Applications of Formal Verification

Deductive Verification of Information Flow Properties of Java Programs

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2012
1. Non-Interference
 - Definition
 - Reformulation and Formalization – Alternating Quantifiers
 - Reformulation and Formalization – Self-Composition

2. Declassification

3. Termination-sensitive Non-interference
Non-Interference

Prominent information flow property: **non-interference**

Simple case:
- deterministic, terminating, imperative program P
- program variables of P are partitioned in
 - low-security variables \textit{low} and
 - high-security variables \textit{high}
- In the following, non-interference means \textit{high} do not interfere with \textit{low} in P (=no information flows from \textit{high} to \textit{low})

Definition (Non-interference – not quite formal)

When starting P with arbitrary values for \textit{low}, the values of \textit{low} after executing P are independent of the choices of \textit{high}.
Non-Interference

Prominent information flow property: **non-interference**

Simple case:
- deterministic, terminating, imperative program P
- program variables of P are partitioned in
 - low-security variables low
 - high-security variables $high$
- In the following, non-interference means $high$ do not interfere with low in P (=no information flows from $high$ to low)

Definition (Non-interference – not quite formal)

When starting P with arbitrary values for low, the values of low after executing P are independent of the choices of $high$.
Non-Interference

Prominent information flow property: non-interference

Simple case:

- Deterministic, terminating, imperative program P
- Program variables of P are partitioned in
 - Low-security variables low
 - High-security variables $high$
- In the following, non-interference means $high$ do not interfere with low in P (=no information flows from $high$ to low)

Definition (Non-interference – not quite formal)

When starting P with arbitrary values for low, the values of low after executing P are independent of the choices of $high$.
Non-Interference

Prominent information flow property: **non-interference**

Simple case:
- deterministic, terminating, imperative program P
- program variables of P are partitioned in
 - low-security variables low and
 - high-security variables $high$
- In the following, non-interference means $high$ do not interfere with low in P (=no information flows from $high$ to low)

Definition (Non-interference – not quite formal)

When starting P with arbitrary values for low, the values of low after executing P are independent of the choices of $high$.
Non-Interference

Prominent information flow property: non-interference

Simple case:
- deterministic, terminating, imperative program P
- program variables of P are partitioned in
 - low-security variables low and
 - high-security variables $high$
- In the following, non-interference means $high$ do not interfere with low in P (=no information flows from $high$ to low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low, the values of low after executing P are independent of the choices of $high$.
Non-Interference

Prominent information flow property: **non-interference**

Simple case:
- deterministic, terminating, imperative program P
- program variables of P are partitioned in
 - low-security variables *low* and
 - high-security variables *high*
- In the following, non-interference means *high* do not interfere with *low* in P (=no information flows from *high* to *low*)

Definition (Non-interference – not quite formal)

When starting P with arbitrary values for *low*, the values of *low* after executing P are independent of the choices of *high*.
Examples

Which methods are secure?

class MiniExamples {
 public int l;
 private int h;

 void m_1() {
 l = h;
 }

 void m_2() {
 if (l>0) {h=1;}
 else {h=2;};
 }

 void m_3() {
 if (h>0) {l=1;}
 else {l=2;};
 }

 void m_4() {
 h=0; l=h;
 }
}
Examples

Which methods are secure?

class MiniExamples {
 public int l;
 private int h;

 void m_1() {
 l = h;
 }

 void m_2() {
 if (l>0) {h=1;}
 else {h=2;};
 }

 void m_3() {
 if (h>0) {l=1;}
 else {l=2;};
 }

 void m_4() {
 h=0; l=h;
 }
}
Examples

Which methods are secure?

class MiniExamples {
 public int l;
 private int h;

 void m_1() {
 l = h;
 }

 void m_2() {
 if (l>0) {h=1;}
 else {h=2;};
 }

 void m_3() {
 if (h>0) {l=1;}
 else {l=2;};
 }

 void m_4() {
 h=0; l=h;
 }
}
Examples

Which methods are secure?

