
An introduction to Maude

Narciso Mart́ı-Oliet

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

narciso@esi.ucm.es

JAIST-FSSV2010, March 2010

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 1 / 99

Introduction

What is Maude?

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 2 / 99

Introduction

Maude in a nutshell

http://maude.cs.uiuc.edu

• Maude is a high-level language and high-performance system.

• It supports both equational and rewriting logic computation.

• We describe equational specification and rule-based programming in
Maude, showing the difference between equations and rules.

• We use typical data structures, such as lists and binary trees, and
well-known mathematical games and puzzles.

• Membership equational logic improves order-sorted algebra.

• It allows the faithful specification of types (like sorted lists or search
trees) whose data are defined not only by means of constructors, but
also by the satisfaction of additional properties.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 3 / 99

Introduction

Maude in a nutshell

http://maude.cs.uiuc.edu

• Rewriting logic is a logic of concurrent change.

• It is a flexible and general semantic framework for giving semantics
to a wide range of languages and models of concurrency.

• It is also a good logical framework, i.e., a metalogic in which many
other logics can be naturally represented and implemented.

• Moreover, rewriting logic is reflective.

• This makes possible many advanced metaprogramming and
metalanguage applications.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 4 / 99

Introduction

Why declarative?

• Maude follows a long tradition of algebraic specification languages in
the OBJ family, including

• OBJ3,
• CafeOBJ,
• Elan.

• Computation = Deduction in an appropriate logic.

• Functional modules = (Admissible) specifications in membership
equational logic.

• System modules = (Admissible) specifications in rewriting logic.

• Operational semantics based on matching and rewriting.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 5 / 99

Functional modules Many-sorted equational specifications

Many-sorted equational specifications

• Algebraic specifications are used to declare different kinds of data
together with the operations that act upon them.

• It is useful to distinguish two kinds of operations:

• constructors, used to construct or generate the data, and
• the remaining operations, which in turn can also be classified as

modifiers or observers.

• The behavior of operations is described by means of (possibly
conditional) equations.

• We start with the simplest many-sorted equational specifications and
incrementally add more sophisticated features.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 6 / 99

Functional modules Many-sorted equational specifications

Signatures

• The first thing a specification needs to declare are the types (or
sorts) of the data being defined and the corresponding operations.

• A many-sorted signature (S, Σ) consists of

• a sort set S, and
• a family Σ of typed operation symbols f : s1 . . . sn → s.

• With the declared operations we can construct terms to denote the
data being specified.

• Given a many-sorted signature (S, Σ) and an S-sorted family
X = {Xs | s ∈ S} of variables, the S-sorted set of terms is denoted

TΣ(X) = {TΣ,s(X) | s ∈ S}.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 7 / 99

Functional modules Many-sorted equational specifications

Equations

• A Σ-equation is an expression

(x : s) l = r

where

• x : s is a (finite) set of variables, and
• l and r are terms in TΣ,s(x : s) for some sort s.

• A conditional Σ-equation is an expression

(x : s) l = r if u1 = v1 ∧ . . . ∧ un = vn

where (x : s) l = r and (x : s) ui = vi (i = 1, . . . , n) are Σ-equations.

• A many-sorted specification (S, Σ, E) consists of:

• a signature (S, Σ), and
• a set E of (conditional) Σ-equations.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 8 / 99

Functional modules Many-sorted equational specifications

Maude functional modules

fmod BOOLEAN is

sort Bool .

op true : -> Bool [ctor] .

op false : -> Bool [ctor] .

op not_ : Bool -> Bool .

op _and_ : Bool Bool -> Bool .

op _or_ : Bool Bool -> Bool .

var A : Bool .

eq not true = false .

eq not false = true .

eq true and A = A .

eq false and A = false .

eq true or A = true .

eq false or A = A .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 9 / 99

Functional modules Many-sorted equational specifications

Semantics

• A many-sorted (S, Σ)-algebra A consists of:

• a carrier set As for each sort s ∈ S, and

• a function Af : As1 × · · · ×Asn → As for each operation
symbol f : s1 . . . sn → s.

• The meaning [[t]]A of a term t in an algebra A is inductively defined.

• An algebra A satisfies an equation (x : s) l = r when both terms
have the same meaning: [[l]]A = [[r]]A.

• An algebra A satisfies a conditional equation

(x : s) l = r if u1 = v1 ∧ . . . ∧ un = vn

when satisfaction of all the conditions (x : s) ui = vi (i = 1, . . . , n)
implies satisfaction of (x : s) l = r.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 10 / 99

Functional modules Many-sorted equational specifications

Semantics

• The loose semantics of a many-sorted specification (S, Σ, E) is
defined as the set of all (S, Σ)-algebras that satisfy all the
(conditional) equations in E.

