{align*}
\]

PASSEXAM \(\triangleq \)
\[
\begin{align*}
\text{ANY } s \text{ grade} \\
\text{WHERE } s \in \text{STUDENT} \land \text{grade } \leq 4 \\
\text{THEN } \text{passed} &:= \text{passed} \cup \{s\}
\end{align*}
\]

FAILEXAM \(\triangleq \)
\[
\begin{align*}
\text{ANY } s \text{ grade} \\
\text{WHERE } s \in \text{STUDENT} \land \text{grade } > 4 \\
\text{THEN } \text{failed} &:= \text{failed} \cup \{s\}
\end{align*}
\]
Invariant violated

MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed \∩ failed = \emptyset \ldots

EVENTS
PASSEXAM \triangleq
 ANY s grade
 WHERE s ∈ STUDENT \setminus (failed \cup passed) \land grade \leq 4
 THEN passed := passed \cup \{s\}

FAILEXAM \triangleq
 ANY s grade
 WHERE s ∈ STUDENT \setminus (failed \cup passed) \land grade > 4
 THEN failed := failed \cup \{s\}
Underspecified model

EVENTS

\[
\text{PASS EXAM} \triangleq \\
\text{ANY } s \text{ grade WHERE } grade \leq 4 \land s \in \ldots \\
\text{THEN passed} := \text{passed} \cup \{s\}
\]

\[
\text{FAIL EXAM} \triangleq \\
\text{ANY } s \text{ grade WHERE } grade > 4 \land s \in \ldots \\
\text{THEN failed} := \text{failed} \cup \{s\}
\]

\[
\text{ATTEMPT EXAM} \triangleq \\
\text{ANY } s \text{ grade WHERE } grade \in \mathbb{N} \land s \in \ldots \\
\text{THEN skip}
\]

Additional requirement

\textbf{R4} Any student may attempt the exam three times and ultimately fails if the fourth attempt is unsuccessful.
MACHINE RefinedExams REFINES ExamsAbstract
VARIABLES passed attempts

INVARIANTS

\[\text{attempts} \in \text{STUDENT} \rightarrow \mathbb{N} \] // typing for attempts
\[\text{failed} = \{ s \cdot \text{attempts}(s) = 4 \} \] // coupling invariant

EVENTS

INITIALISATION \(\triangleq \) REFINES INITIALISATION

\[\text{passed} := \emptyset \]
\[\text{attempts} := \{ s \cdot s \in \text{STUDENT} \mid (s \mapsto 0) \} \]

EXAM\text{ULTIMATE}\text{FAIL} \(\triangleq \) REFINES EXAM\text{FAIL} . . .

EXAM\text{MISSED} \(\triangleq \) REFINES EXAM\text{ATTEMPT} . . .

EXAM\text{PASSED} \(\triangleq \) REFINES EXAM\text{PASSED} . . .
Refinement Exams (2)

\[
\text{EVENTS}
\]

\[
\text{examUltimateFail} \triangleq \text{REFINES examFail} \\
\text{ANY } s \text{ grade} \\
\text{WHERE } ... \land grade > 4 \land \text{attempts}(s) = 3 \\
\text{THEN} \\
\text{attempts}(s) := \text{attempts}(s) + 1
\]

\[
\text{examMissed} \triangleq \text{REFINES examAttempt} \\
\text{ANY } s \text{ grade} \\
\text{WHERE } ... \land grade > 4 \land \text{attempts}(s) < 3 \\
\text{THEN} \\
\text{attempts}(s) := \text{attempts}(s) + 1
\]

...
Refinement Exams (3)

This refinement takes now also R4 into account.

Refinement preserves invariants

* Every possible event of *RefinedExams* is a possible event in *ExamsAbstract*

⇒ Every invariant of *ExamsAbstract* is also an invariant of *RefinedExams*

We will come back to this more formally ...
Set Theory –
Equipment for formal modelling
Set theory – a universal modelling language

Not only used in Event-B.

Set theory also used for modelling in ...

- Z
- Object-Z, Z++
- (classical) B
- Event-B
- Alloy
- ...
Every term in Event-B has a unique type.

Types are *part of the syntax* of Event-B and some expressions are syntactically forbidden:

\[\text{maths} \in \text{failed} \] is syntactically invalid.