class MiniExamples {
 public int l;
 private int h;

 void m_1() {
 l = h;
 }

 void m_2() {
 if (l>0) {h=1;}
 else {h=2;};
 }

 void m_3() {
 if (h>0) {l=1;}
 else {l=2;};
 }

 void m_4() {
 h=0; l=h;
 }
}
Examples

Which methods are secure?

class MiniExamples {
 public int l;
 private int h;

 void m_1() {
 l = h;
 }

 void m_2() {
 if (l>0) {h=1;}
 else {h=2;};
 }

 void m_3() {
 if (h>0) {l=1;}
 else {l=2;};
 }

 void m_4() {
 h=0; l=h;
 }
}
Which methods are secure?

```c
void m_5() {
    l=h; l=l-h;
}

void m_6() {
    if (false) l=h;
}
```
Examples

Which methods are secure?

```c
void m_5() {
    l = h; l = l - h;
}

void m_6() {
    if (false) l = h;
}
```
Examples

Which methods are secure?

```c
void m_5() {
    l=h; l=l-h;
}
```

```c
void m_6() {
    if (false) l=h;
}
```

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to low variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two final states that are also low-equivalent.
Non-Interference

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to low variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two final states that are also low-equivalent.
Non-interference encoding in JavaDL (v1)

For all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

\[\forall in_l \exists r \forall in_h (\{low := in_l \mid high := in_h\}[P]low = r) \]

- **Problem**: not suitable for automatic verification ⇨ instantiation of existential quantifier difficult.
Non-interference encoding in JavaDL (v1)

For all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

\[\forall in_l \exists r \forall in_h (\{low := in_l \| high := in_h\}[P]low = r) \]

- **Problem:** not suitable for automatic verification \[\neg\neg\]
 instantiation of existential quantifier difficult.
Non-Interference in JavaDL – Alternating Quantifiers

Non-interference encoding in JavaDL (v1)

For all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

$$\forall in_l \exists r \forall in_h (\{ low := in_l \mid high := in_h \}[P] low = r)$$

- **Problem**: not suitable for automatic verification \leadsto instantiation of existential quantifier difficult.
Non-interference encoding in JavaDL (v1)

For all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

\[\forall in_l \exists r \forall in_h (\{low := in_l \parallel high := in_h\}[P] low = r) \]

- **Problem**: not suitable for automatic verification \Rightarrow instantiation of existential quantifier difficult.
Non-Interference in JavaDL – Alternating Quantifiers

Non-interference encoding in JavaDL (v1)

For all low input values \(in_l \), there exist low output values \(r \) such that for all high input values \(in_h \), if we assign the values \(in_l \) to the program variables \(low \) and \(in_h \) to the program variables \(high \), then after execution of \(P \) the values of \(low \) are \(r \).

\[
\forall in_l \exists r \forall in_h (\{low := in_l \ || \ high := in_h\}[P]low = r)
\]

- **Problem**: not suitable for automatic verification \(\rightsquigarrow \) instantiation of existential quantifier difficult.
Non-Interference in JavaDL – Alternating Quantifiers

Non-interference encoding in JavaDL (v1)

For all low input values \(in_l \), there exist low output values \(r \) such that for all high input values \(in_h \), if we assign the values \(in_l \) to the program variables \(low \) and \(in_h \) to the program variables \(high \), then after execution of \(P \) the values of \(low \) are \(r \).

\[
\forall in_l \exists r \forall in_h (\{ low := in_l \mid\mid high := in_h \}[P]low = r)
\]

- **Problem:** not suitable for automatic verification ⇞ instantiation of existential quantifier difficult.
Non-interference encoding in JavaDL (v1)

For all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

$$\forall in_l \exists r \forall in_h (\{ low := in_l \parallel high := in_h \}[P] low = r)$$

Problem: not suitable for automatic verification \iff instantiation of existential quantifier difficult.
Non-Interference in JavaDL – Self-Composition

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on arbitrary high values results in low variables which have the same values.

$$\forall \text{in}_1 \forall \text{in}_2 \forall \text{out}_1 \forall \text{out}_2 \{ \text{low} := \text{in}_1 \} (\{ \text{high} := \text{in}_1 \}[P] \text{out}_1 = \text{low} \land \{ \text{high} := \text{in}_2 \}[P] \text{out}_2 = \text{low} \rightarrow \text{out}_1 = \text{out}_2)$$
Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on arbitrary high values results in low variables which have the same values.