• But we are usually interested in the so-called initial semantics given
by a particular algebra in this class (up to isomorphism).

• A concrete representation TΣ,E of such an initial algebra is obtained
by imposing a congruence relation on the term algebra TΣ whose
carrier sets are the sets of ground terms, that is, terms without
variables.

• Two terms are identified by this congruence if and only if they have
the same meaning in all algebras in the loose semantics.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 11 / 99

Functional modules Many-sorted equational specifications

Operational semantics: Matching

• Given an S-sorted family of variables X for a signature (S, Σ), a
(ground) substitution is a sort-preserving map

σ : X→ TΣ

• Such a map extends uniquely to terms

σ : TΣ(X)→ TΣ

• Given a term t ∈ TΣ(X), the pattern, and a subject ground term
u ∈ TΣ, we say that t matches u if there is a substitution σ such
that σ(t) ≡ u, that is, σ(t) and u are syntactically equal terms.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 12 / 99

Functional modules Many-sorted equational specifications

Rewriting and equational simplification

• In an admissible Σ-equation (x : s) l = r all variables in the righthand
side r must appear among the variables of the lefthand side l.
• A term t rewrites to a term t′ using such an equation if

1 there is a subterm t|p of t at a given position p of t such that l
matches t|p via a substitution σ, and

2 t′ = t[σ(r)]p is obtained from t by replacing the subterm
t|p ≡ σ(l) with the term σ(r).

• We denote this step of equational simplification by t→E t′.
• It can be proved that if t→E t′ then [[t]]A = [[t′]]A for any algebra A

satisfying E.

• We write t→∗E t′ to mean either t = t′ (0 steps) or
t→E t1 →E t2 →E · · · →E tn →E t′ with n ≥ 0 (n + 1 steps).

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 13 / 99

Functional modules Many-sorted equational specifications

Confluence and termination

• A set of equations E is confluent (or Church-Rosser) when any two
rewritings of a term can always be unified by further rewriting: if
t→∗E t1 and t→∗E t2, then there exists a term t′ such that t1 →∗E t′

and t2 →∗E t′.

t

∗
E !!!!

!!
!!

!!

∗
E

"""
""

""
""

"

t1

∗
E

""

t2

∗
E

!!
t′

• A set of equations E is terminating when there is no infinite
sequence of rewriting steps t0 →E t1 →E t2 →E . . .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 14 / 99

Functional modules Many-sorted equational specifications

Confluence and termination

• If E is both confluent and terminating, a term t can be reduced to a
unique canonical form t↓E, that is, to a term that can no longer be
rewritten.

• Functional modules in Maude are assumed to be confluent and
terminating, and their operational semantics is equational
simplification, that is, rewriting of terms until a canonical form is
obtained.

Maude> reduce in BOOLEAN :

(false and true) or (true and (false or true)) .

result Bool: true

Maude> reduce in BOOLEAN : not (not false or not true) .

result Bool: false

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 15 / 99

Functional modules Many-sorted equational specifications

Natural numbers

fmod UNARY-NAT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

endfm

• Can we add the equation

eq M + N = N + M .

expressing commutativity of addition?

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 16 / 99

Functional modules Modularization

Modularization

• protecting M .
Importing a module M into M′ in protecting mode intuitively
means that no junk and no confusion are added to M when we
include it in M′.
• extending M .

The idea is to allow junk, but to rule out confusion.

• including M .
No requirements are made in an including importation: there can
now be junk and/or confusion.

fmod NAT3 is

including UNARY-NAT .

var N : Nat .

eq s(s(s(N))) = N .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 17 / 99

Functional modules Modularization

Operations on natural numbers

fmod NAT+OPS is

protecting BOOLEAN .

protecting UNARY-NAT .

ops _*_ _-_ : Nat Nat -> Nat .

ops _<=_ _>_ : Nat Nat -> Bool .

vars N M : Nat .

eq 0 * N = 0 .

eq s(M) * N = (M * N) + N .

eq 0 - N = 0 .

eq s(M) - 0 = s(M) .

eq s(M) - s(N) = M - N .

eq 0 <= N = true .

eq s(M) <= 0 = false .

eq s(M) <= s(N) = M <= N .

eq M > N = not (M <= N) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 18 / 99

Functional modules Order-sorted equational specifications

Order-sorted equational specifications

• We can often avoid some partiality by extending many-sorted
equational logic to order-sorted equational logic.

• We can define subsorts corresponding to the domain of definition of
a function, whenever such subsorts can be specified by means of
constructors.