(remember: \(\text{math} \in \text{SUBJECT} \), \(\text{failed} \subseteq \text{STUDENT} \))

“You can’t compare apples and oranges.”
Set Theory

Formal language in Event-B models

Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)
There are additional theories with fixed semantics
- integers
- more theories (datatypes) can be added by user (an extension to the system)
Types

1. **BOOL** and \(\mathbb{Z} \) are types

2. Every carrier set declared in a **CONTEXT** is a type.

3. If \(T \) is a type then \(\mathbb{P}(T) \) is a type.

 Semantics: \(\mathbb{P}(T) \) is the set of all subsets of \(T \) (powerset).

4. If \(T_1, T_2 \) are types then \(T_1 \times T_2 \) is a type.

 Semantics: \(T_1 \times T_2 \) is the set of all ordered pairs \((a, b)\) with \(a \in T_1 \) and \(b \in T_2 \) (Cartesian product).

Every expression \(E \) has a unique type \(\tau(E) \).
Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
- some specification errors may be detected as syntax errors (even before the verification has started)
- avoid Russell’s paradox

Russell’s paradox
Assume that the expression \(\{ s \mid \phi \} \) for any formula \(\phi \) denotes a set. Let \(R := \{ s \mid s \notin s \} \). Not allowed with types.
One observes: \(R \in R \iff R \notin R \) ✗
(This crushed naive set theory in early 1900s.)
Constructors for sets:

- **empty set** $\emptyset : \mathcal{P}(S)$
- **set extension** \{ \ldots \} : S^* \rightarrow \mathcal{P}(S)

 example: \{1, 2\} : \mathcal{P}(\mathbb{Z})

- **carrier sets** $C : \mathcal{P}(C)$

 example: STUDENT : \mathcal{P}(STUDENT)

- **powerset** $\mathcal{P}(\cdot) : \mathcal{P}(S) \rightarrow \mathcal{P}(\mathcal{P}(S))$

 example: $\mathcal{P}(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} : \mathcal{P}(\mathbb{Z})$

- **product** $\cdot \times \cdot : \mathcal{P}(S) \times \mathcal{P}(T) \rightarrow \mathcal{P}(S \times T)$

 example: BOOL $\times \{1\} = \{\{true, 1\}, \{false, 1\}\} : \mathcal{P}(BOOL \times \mathbb{Z})$

- **set comprehension** $\{x \cdot \varphi \mid e\}$

 formula φ, term $e : T$, result of type $\mathcal{P}(T)$

 example: $\{x \cdot x \geq 2 \mid x \ast x\} = \{4, 9, 16, \ldots\}$
Relations

- Relations are sets of pairs (tuples).
- All relations: \(E_1 \leftrightarrow E_2 := \mathcal{P}(E_1 \times E_2) \)
- Pairs \((E_1 \leftrightarrow E_2) : \tau(E_1) \times \tau(E_2) \)
- **Domain** of a relation \(\text{dom}(R) \)
 \[\text{dom}(R) = \{ x, y \cdot (x \mapsto y) \in R \mid x \} \]
 example: \(\text{dom}(E_1 \times E_2) = E_1 \) if \(E_2 \neq \emptyset \)
- **Range** of a relation \(\text{ran}(R) \)
 \[\text{ran}(R) = \{ x, y \cdot (x \mapsto y) \in R \mid y \} \]
 example: \(\text{ran}(E_1 \times E_2) = E_2 \) if \(E_1 \neq \emptyset \)
- can be nested: \((E_1 \leftrightarrow E_2) \leftrightarrow E_3 \) for a ternary relation etc.
Kinds of relations

- All relations $E_1 \leftrightarrow E_2$

- All surjections $E_1 \leftrightarrow E_2$ \quad (\text{ran}(R) = E_2)

- All total relations $E_1 \leftrightarrow E_2$ \quad (\text{dom}(R) = E_1)

- All total surjections $E_1 \leftrightarrow E_2$
Functional relations

Observation

Every function $f \in A \rightarrow B$ can be understood as the relation

\[\{ x \cdot x \in A \mid x \mapsto f(x) \} \in A \leftrightarrow B \]