$$\forall \text{in}_l \forall \text{in}_h^1 \forall \text{in}_h^2 \forall \text{out}_l^1 \forall \text{out}_l^2 \{ \text{low} := \text{in}_l \}(\{ \text{high} := \text{in}_h^1 \}[P]\text{out}_l^1 = \text{low} \land \{ \text{high} := \text{in}_h^2 \}[P]\text{out}_l^2 = \text{low} \rightarrow \text{out}_l^1 = \text{out}_l^2)$$
Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on arbitrary high values results in low variables which have the same values.

$$\forall in \exists \text{low} \exists \text{out} \quad \{ \text{low} := \text{in} \}(\{ \text{high} := \text{in}_h^1 \}[P]\text{out}_i^1 = \text{low} \land \{ \text{high} := \text{in}_h^2 \}[P]\text{out}_i^2 = \text{low} \Rightarrow \text{out}_i^1 = \text{out}_i^2)$$
Non-Interference in JavaDL – Self-Composition

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on arbitrary high values results in low variables which have the same values.

\[
\forall \text{in}_l \forall \text{in}_h^1 \forall \text{in}_h^2 \forall \text{out}_l^1 \forall \text{out}_l^2 \{ \text{low} := \text{in}_l \} (\\
\{ \text{high} := \text{in}_h^1 \}[P] \text{out}_l^1 = \text{low} \\
\land \{ \text{high} := \text{in}_h^2 \}[P] \text{out}_l^2 = \text{low} \\
\rightarrow \text{out}_l^1 = \text{out}_l^2
)
\]
Let \(T(\text{high}, \text{low}) \) be a term. Intuitively: The only thing the attacker is allowed to learn about the secret inputs is the value of \(T \) in the initial state.

Definition (Non-interference w/ declassification)

Starting \(P \) in two arbitrary low-equivalent states coinciding in the value of \(T \) results in two final states that are also low-equivalent.
Let $T(\text{high, low})$ be a term. Intuitively: The only thing the attacker is allowed to learn about the secret inputs is the value of T in the initial state.

Definition (Non-interference w/ declassification)

Starting P in two arbitrary low-equivalent states coinciding in the value of T results in two final states that are also low-equivalent.
Encoding non-interference w/ declassification in JavaDL

Running two instances of P on the same low values and arbitrary high values coinciding on T results in low variables which have the same values.

$$\forall in_l \forall in^1_h \forall in^2_h \forall out^1_l \forall out^2_l \{ \text{low := in}_l \} (\{ \text{high := in}^1_h \} T = \{ \text{high := in}^2_h \} T$$

$$\land \{ \text{high := in}^1_h \}[P]out^1_l = \text{low}$$

$$\land \{ \text{high := in}^2_h \}[P]out^2_l = \text{low}$$

$$\rightarrow out^1_l = out^2_l$$
Declassification in JavaDL – Self-Composition

Encoding non-interference w/ declassification in JavaDL

Running two instances of P on the same low values and arbitrary high values coinciding on T results in low variables which have the same values.

$$\forall \text{in}_1 \forall \text{in}_h \forall \text{in}_h^2 \forall \text{out}_1 \forall \text{out}_2 \begin{cases} \text{low} := \text{in}_1 \end{cases} \{ \\
\{ \text{high} := \text{in}_h^1 \} T = \{ \text{high} := \text{in}_h^2 \} T \\
\land \{ \text{high} := \text{in}_h^1 \}[P]\text{out}_1^1 = \text{low} \\
\land \{ \text{high} := \text{in}_h^2 \}[P]\text{out}_2^2 = \text{low} \\
\rightarrow \text{out}_1^1 = \text{out}_2^2 \\
\}$$
Encoding non-interference w/ declassification in JavaDL

For all values of T, for all low input values in_l, there exist low output values r such that for all high input values in_h, if we assign the values in_l to the program variables low and in_h to the program variables $high$, then after execution of P the values of low are r.