• Subsorts are interpreted semantically by subset inclusion.

• Operations can be overloaded.

• A term can have several different sorts. Preregularity requires each
term to have a least sort that can be assigned to it.

• Maude assumes that modules are preregular, and generates warnings
when a module is loaded if the property does not hold.

• Admissible equations are assumed sort-decreasing.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 19 / 99

Functional modules Order-sorted equational specifications

Natural numbers division

fmod NAT-DIV is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat .

op _*_ : Nat Nat -> Nat .

op _-_ : Nat Nat -> Nat .

op _<=_ : Nat Nat -> Bool .

op _>_ : Nat Nat -> Bool .

op _div_ : Nat NzNat -> Nat .

op _mod_ : Nat NzNat -> Nat .

vars M N : Nat .

var P : NzNat .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 20 / 99

Functional modules Order-sorted equational specifications

Natural numbers division

eq 0 + N = N .

eq s(M) + N = s(M + N) .

eq 0 * N = 0 .

eq s(M) * N = (M * N) + N .

eq 0 - N = 0 .

eq s(M) - 0 = s(M) .

eq s(M) - s(N) = M - N .

eq 0 <= N = true .

eq s(M) <= 0 = false .

eq s(M) <= s(N) = M <= N .

eq N > M = not (N <= M) .

ceq N div P = 0 if P > N .

ceq N div P = s((N - P) div P) if P <= N .

ceq N mod P = N if P > N .

ceq N mod P = (N - P) mod P if P <= N .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 21 / 99

Functional modules Order-sorted equational specifications

Predefined modules
CONVERSIONQID

RATSTRING FLOAT

COUNTER

INT

RANDOM

NAT EXT-BOOL

BOOL

TRUTH

TRUTH-VALUE

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 22 / 99

Functional modules Order-sorted equational specifications

Lists of natural numbers

fmod NAT-LIST-CONS is

protecting NAT .

sorts NeList List .

subsort NeList < List .

op [] : -> List [ctor] . *** empty list

op _:_ : Nat List -> NeList [ctor] . *** cons

op tail : NeList -> List .

op head : NeList -> Nat .

op _++_ : List List -> List . *** concatenation

op length : List -> Nat .

op reverse : List -> List .

op take_from_ : Nat List -> List .

op throw_from_ : Nat List -> List .

vars N M : Nat .

vars L L’ : List .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 23 / 99

Functional modules Order-sorted equational specifications

Lists of natural numbers

eq tail(N : L) = L .

eq head(N : L) = N .

eq [] ++ L = L .

eq (N : L) ++ L’ = N : (L ++ L’) .

eq length([]) = 0 .

eq length(N : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(N : L) = reverse(L) ++ (N : []) .

eq take 0 from L = [] .

eq take N from [] = [] .

eq take s(N) from (M : L) = M : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s(N) from (M : L) = throw N from L .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 24 / 99

Functional modules Structural axioms

Equational attributes

• Equational attributes are a means of declaring certain kinds of
structural axioms in a way that allows Maude to use these equations
efficiently in a built-in way.

• assoc (associativity),
• comm (commutativity),
• idem (idempotency),
• id: t (identity, where t is the identity element),
• left identity and right identity.

• These attributes are only allowed for binary operators satisfying
some appropriate requirements depending on the attributes.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 25 / 99

Functional modules Structural axioms

Matching and simplification modulo

• In the Maude implementation, rewriting modulo A is accomplished
by using a matching modulo A algorithm.

• More precisely, given an equational theory A, a term t
(corresponding to the lefthand side of an equation) and a subject
term u, we say that t matches u modulo A if there is a substitution
σ such that σ(t) =A u, that is, σ(t) and u are equal modulo the
equational theory A.

• Given an equational theory A = ∪iAfi corresponding to all the
attributes declared in different binary operators, Maude synthesizes a
combined matching algorithm for the theory A, and does equational
simplification modulo the axioms A.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 26 / 99

Functional modules Hierarchy of data types

A hierarchy of data types

• nonempty binary trees, with elements only in their leaves, built with
a free binary constructor, that is, a constructor with no equational
axioms,

• nonempty lists, built with an associative constructor,

• lists, built with an associative constructor and an identity,

• multisets (or bags), built with an associative and commutative
constructor and an identity,

• sets, built with an associative, commutative, and idempotent
constructor and an identity.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 27 / 99

Functional modules Hierarchy of data types

Basic natural numbers

fmod BASIC-NAT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

op max : Nat Nat -> Nat .

vars N M : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

eq max(0, M) = M .

eq max(N, 0) = N .

eq max(s(N), s(M)) = s(max(N, M)) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 28 / 99