- Partial functions $E_1 \leftrightarrow E_2 \subseteq E_1 \leftrightarrow E_2$

 \[
 (\forall x, y, z \cdot x \mapsto y \in R \land x \mapsto z \in R \Rightarrow y = z) \]

- Total functions $E_1 \rightarrow E_2$

 \[
 E_1 \rightarrow E_2 = (E_1 \leftrightarrow E_2) \cap (E_1 \leftrightarrow E_2)
 \]

 (both partial function and total relation)

- Injections $E_1 \leftrightarrow E_2$

 \[
 (\forall x, y, z \cdot x \mapsto z \in R \land y \mapsto z \in R \Rightarrow x = y)
 \]
Functional relations (2)

Intersection of relation classes give new classes:

- **Total injections** $E_1 \leftrightarrow E_2 = (E_1 \rightarrow E_2) \cap (E_1 \leftrightarrow E_2)$
- **Partial surjections** $E_1 \leftrightarrow E_2 = (E_1 \rightarrow E_2) \cap (E_1 \leftrightarrow E_2)$
- **Total surjections** $E_1 \rightarrow E_2 = (E_1 \rightarrow E_2) \cap (E_1 \rightarrow E_2)$
- **Bijections** $E_1 \leftrightarrow E_2 = (E_1 \rightarrow E_2) \cap (E_1 \leftrightarrow E_2)$
Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files, dirs, root
AXIOMS files ⊆ OBJECT, dirs ⊆ OBJECT,
 root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, parent
INVARIANTS
 tree ∈ dirs ↔ (files ∪ dirs)
 // most directories (but root) have a parent directory:
 parent ∈ dirs ↦ dirs
 // more precise
 parent ∈ (dirs \ {root}) → dirs
Relational operations

- **Relational application** \(\cdot [\cdot] : \mathcal{P}(S \times T) \times \mathcal{P}(S) \rightarrow \mathcal{P}(T) \)
 \[
 R[A] = \{x, y \cdot x \mapsto y \in R \land x \in A \mid y\}
 \]

- **Functional application** \(\cdot (\cdot) : \mathcal{P}(S \times T) \times S \rightarrow T \)
 \[
 x = f(e) \iff e \mapsto x \in f \quad \{f(e)\} = f[\{e\}]
 \]

Problem: What if \(f[\{e\}] \) is not a one-element set?
Solution: Well-definedness needs to be proved

1. \(f \in S \rightarrow T \) (not an arbitrary relation in \(S \leftrightarrow T \))
2. \(e \in \text{dom}(f) \)

everytime a functional application is used.
Restrictions

Concept

Limit the domain or range of a relation to a subset.

\[
A \triangleleft R := \{ x, y \cdot x \mapsto y \in R \land x \in A \mid x \mapsto y \} \subseteq R
\]

\[
A \triangleleft R := \{ x, y \cdot x \mapsto y \in R \land x \notin A \mid x \mapsto y \} \subseteq R
\]

\[
R \triangleright B := \{ x, y \cdot x \mapsto y \in R \land y \in B \mid x \mapsto y \} \subseteq R
\]

\[
R \triangleright B := \{ x, y \cdot x \mapsto y \in R \land y \notin B \mid x \mapsto y \} \subseteq R
\]

Relational application: \(R[A] = \text{ran}(A \triangleleft R) \)
Override

\[R \leftarrow S := ((\text{dom } S) \leftarrow R) \cup S \]

\[x \mapsto y \in R \leftarrow S \iff \begin{cases} x \mapsto y \in S & \text{if } x \in \text{dom}(S) \\ x \mapsto y \in R & \text{if } x \notin \text{dom}(S) \end{cases} \]

- “Clear” dom(S) in R and “replace” by S.
- Special case: \(f \in A \rightarrow B, g \in A \mapsto B \) implies \(f \leftarrow g \in A \rightarrow B \)
- \(f \leftarrow \{x \mapsto y\} \) updates function \(f \) in one place \(x \)

- Caution: \(\leftrightarrow \) and \(\leftarrow \) are different symbols
- Syntax sometimes \(\oplus \) instead of \(\leftarrow \)
- Compare *Updates* in Dynamic Logic for KeY.
Forward composition

\[x \mapsto y \in R ; S \iff \exists z \cdot x \mapsto z \in R \land z \mapsto y \in S \]

\(x \mapsto y \) is in the composition \(R ; S \) if there is a transmitting element \(z \) with both \(x \mapsto z \in R \) and \(z \mapsto y \in S \).

