Applying Formal Verification, SS 2012

Functional Verification of Concurrent Programs

When writing down solutions in ASCII, you may use \(\text{x} \) instead of \(\text{o} \) and \(\text{x}' \) instead of \(\text{a} \) in two-state assertions. It is also permissible to write just \(\text{x} \) instead of \(\text{x}' \) in single-state assertions.

You can write \(\land \) as \&, \(\neg \) as !, etc.

Assignment 1

Below is a proof outline for an implementation of Peterson’s mutual exclusion algorithm (Eike Best, “Semantics of Sequential and Parallel Programs”, p. 217). The proof outline is correct and interference-free.

Explain why this specification guarantees mutual exclusion of the two processes in the critical section.

record Petersons_mutex_1 =
 pr1 :: nat
 pr2 :: nat
 in1 :: bool
 in2 :: bool
 hold :: nat

lemma Petersons_mutex_1:
 "*[pr1=0 ∧ ¬in1 ∧ pr2=0 ∧ ¬in2].
 COBEGIN *[pr1=0 ∧ ¬in1].
 WHILE True INV *[pr1=0 ∧ ¬in1].
 DO .{pr1=0 ∧ ¬in1}. (in1:=True, pr1:=1);
 .{pr1=1 ∧ in1}. (hold:=1, pr1:=2);
 .{pr1=2 ∧ in1 ∧ (hold=1 ∨ hold=2 ∧ pr2=2)}. AWAIT (¬in2 ∨ ¬(hold=1)) THEN pr1:=3 END;
 .{pr1=3 ∧ in1 ∧ (hold=1 ∨ hold=2 ∧ pr2=2) .(in1:=False, pr1:=0)}
 OD .{pr1=0 ∧ ¬in1}.
 || .{pr2=0 ∧ ¬in2}.
 WHILE True INV .{pr2=0 ∧ ¬in2}.
 DO .{pr2=0 ∧ ¬in2}. (in2:=True, pr2:=1);
 .{pr2=1 ∧ in2}. (hold:=2, pr2:=2);
 .{pr2=2 ∧ in2 ∧ (hold=2 ∨ (hold=1 ∧ pr1=2))}. AWAIT (¬in1 ∨ ¬(hold=2)) THEN pr2:=3 END;
 .{pr2=3 ∧ in2 ∧ (hold=2 ∨ (hold=1 ∧ pr1=2))}. (in2:=False, pr2:=0)
 OD .{pr2=0 ∧ ¬in2}.
 COEND
 .{pr1=0 ∧ ¬in1 ∧ pr2=0 ∧ ¬in2}."
Assignment 2
Fill in the blanks to obtain a valid rely-guarantee formula. A proof is \textit{not} required.

Remember: Angle brackets \(<\) denote atomic blocks.

record Example2 =
 x :: nat
 c_0 :: nat
 c_1 :: nat

lemma Example2:

\[
\begin{align*}
\models \text{CUBEGIN} & \langle \langle \text{'}x:=\text{'}x+1;; \text{'}c_0:=\text{'}c_0 + 1 \rangle, \\
& \{ \{ \} \}, \\
& \{ \{ \} \}, \\
& \{ \{ \} \}, \\
& \{ \{ \} \} \rangle \\
|| & \langle \langle \text{'}x:=\text{'}x+1;; \text{'}c_1:=\text{'}c_1+1 \rangle, \\
& \{ \{ \} \}, \\
& \{ \{ \} \}, \\
& \{ \{ \} \}, \\
& \{ \{ \} \} \rangle \\
\text{CEND} & \text{SAT}\{\{\text{'}x=0 \land \text{'}c_0=0 \land \text{'}c_1=0\}\}, \\
& \{\{\text{'}x=0 \land \text{'}c_0=0 \land \text{'}c_1=0\}\}, \\
& \{\{\text{'}x=0 \land \text{'}c_0=0 \land \text{'}c_1=0\}\}, \\
& \{\{\text{'}x=2\}\}\}
\end{align*}
\]