Functional modules Hierarchy of data types

Nonempty binary trees

fmod NAT-TREES is

protecting BASIC-NAT .

sorts Tree .

subsort Nat < Tree .

op __ : Tree Tree -> Tree [ctor] .

op depth : Tree -> Nat .

op width : Tree -> Nat .

var N : Nat .

vars T T’ : Tree .

eq depth(N) = s(0) .

eq depth(T T’) = s(max(depth(T), depth(T’))) .

eq width(N) = s(0) .

eq width(T T’) = width(T) + width(T’) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 29 / 99

Functional modules Hierarchy of data types

Nonempty binary trees

• An expression such as s(0) 0 s(0) is ambiguous because it can be
parsed in two different ways, and parentheses are necessary to
disambiguate (s(0) 0) s(0) from s(0) (0 s(0)).

• These two different terms correspond to the following two different
trees:

s(0) 0

s(0)
�
�
@
@
��

��
HH

HH

s(0)

0 s(0)
�
�
@
@

��
��

HH
HH

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 30 / 99

Functional modules Hierarchy of data types

Nonempty lists

fmod NAT-NE-LISTS is

protecting BASIC-NAT .

sort NeList .

subsort Nat < NeList .

op __ : NeList NeList -> NeList [ctor assoc] .

op length : NeList -> Nat .

op reverse : NeList -> NeList .

var N : Nat .

var L L’ : NeList .

eq length(N) = s(0) .

eq length(L L’) = length(L) + length(L’) .

eq reverse(N) = N .

eq reverse(L L’) = reverse(L’) reverse(L) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 31 / 99

Functional modules Hierarchy of data types

Lists

fmod NAT-LISTS is

protecting BASIC-NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op __ : NeList NeList -> NeList [ctor assoc id: nil] .

op tail : NeList -> List .

op head : NeList -> Nat .

op length : List -> Nat .

op reverse : List -> List .

var N : Nat .

var L : List .

eq tail(N L) = L .

eq head(N L) = N .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 32 / 99

Functional modules Hierarchy of data types

Lists

eq length(nil) = 0 .

eq length(N L) = s(0) + length(L) .

eq reverse(nil) = nil .

eq reverse(N L) = reverse(L) N .

endfm

• The alternative equation length(L L’) = length(L) + length(L’)
(with L and L’ variables of sort List) causes problems of
nontermination.

• Consider the instantiation with L’ 7→ nil that gives

length(L nil) = length(L) + length(nil)

= length(L nil) + length(nil)

= (length(L) + length(nil)) + length(nil)

= ...

because of the identification L = L nil.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 33 / 99

Functional modules Hierarchy of data types

Multisets

fmod NAT-MSETS is

protecting BASIC-NAT .

sort Mset .

subsorts Nat < Mset .

op empty-mset : -> Mset [ctor] .

op __ : Mset Mset -> Mset [ctor assoc comm id: empty-mset] .

op size : Mset -> Nat .

op mult : Nat Mset -> Nat .

op _in_ : Nat Mset -> Bool .

vars N N’ : Nat .

var S : Mset .

eq size(empty-mset) = 0 .

eq size(N S) = s(0) + size(S) .

eq mult(N, empty-mset) = 0 .

eq mult(N, N S) = s(0) + mult(N, S) .

ceq mult(N, N’ S) = mult(N, S) if N =/= N’ .

eq N in S = (mult(N, S) =/= 0) .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 34 / 99

Functional modules Hierarchy of data types

Sets

fmod NAT-SETS is

protecting BASIC-NAT .

sort Set .

subsorts Nat < Set .

op empty-set : -> Set [ctor] .

op __ : Set Set -> Set [ctor assoc comm id: empty-set] .

vars N N’ : Nat .

vars S S’ : Set .

eq N N = N .

The idempotency equation is stated only for singleton sets, because
stating it for arbitrary sets in the form S S = S would cause
nontermination due to the identity attribute:

empty-set = empty-set empty-set → empty-set . . .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 35 / 99

Functional modules Hierarchy of data types

Sets

op _in_ : Nat Set -> Bool .

op delete : Nat Set -> Set .

op card : Set -> Nat .

eq N in empty-set = false .

eq N in (N’ S) = (N == N’) or (N in S) .

eq delete(N, empty-set) = empty-set .

eq delete(N, N S) = delete(N, S) .

ceq delete(N, N’ S) = N’ delete(N, S) if N =/= N’ .

eq card(empty-set) = 0 .

eq card(N S) = s(0) + card(delete(N,S)) .

endfm

The equations for delete and card make sure that further occurrences
of N in S on the righthand side are also deleted or not counted, resp.,
because we cannot rely on the order in which equations are applied.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 36 / 99

Functional modules Membership equational logic specifications

Membership equational logic specifications

• In order-sorted equational specifications, subsorts must be defined by
means of constructors, but it is not possible to have a subsort of
sorted lists, for example, defined by a property over lists.