(There is also backward composition \(R \circ S = S ; R \))
Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files, dirs, root
AXIOMS files ⊆ OBJECT, dirs ⊆ OBJECT,
 root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, depth
INVARIANTS

\[
\text{tree} \in \text{dirs} \leftrightarrow (\text{files} \cup \text{dirs}) \quad \land \quad \text{depth} \in \text{dirs} \rightarrow \mathbb{N} \quad \land \\
\forall d \cdot ((\text{depth}(d) > 0 \Rightarrow \text{depth}[\text{tree}[\{d\}]] = \{\text{depth}(d) - 1\}) \\
\land (\text{depth}(d) = 0 \Rightarrow \{d\} \prec \text{tree} \succ \text{files} = \emptyset))
\]
Event-B – Events
MACHINE name
SEES context
VARIABLES vars
ININVARIANTS inv(vars)
EVENTS
 ...
END

The symbols in context can be used in inv even if not mentioned explicitly.
Events

EVENT M

// the following are the parameters,
// the input signals, nondeterministic choices
ANY $prms$

// the preconditions, conditions on the input values
WHERE $guard(vars, prms)$

// evolution of the program variables when the event “fires”
THEN
 $actions$
END

There is one more contract (WITH) that we omit here.
Actions (Generalised Substitutions)

Deterministic actions

- "Assignment" $x := t$
- Variable x and term t must have same type ($\tau(t) = \tau(x)$)
- After event, x has value of expression t

Example:

```
THEN
  x := y
  y := x
END  // swaps values of variables $x, y$.
```

Unmentioned variable z does not change.

Remember the updates in KeY: $\{x := y \parallel y := x\}$ has same effects.
Actions (Generalised Substitutions)

Nondeterministic actions

\[x : \varphi \] means “choose \(x \) such that \(\varphi \)”

- Actions can have more than one resolution
- \(\varphi \) is called the before-after-predicate (BAP)
- Variables without tick: before-state
- Variables with tick: after-state.

Example:

\[x, y : x' = y' \land y' > y \]

After the action \(x \) and \(y \) are equal and \(y \) is strictly greater than before the action.
Actions (Generalised Substitutions)

Normal form

Every action can be defined as a before-after-predicate

\[bap(vars, vars', prms) \]

with

1. \(vars \) the machines variables before the action
2. \(vars' \) the machine variables after the action
3. \(prms \) the parameters of the event

- \(x := t \) is short for \(x :| x' = t \)
- \(x :\in S \) is short for \(x :| x' \in S \)
Initialisation

- Values of the machine in the beginning?
- Initial values defined by the special event INITIALISATION.
- Before-after-predicate \(bap_{init} \) and guard \(grd_{init} \) must not refer to \(vars \), there is no “before-state”.
- After the first state, only normal events trigger.
Machine Semantics

Machine variables $\textit{vars} \equiv v_1, \ldots, v_k$ with types $\overline{T} = T_1 \times \ldots \times T_k$.

A state $\sigma \in \overline{T}$ is a vector, variable assignment.

A trace is a sequence of states $\sigma_0, \sigma_1, \ldots$ such that

- first state σ_0 is result of the initialisation event
- every state σ_i results from an event which operates on σ_{i-1} (for every $i > 0$).

The semantics of a machine M is the set of all traces possible for M.
Event Parameters

Sources for indeterminism

- indeterministic choices in bap’s (cf. \in, $:|$
- event parameters

Event parameter may model:

- content of messages passed around
- indeterministic user input
- unpredictable environment actions
- a number, amount of data to operate with
- ...