$$\forall d \forall in_l \exists r \forall in_h \{ \text{low} := in_l \ || \ \text{high} := in_h \} \ (T = d \rightarrow [P] \text{low} = r)$$
Declassification in JavaDL – Alternating Quantifiers

Encoding non-interference w/ declassification in JavaDL

For all values of \(T \), for all low input values \(in_l \), there exist low output values \(r \) such that for all high input values \(in_h \), if we assign the values \(in_l \) to the program variables \(low \) and \(in_h \) to the program variables \(high \), then after execution of \(P \) the values of \(low \) are \(r \).

\[
\forall d \forall in_l \exists r \forall in_h \{ \text{low} := in_l \mid \text{high} := in_h \} (T = d \rightarrow [P]\text{low} = r)
\]
Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in two non-terminating runs or in two final states that are also low-equivalent.

\[
\forall in_l \forall in^1_h \forall in^2_h \forall out^1_l \forall out^2_l \{ \text{low} := in_l \} (\\
\{ \text{high} := in^1_h \} \langle P \rangle _{\text{true}} \land \{ \text{high} := in^2_h \} \langle P \rangle _{\text{true}} \land \\
(\{ \text{high} := in^1_h \} \langle P \rangle _{\text{out}^1_l} = \text{low} \land \\
\{ \text{high} := in^2_h \} \langle P \rangle _{\text{out}^2_l} = \text{low} \rightarrow \\
out^1_l = out^2_l) \\
\lor (\{ \text{high} := in^1_h \} [P]_{\text{false}} \land \{ \text{high} := in^2_h \} [P]_{\text{false}}) \\
)
\]
Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in two non-terminating runs or in two final states that are also low-equivalent.

\[
\forall \text{in}_l \forall \text{in}_h^1 \forall \text{in}_h^2 \forall \text{out}_l^1 \forall \text{out}_l^2 \left\{ \text{low} := \text{in}_l \right\} (\\
\left\{ \text{high} := \text{in}_h^1 \right\} \langle P \rangle \text{true} \land \left\{ \text{high} := \text{in}_h^2 \right\} \langle P \rangle \text{true} \land \\
\left(\left\{ \text{high} := \text{in}_h^1 \right\} \langle P \rangle \text{out}_l^1 = \text{low} \land \\
\left\{ \text{high} := \text{in}_h^2 \right\} \langle P \rangle \text{out}_l^2 = \text{low} \rightarrow \\
\text{out}_l^1 = \text{out}_l^2 \right) \\
\lor \left(\left\{ \text{high} := \text{in}_h^1 \right\} [P] \text{false} \land \left\{ \text{high} := \text{in}_h^2 \right\} [P] \text{false} \right)
\]
Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in two non-terminating runs or in two final states that are also low-equivalent.

\[
\forall \text{in}_1\forall \text{in}_h^1\forall \text{in}_h^2\forall \text{out}_1^1\forall \text{out}_1^2 \ \{ \text{low} := \text{in}_1 \} (\{ \text{high} := \text{in}_h^1 \} \langle P \rangle \text{true} \land \{ \text{high} := \text{in}_h^2 \} \langle P \rangle \text{true} \land (\{ \text{high} := \text{in}_h^1 \} \langle P \rangle \text{out}_1^1 = \text{low} \land \{ \text{high} := \text{in}_h^2 \} \langle P \rangle \text{out}_1^2 = \text{low} \rightarrow \text{out}_1^1 = \text{out}_1^2)) \lor (\{ \text{high} := \text{in}_h^1 \} [P] \text{false} \land \{ \text{high} := \text{in}_h^2 \} [P] \text{false})
\]
Adding Termination-sensitivity

Another encoding of termination-sensitive non-interf.

For every low input, if P terminates for some high input, then it terminates for all high inputs, and with the same low output.

$$\forall in_l \{ low := in_l \}(\\
\exists in_h \{ high := in_h \} \langle P \rangle \text{true} \rightarrow \\
\exists r \forall in_h \{ high := in_h \} \langle P \rangle low = r $$
Not Covered Here

- Concurrency / nondeterminism
- Objects & heap
- Properties beyond non-interference (e.g., data integrity)