• There is also a different problem of a more syntactic character. In
the example of natural numbers division, the term

s(s(s(0))) div (s(s(0)) - s(0))

is not even well formed, because the subterm s(s(0)) - s(0) has
least sort Nat, while the div operation expects its second argument
to be of sort NzNat < Nat.

• This is too restrictive and makes most (really) order-sorted
specifications useless, unless there is a mechanism that gives at
parsing time the benefit of the doubt to this kind of terms.

• Membership equational logic solves both problems, by introducing
sorts as predicates and allowing subsort definition by means of
conditions involving equations and/or sort predicates.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 37 / 99

Functional modules Membership equational logic specifications

Membership equational logic

• A signature in membership equational logic is a triple Ω = (K, Σ, S)
where K is a set of kinds, (K, Σ) is a many-kinded signature, and
S = {Sk}k∈K is a K-kinded set of sorts.

• An Ω-algebra is then a (K, Σ)-algebra A together with the
assignment to each sort s ∈ Sk of a subset As ⊆ Ak.

• Atomic formulas are either Σ-equations, or membership assertions of
the form t : s, where the term t has kind k and s ∈ Sk.

• General sentences are Horn clauses on these atomic formulas,
quantified by finite sets of K-kinded variables.

(∀X) t = t′ if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj)

(∀X) t : s if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj).

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 38 / 99

Functional modules Membership equational logic specifications

Membership equational logic in Maude

• Maude functional modules are membership equational specifications
and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification.

• Maude does automatic kind inference from the sorts declared by the
user and their subsort relations.

• Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation.

• The kind corresponding to a sort s is denoted [s].

• If NzNat < Nat, then [NzNat] = [Nat].

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 39 / 99

Functional modules Membership equational logic specifications

Membership equational logic in Maude

• An operator declaration like

op _div_ : Nat NzNat -> Nat .

can be understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

• A subsort declaration NzNat < Nat can be understood as the
conditional membership axiom

cmb N : Nat if N : NzNat .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 40 / 99

Functional modules Sorted lists

Sorted lists

fmod NAT-SORTED-LIST is

protecting NAT-LIST-CONS .

sorts SortedList NeSortedList .

subsort NeSortedList < SortedList NeList < List .

op insertion-sort : List -> SortedList .

op insert-list : SortedList Nat -> SortedList .

op mergesort : List -> SortedList .

op merge : SortedList SortedList -> SortedList [comm] .

op quicksort : List -> SortedList .

op leq-elems : List Nat -> List .

op gr-elems : List Nat -> List .

vars N M : Nat .

vars L L’ : List .

vars OL OL’ : SortedList .

var NEOL : NeSortedList .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 41 / 99

Functional modules Sorted lists

Sorted lists

mb [] : SortedList .

mb N : [] : NeSortedList .

cmb N : NEOL : NeSortedList if N <= head(NEOL) .

eq insertion-sort([]) = [] .

eq insertion-sort(N : L) = insert-list(insertion-sort(L), N) .

eq insert-list([], M) = M : [] .

ceq insert-list(N : OL, M) = M : N : OL if M <= N .

ceq insert-list(N : OL, M) = N : insert-list(OL, M) if M > N .

eq mergesort([]) = [] .

eq mergesort(N : []) = N : [] .

ceq mergesort(L) =

merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

if length(L) > s(0) .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 42 / 99

Functional modules Sorted lists

Sorted lists

eq merge(OL, []) = OL .

ceq merge(N : OL, M : OL’) = N : merge(OL, M : OL’) if N <= M .

eq quicksort([]) = [] .

eq quicksort(N : L)

= quicksort(leq-elems(L,N)) ++ (N : quicksort(gr-elems(L,N))) .

eq leq-elems([], M) = [] .

ceq leq-elems(N : L, M) = N : leq-elems(L, M) if N <= M .

ceq leq-elems(N : L, M) = leq-elems(L, M) if N > M .

eq gr-elems([], M) = [] .

ceq gr-elems(N : L, M) = gr-elems(L, M) if N <= M .

ceq gr-elems(N : L, M) = N : gr-elems(L, M) if N > M .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 43 / 99

Parameterization Theories and views

Parameterization: theories

• Parameterized datatypes use theories to specify the requirements
that the parameter must satisfy.

• A (functional) theory is a membership equational specification
whose semantics is loose.