Technically event parameters can be removed and replaced by existential quantifiers.
Semantics (more formally)

State space: \(\overline{T} = T_1 \times \ldots \times T_k \)

Trace: \(t \in \mathbb{N} \rightarrow \overline{T} \)
with
- \(\exists \text{prms}_{\text{init}} \cdot \text{grd}_{\text{init}}(\text{prms}_{\text{init}}) \land \text{bap}_{\text{init}}(t(0), \text{prms}_{\text{init}}) \)
- For \(n \in \mathbb{N}_1 \), there is \(e \in \text{EVENTS} \) such that
 \(\exists \text{prms}_e \cdot \text{grd}_e(t(i-1), \text{prms}_e) \land \text{bap}_e(t(i-1), t(i), \text{prms}_e) \)

Partial, finite trace trace: \(t \in 0..n \rightarrow \overline{T} \)

Deadlock: no event \(e \) can be triggered, i.e.
\(\forall \text{prms}_e \cdot \neg \text{grd}_e(t(n), \text{prms}_e) \) for all events \(e \).
SAFETY: Do all states reachable by M satisfy inv?

The red trace violates the invariant in two states.
Proof Obligation INV

To show that $\text{inv}(\text{vars})$ is an invariant for machine M, one proves for every event:

- Invariants
- Guards of the event
- Before-after-predicate of the event

\Rightarrow

modified invariant
Proof Obligation INV

To show that $\text{inv}(\text{vars})$ is an invariant for machine M, one proves:

1. $\forall \text{prms}, \text{vars}'.
 \begin{align*}
 &\text{grd}_{\text{init}}(\text{prms}) \land \text{bap}_{\text{init}}(\text{vars}', \text{prms}) \\
 \rightarrow \ &\text{inv}(\text{vars}')
 \end{align*}
 \text{(Invariant initially valid)}$

2. $\forall \text{prms}, \text{vars}, \text{vars}'.
 \begin{align*}
 &\text{inv}(\text{vars}) \land \text{grd}_{e}(\text{vars}, \text{prms}) \land \\
 &\text{bap}_{e}(\text{vars}, \text{vars}', \text{prms}) \\
 \rightarrow \ &\text{inv}(\text{vars}')
 \end{align*}
 \text{for every event } e \text{ in } M.
 \text{(Events preserve invariant)}$

Note: Proof Obligation INV is a sufficient criterion, but not necessary. Necessary for inductive invariants.
Inductive Invariant

MACHINE *IndInv*
VARIABLES *x* INvariants *x ∈ ℤ x ≥ 0*
EVENTS

INITIALISATION ≜

\[x := 2 \]

STEP ≜

\[x := 2 \times (x - 1) \]

There is only one trace:

\((2, 2, 2, 2, \ldots)\)

invariant is fulfilled.
Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

\[\text{inv}(x) \land \text{grd}(x) \land \text{bap}(x, x') \rightarrow \text{inv}(x') \]
\[x \geq 0 \land x' = 2 \times (x - 1) \rightarrow x' \geq 0 \]

⚠️ This is not valid! Invariant is not inductive. ⚠️

Counter-example: \(x = 0, x' = -2 \)
Show that every action is feasible if the guard is true:

\[
\begin{align*}
\text{Invariants} \\
\text{Guards of the event} \\
\Rightarrow \\
\exists v' \cdot \text{before-after-predicate}
\end{align*}
\]
The action of an event is possible if guard is true.

\[\forall vars, \ prms \cdot \text{grd}_e(vars, \ prms) \rightarrow \exists vars' \cdot \text{bap}(vars, \ vars', \ prms) \]

Deterministic action: \(x := t \)

...nothing to show

Indeterministic action: \(x :\in S \)

...show that \(S \neq \emptyset \)

Indeterministic action: \(x :| \varphi \)

...show satisfiability of \(\varphi \)

Thus impossible evolutions like \(x :| false \) or \(x :\in \emptyset \) are avoided
Deadlock Freedom DLKF

Recap:

Deadlock: no event e can be triggered, i.e.

$$\forall prms_e \cdot \neg grd_e(t(n), prms_e)$$

for all events e.

Proof Obligation

There is always an event that can trigger:

$$\forall vars \cdot inv(vars) \Rightarrow \bigvee_{\text{event } e \in M} \exists prms \cdot grd_e(vars, prms)$$

Again, this is sufficient not necessary.