• Equations in a theory are not used for rewriting or equational
simplication and, thus, they need not be confluent or terminating.

• Simplest theory only requires existence of a sort:

fth TRIV is

sort Elt .

endfth

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 44 / 99

Parameterization Theories and views

Order theories

• Theory requiring a strict total order over a given sort:

fth STOSET is

protecting BOOL .

sort Elt .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

eq X < X = false [nonexec label irreflexive] .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

ceq X = Y if X < Y /\ Y < X [nonexec label antisymmetric] .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 45 / 99

Parameterization Theories and views

Order theories

• Theory requiring a nonstrict total order over a given sort:

fth TOSET is

including STOSET .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= X = true [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 46 / 99

Parameterization Theories and views

Parameterization: views

• Theories are used in a parameterized module expression such as

fmod LIST{X :: TRIV} is ... endfm

to make explicit the requirements over the argument module.

• A view shows how a particular module satisfies a theory, by mapping
sorts and operations in the theory to sorts and operations in the
target module, in such a way that the induced translations on
equations and membership axioms are provable in the module.

• Each view declaration has an associated set of proof obligations,
namely, for each axiom in the source theory it should be the case
that the axiom’s translation by the view holds true in the target.
This may in general require inductive proof techniques.

• In many simple cases it is completely obvious:

view Nat from TRIV to NAT is

sort Elt to Nat .

endv

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 47 / 99

Parameterization Theories and views

Parameterization: instantiation

• A module expression such as LIST{Nat} denotes the instantiation of
the parameterized module LIST{X :: TRIV} by means of the
previous view Nat.

NatTRIV - NAT

? ?
LIST{X :: TRIV} LIST{Nat}-

• Views can also go from theories to theories, meaning an
instantiation that is still parameterized.

view Toset from TRIV to TOSET is

sort Elt to Elt .

endv

• It is possible to have more than one view from a theory to a module
or to another theory.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 48 / 99

Parameterization Parameterized lists

Parameterized lists

fmod LIST-CONS{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort NeList{X} < List{X} .

op [] : -> List{X} [ctor] .

op _:_ : X$Elt List{X} -> NeList{X} [ctor] .

op tail : NeList{X} -> List{X} .

op head : NeList{X} -> X$Elt .

var E : X$Elt .

var N : Nat .

vars L L’ : List{X} .

eq tail(E : L) = L .

eq head(E : L) = E .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 49 / 99

Parameterization Parameterized lists

Parameterized lists

op _++_ : List{X} List{X} -> List{X} .

op length : List{X} -> Nat .

op reverse : List{X} -> List{X} .

op take_from_ : Nat List{X} -> List{X} .

op throw_from_ : Nat List{X} -> List{X} .

eq [] ++ L = L .

eq (E : L) ++ L’ = E : (L ++ L’) .

eq length([]) = 0 .

eq length(E : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(E : L) = reverse(L) ++ (E : []) .

eq take 0 from L = [] .

eq take N from [] = [] .

eq take s(N) from (E : L) = E : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s(N) from (E : L) = throw N from L .

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 50 / 99

Parameterization Parameterized lists

Parameterized sorted lists

view Toset from TRIV to TOSET is

sort Elt to Elt .

endv

fmod SORTED-LIST{X :: TOSET} is
protecting LIST-CONS{Toset}{X} .

sorts SortedList{X} NeSortedList{X} .

subsorts NeSortedList{X} < SortedList{X} < List{Toset}{X} .

subsort NeSortedList{X} < NeList{Toset}{X} .

vars N M : X$Elt .

vars L L’ : List{Toset}{X} .

vars OL OL’ : SortedList{X} .

var NEOL : NeSortedList{X} .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 51 / 99

Parameterization Parameterized lists

Parameterized sorted lists

mb [] : SortedList{X} .

mb (N : []) : NeSortedList{X} .

cmb (N : NEOL) : NeSortedList{X} if N <= head(NEOL) .

op insertion-sort : List{Toset}{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

op mergesort : List{Toset}{X} -> SortedList{X} .

op merge : SortedList{X} SortedList{X} -> SortedList{X} [comm] .

op quicksort : List{Toset}{X} -> SortedList{X} .

op leq-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .

op gr-elems : List{Toset}{X} X$Elt -> List{Toset}{X} .