(The invariant may be too weak to imply deadlock freedom)
Event-B – Refinement
Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x \geq 0
EVENTS INCREASE \triangleq x : \leftarrow x' \geq x

MACHINE Refined
REFINES Abstract
VARIABLES x
EVENTS \text{NEXT VAL} \triangleq REFINES INCREASE
x \leftarrow 5 \times x^2 + 3 \times x
MACHINE *Abstract*

SEES *Context*

VARIABLES $vars_A$

INVARIANTS

$inv_A(vars_A)$

EVENTS

INITIALISATION $\triangleq \ldots$

$EVT_A \triangleq \ldots$

END

MACHINE *Refined*

REFINES *Abstract*

SEES *Context*

VARIABLES $vars_R$

INVARIANTS

$inv_R(vars_A, vars_R)$

EVENTS

INITIALISATION $\triangleq \ldots$

$EVT_R \triangleq$

REFINES $EVT_A \ldots$

END
Machines as Relations

Every machine M defines:

- a state space S_M spanned by the types of vars_M
- the initialisation $I_M \subseteq S_M$
- the transition relations $E_{M;evt} \in S_M \leftrightarrow S_M$ (for event evt)

Details

$$
S_M = \tau(v_1) \times \ldots \times \tau(v_k) \quad \text{(with } \text{vars}_M = v_1, \ldots, v_k) \\
I_M(p) = \{ s \in S_M \mid \text{grd}_{\text{init}}(p) \land \text{bap}_{\text{init}}(s', p) \} \\
I_M = \bigcup p I_M(p) \\
E_{M;evt}(p) = \{ (s \mapsto s') \mid \text{grd}_{\text{evt}}(s, p) \land \text{bap}_{\text{evt}}(s, s', p) \} \\
E_{M;evt} = \bigcup p E_{M;evt}(p)
$$
Simple Refinement – Definition

Every trace of the refined machine R is a trace of the abstract machine A.

Definition: Simple Refinement

Let R, A be two machines with the same state space S. R is called a refinement of A if

1. $I_R \subseteq I_A$ and
2. $E_{R;\text{evt}_R} \subseteq E_{A;\text{evt}_A}$ for each event

(evt_R is the event in R that refines event evt_A from A)
Loss of behaviour

Why is this problematic?

MACHINE A
EVENT $\text{emergencyStop} \triangleq$
WHERE $true$ THEN $\text{heavyMachine} := \text{stop}$
END

refined by

MACHINE R
EVENT $\text{emergencyStop} \triangleq \text{REFINES} \text{emergencyStop}$
WHERE $false$ THEN $\text{heavyMachine} := \text{stop}$
END

$E_{R;\text{evt}} = \emptyset \implies R \text{ refines } A$
Every trace for A has a refining trace for R.

More precisely

For every trace in A with triggered events $evt_{A,1}, evt_{A,2}, \ldots$, there is a trace in R with triggered events $evt_{R,1}, evt_{R,2}, \ldots$ and $evt_{R,i}$ refines $evt_{A,i}$.

Definition: Lockfree Refinement

Let R, A be two machines with the same state space S. R is called a *lockfree* refinement of A if

1. $I_R \subseteq I_A$
2. $I_R \neq \emptyset$
3. $E_{R;evt_R} \subseteq E_{A;evt_A}$ for each event
4. $\text{dom}(E_{A;evt_A}) \subseteq \text{dom}(E_{R;evt_R})$ for each event
Coupling

More general notion of refinement

What if abstract machine A and refinement R have different state spaces S_A and S_R?

\rightarrow **Couple** abstract and refined state space.

$C \in S_R \leftrightarrow S_A$

Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARINTS
openFiles \subseteq FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARINTS
openModes \subseteq FILES \times MODES

$C = \{ r \mapsto a \mid a = \text{dom}(r) \} = \{ f, m \cdot (f \mapsto m) \mapsto m \}$
Refinement – Coupling

- Sensible to assume C a total relation:

$$C \in S_R \leftrightarrow S_A$$

- Often, coupling is a total function:

$$C \in S_R \rightarrow S_A$$

Define *one* abstraction for any detailed state. BUT sometimes, several possible abstractions per concrete state sensible.
Refinement: R refines A

For every concrete trace (χ_0, χ_1, \ldots) of R with events $(\text{evt}_1^R, \text{evt}_2^R, \ldots)$ there exists an abstract trace $(\sigma_0, \sigma_1, \ldots)$ with events $(\text{evt}_1^A, \text{evt}_2^A, \ldots)$ such that

1. $\chi_i \mapsto \sigma_i \in C$ for all $i \in \mathbb{N}$
2. evt_i^R refines event evt_i^A.
Refinement – Definition

Definition: Refinement

Let R, A be two machines with state spaces S_R, S_A. Let $C \in S_R \leftrightarrow R_A$ be the coupling invariant. R is called a refinement of A modulo C if

1. $I_R \subseteq C^{-1}[I_A]$ and
2. $E_{R; \text{evt}_R} \subseteq C \circ E_{A; \text{evt}_A} \circ C^{-1}$ for each event.