*** equations as before

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 52 / 99

Parameterization Parameterized lists

Parameterized sorted lists

view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv

fmod SORTED-LIST-TEST is

protecting SORTED-LIST{NatAsToset} .

endfm

Maude> red insertion-sort(5 : 4 : 3 : 2 : 1 : 0 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red mergesort(5 : 3 : 1 : 0 : 2 : 4 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red quicksort(0 : 1 : 2 : 5 : 4 : 3 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 53 / 99

Parameterization Parameterized trees

Binary trees

fmod BIN-TREE{X :: TRIV} is

protecting LIST-CONS{X} .

sorts NeBinTree{X} BinTree{X} .

subsort NeBinTree{X} < BinTree{X} .

op empty : -> BinTree{X} [ctor] .

op _[_]_ : BinTree{X} X$Elt BinTree{X} -> NeBinTree{X} [ctor] .

ops left right : NeBinTree{X} -> BinTree{X} .

op root : NeBinTree{X} -> X$Elt .

var E : X$Elt .

vars L R : BinTree{X} .

vars NEL NER : NeBinTree{X} .

..............

endfm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 54 / 99

Parameterization Parameterized trees

Binary search trees

fmod SEARCH-TREE{X :: STOSET, Y :: CONTENTS} is

..............

mb empty : SearchTree{X, Y} .

mb empty [SRec] empty : NeSearchTree{X, Y} .

cmb L’ [SRec] empty : NeSearchTree{X, Y}

if key(max(L’)) < key(SRec) .

cmb empty [SRec] R’ : NeSearchTree{X, Y}

if key(SRec) < key(min(R’)) .

cmb L’ [SRec] R’ : NeSearchTree{X, Y}

if key(max(L’)) < key(SRec) /\ key(SRec) < key(min(R’)) .

..............

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 55 / 99

System modules Rewriting logic

Rewriting logic

• We arrive at the main idea behind rewriting logic by dropping
symmetry and the equational interpretation of rules.

• We interpret a rule t→ t′ computationally as a local concurrent
transition of a system, and logically as an inference step from
formulas of type t to formulas of type t′.
• Rewriting logic is a logic of becoming or change, that allows us to

specify the dynamic aspects of systems.

• Representation of systems in rewriting logic:

• The static part is specified as an equational theory.
• The dynamics is specified by means of possibly conditional rules

that rewrite terms, representing parts of the system, into others.
• The rules need only specify the part of the system that actually

changes: the frame problem is avoided.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 56 / 99

System modules Rewriting logic

Rewriting logic

• A rewriting logic signature is an equational specification (Ω, E) that
makes explicit the set of equations in order to emphasize that
rewriting will operate on congruence classes of terms modulo E.

• Sentences are rewrites of the form [t]E −→ [t′]E.

• A rewriting logic specification R = (Ω, E, L, R) consists of:

• a signature (Ω, E),
• a set L of labels, and
• a set R of labelled rewrite rules r : [t]E −→ [t′]E

where r is a label and [t]E, [t′]E are congruence classes
of terms in TΩ,E(X).

• The most general form of a rewrite rule is conditional:

r : t→ t′ if (
∧

i
ui = vi) ∧ (

∧
j

wj : sj) ∧ (
∧
k

pk → qk)

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 57 / 99

System modules Rewriting logic

System modules

• System modules in Maude correspond to rewrite theories in rewriting
logic.

• A rewrite theory has both rules and equations, so that rewriting is
performed modulo such equations.

• The equations are divided into

• a set A of structural axioms, for which matching algorithms
exist in Maude, and

• a set E of equations that are Church-Rosser and terminating
modulo A;

that is, the equational part must be equivalent to a functional
module.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 58 / 99

System modules Rewriting logic

System modules

• The rules R in the module must be coherent with the equations E
modulo A, allowing us to intermix rewriting with rules and rewriting
with equations without losing rewrite computations by failing to
perform a rewrite that would have been possible before an
equational deduction step was taken.

t
1

R/A
!!

!E/A ""

t′

!
E/A

##
w

u 1
R/A

!! u′

!
E/A

$$

• A simple strategy available in these circumstances is to always
reduce to canonical form using E before applying any rule in R.

• In this way, we get the effect of rewriting modulo E∪A with just a
matching algorithm for A.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 59 / 99

System modules Playing with Maude

Hopping rabbits

• Initial configuration (for 3 rabbits in each team):

• Final configuration:

• X-rabbits move to the right.

• O-rabbits move to the left.

• A rabbit is allowed to advance one position if that position is empty.

• A rabbit can jump over a rival if the position behind it is free.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 60 / 99

System modules Playing with Maude

Hopping rabbits

mod RABBIT-HOP is

*** each rabbit is represented as a constant

*** a special rabbit for the empty position

sort Rabbit .

ops x o free : -> Rabbit .