$(\forall x, y : x \mapsto y \in R^{-1} \iff y \mapsto x \in R$, inverse relation$)$
Refinement – Path subsumption

\[\sigma_n \xrightarrow{\text{evt}_A} \sigma_{n+1} \]

\[C \subseteq E_R \]

\[\chi_n \xrightarrow{\text{evt}_R} \chi_{n+1} \]

\[E_{R;\text{evt}_R} \subseteq C ; E_{A;\text{evt}_A} ; C^{-1} \]
Specifying Coupling

The coupling invariant is specified as part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of its abstraction.

Example (from slide 72)

<table>
<thead>
<tr>
<th>MACHINE</th>
<th>AbstractFileSys</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLES</td>
<td>openFiles</td>
</tr>
<tr>
<td>INVARIANTS</td>
<td>openFiles ⊆ FILES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MACHINE</th>
<th>RefinedFileSys</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLES</td>
<td>openModes</td>
</tr>
<tr>
<td>INVARIANTS</td>
<td>openModes ⊆ FILES × MODES</td>
</tr>
<tr>
<td></td>
<td>openFiles = dom(openModes)</td>
</tr>
</tbody>
</table>
Proof Obligation GRD

Proof that event guard in refinement is \textbf{stronger} than in abstract machine.

\implies \text{Abstraction is enabled when refinement is.}

Abstract invariants
Concrete invariants
Concrete event guard

\implies

Abstract event guard

\forall \text{vars}_A, \text{vars}_R \cdot

\begin{align*}
\text{inv}_A(\text{vars}_A) & \land \text{inv}_R(\text{vars}_A, \text{vars}_R) \land \text{grd}_R(\text{vars}_R) \\
\implies & \text{grd}_A(\text{vars}_A)
\end{align*}

(Version w/o parameters, see literature for full version)
Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

⇒
Abstract before-after-predicate

Rem \(E_{R;evt_R} \subseteq C ; E_{A;evt_A} ; C^{-1} \)

Obs The coupling invariant is only used for the before-state not for the after-state.

Why?

Already proven condition INV implies invariant for after-state.
Event-B has more ...

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement
- ...
Byzantine Agreement –
A case study verified with Event-B

Based on:
Byzantine Generals

“When shall we attack?”

agree on a time even in the presence of traitors
Application in Avionics

"Which components are operative?"

C1, C2, C3, C4 agree on the set of operative components even in the presence of faulty components
Explanation by Example

CONSENSUS!
Example Run 2

Round 0

Round 1

C1

C2

C3

C4

Klebanov, Ulbrich – Applications of Formal Verification

SS 2015 85/96
Byzantine Agreement Algorithm

Verification Goals:

Validity If the transmitter tt is non-faulty, then all non-faulty receivers agree on the value sent by tt.

Agreement Any two non-faulty receivers agree on the value assigned to tt.
Byzantine Agreement Algorithm

Round 0: Transmitter sends signed message to all receivers.

Round n: Component receive messages, verify signatures, sign messages and pass them on.

GOAL: Prove that this algorithm has the “validity” and “agreement” properties.
We know of no area in computer science or mathematics in which informal reasoning is more likely to lead to errors than in the study of this type of algorithm.

Taken from: *The Byzantine Generals Problem*

Leslie Lamport, Robert Shostak, and Marshall Pease
ACM Transactions on Programming Languages and Systems
Context for Byzantine Agreement

\[
\begin{align*}
\text{CONTEXT} & \quad \text{Context} \\
\text{SETS} & \quad \text{SETS} \\
\text{MODULE} & \quad \text{MODULE} \\
\text{VALUE} & \quad \text{VALUE} \\
\text{CONSTANTS} & \quad \text{CONSTANTS} \\
\text{faulty}, \text{transmitter}, V_0 & \quad \text{faulty, transmitter, } V_0 \\
\text{AXIOMS} & \quad \text{AXIOMS} \\
\text{faulty} \subseteq \text{MODULE} & \quad \text{faulty} \subseteq \text{MODULE} \\
\text{transmitter} \in \text{MODULE} & \quad \text{transmitter} \in \text{MODULE} \\
V_0 \in \text{VALUE} & \quad V_0 \in \text{VALUE} \\
\text{finite}(\text{faulty}) & \quad \text{finite}(\text{faulty}) \\
\text{END} & \quad \text{END}
\end{align*}
\]
First machine

MACHINE Messages
SEES Context

VARIABLES messages, round, collected

INVARIANTS

\[\begin{align*}
 \text{ty_mess} & : \text{messages} \subseteq \text{MODULE} \times \text{MODULE} \times \text{VALUE} \\
 \text{ty_round} & : \text{round} \in \mathbb{N} \\
 \text{ty_collected} & : \text{collected} \in \text{MODULE} \to \mathcal{P}(\text{VALUE})
\end{align*}\]

...

\[\begin{align*}
 \text{messages} & : \text{messages being sent in the current round} \\
 \text{round} & : \text{the number of the current round} \\
 \text{collected} & : \text{values observed in previous rounds}
\end{align*}\]
First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round, collected

INVARIANTS...

EVENTS

Initialisation $\cong \ldots$

EVENT ROUND \cong

act1 : round := round + 1

act2 : messages \in \mathbb{P}\(\text{MODULE} \setminus \{\text{transmitter}\} \times \text{MODULE} \times \text{VALUE}\)

act3 : collected := $\lambda m \cdot$ collected(m) $\cup \{v \mid (s, m, v) \in messages\}$

END
First refinement: signed messages

All messages are signed in a trustworthy manner:

No forgery possible \implies Consider only \textit{relayed} messages.

round k: $s \xrightarrow{v} r$

round $k + 1$: $r \xrightarrow{v} n$
Signed messages (2)

\[
\begin{align*}
\text{round } k: & \quad s \xrightarrow{v} r \\
\text{round } k + 1: & \quad r \xrightarrow{v} n
\end{align*}
\]

MACHINE SignedMessages \ REDINES \ Messages
VARIABLES messages, round, collected

INVIANTS
\begin{align*}
\text{val1: } & \forall s, r, v \cdot (s, r, v) \in \text{messages} \Rightarrow v \in \text{collected}(\text{transmitter}) \\
\text{val2: } & \forall n \cdot \text{collected}(n) \subseteq \text{collected}(\text{transmitter})
\end{align*}

EVENTS

EVENT ROUND \ REDINES \ ROUND \triangleq
\begin{align*}
\text{act1, act3} & \quad \text{as above} \\
\text{act2: } & \quad \text{messages} \in \mathcal{P}\left(\{(r, n, v) \mid (s, r, v) \in \text{messages}\}\right) \\
\text{was: } & \quad \text{messages} \in \mathcal{P}((\text{MODULE} \setminus \{\text{transmitter}\} \times \text{MODULE} \times \text{VALUE})
\end{align*}

END
Refinement Tower

covered so far

Context sees Messages

MessagesSigned

History

Guarantees

HybridGuarantees

GuaranteesTech

HybridGuaranteesTech

HybridContext

VotingContext

ModuleList

ValueTables

ZA

ValueTablesTech

SM

def. ext.
def. ext.
def. ext.
Agreement!

In machine Guarantees:

\[\text{round} \geq \text{card}(\text{faulty}) + 1 \iff \]
\[(\forall n, m \cdot n \notin \text{faulty} \land m \notin \text{faulty} \Rightarrow \]
\[\text{collected}(n) = \text{collected}(m)) \]

In machine HybridGuarantees:

\[\text{round} \geq \text{card}(\text{arbFaulty}) + 1 \iff \]
\[(\forall n, m \cdot n \notin \text{faulty} \land m \notin \text{faulty} \Rightarrow \]
\[\text{collected}(n) = \text{collected}(m)) \]
Verification Effort

<table>
<thead>
<tr>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>Labour:</td>
</tr>
<tr>
<td>Proofs:</td>
</tr>
<tr>
<td>Automation:</td>
</tr>
</tbody>
</table>