*** a game state is represented

*** as a nonempty list of rabbits

sort RabbitList .

subsort Rabbit < RabbitList .

op __ : RabbitList RabbitList -> RabbitList [assoc] .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 61 / 99

System modules Playing with Maude

Hopping rabbits

*** rules (transitions) for game moves

rl [xAdvances] : x free => free x .

rl [xJumps] : x o free => free o x .

rl [oAdvances] : free o => o free .

rl [oJumps] : free x o => o x free .

*** auxiliary operation to build initial states

protecting NAT .

op initial : Nat -> RabbitList .

var N : Nat .

eq initial(0) = free .

eq initial(s(N)) = x initial(N) o .

endm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 62 / 99

System modules Playing with Maude

Hopping rabbits

Maude> search initial(3) =>* o o o free x x x .

Solution 1 (state 71)

empty substitution

No more solutions.

Maude> show path labels 71 .

xAdvances oJumps oAdvances

xJumps xJumps xAdvances

oJumps oJumps oJumps

xAdvances xJumps xJumps

oAdvances oJumps xAdvances

Maude> show path 71 .

state 0, RabbitList: x x x free o o o

===[rl x free => free x [label xAdvances] .]===>

state 1, RabbitList: x x free x o o o

...

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 63 / 99

System modules Playing with Maude

The three basins puzzle

• We have three basins with capacities of 3, 5, and 8 gallons.

• There is an unlimited supply of water.

• The goal is to get 4 gallons in any of the basins.

• Practical application: in the movie Die Hard: With a Vengeance,
McClane and Zeus have to deactivate a bomb with this system.

• A basin is represented with the constructor basin, having two
natural numbers as arguments: the first one is the basin capacity
and the second one is how much it is filled.

• We can think of a basin as an object with two attributes.

• This leads to an object-based style of programming, where objects
change their attributes as result of interacting with other objects.

• Interactions are represented as rules on configurations that are
nonempty multisets of objects.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 64 / 99

System modules Playing with Maude

The three basins puzzle

mod DIE-HARD is

protecting NAT .

*** objects

sort Basin .

op basin : Nat Nat -> Basin . *** capacity / content

*** configurations / multisets of objects

sort BasinSet .

subsort Basin < BasinSet .

op __ : BasinSet BasinSet -> BasinSet [assoc comm] .

*** auxiliary operation to represent initial state

op initial : -> BasinSet .

eq initial = basin(3, 0) basin(5, 0) basin(8,0) .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 65 / 99

System modules Playing with Maude

The three basins puzzle

*** possible moves as four rules

vars M1 N1 M2 N2 : Nat .

rl [empty] : basin(M1, N1) => basin(M1, 0) .

rl [fill] : basin(M1, N1) => basin(M1, M1) .

crl [transfer1] : basin(M1, N1) basin(M2, N2)

=> basin(M1, 0) basin(M2, N1 + N2)

if N1 + N2 <= M2 .

crl [transfer2] : basin(M1, N1) basin(M2, N2)

=> basin(M1, sd(N1 + N2, M2)) basin(M2, M2)

if N1 + N2 > M2 .

*** sd is symmetric difference in predefined NAT

endm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 66 / 99

System modules Playing with Maude

The three basins puzzle
Maude> search [1] initial =>* basin(N:Nat, 4) B:BasinSet .

Solution 1 (state 75)

B:BasinSet --> basin(3, 3) basin(8, 3)

N:Nat --> 5

Maude> show path 75 .

state 0, BasinSet: basin(3, 0) basin(5, 0) basin(8, 0)

===[rl ... fill]===>

state 2, BasinSet: basin(3, 0) basin(5, 5) basin(8, 0)

===[crl ... transfer2]===>

state 9, BasinSet: basin(3, 3) basin(5, 2) basin(8, 0)

===[crl ... transfer1]===>

state 20, BasinSet: basin(3, 0) basin(5, 2) basin(8, 3)

===[crl ... transfer1]===>

state 37, BasinSet: basin(3, 2) basin(5, 0) basin(8, 3)

===[rl ... fill]===>

state 55, BasinSet: basin(3, 2) basin(5, 5) basin(8, 3)

===[crl ... transfer2]===>

state 75, BasinSet: basin(3, 3) basin(5, 4) basin(8, 3)

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 67 / 99

System modules Playing with Maude

Crossing the bridge

• The four components of U2 are in a tight situation. Their concert
starts in 17 minutes and in order to get to the stage they must first
cross an old bridge through which only a maximum of two persons
can walk over at the same time.

• It is already dark and, because of the bad condition of the bridge, to
avoid falling into the darkness it is necessary to cross it with the help
of a flashlight. Unfortunately, they only have one.

• Knowing that Bono, Edge, Adam, and Larry take 1, 2, 5, and 10
minutes, respectively, to cross the bridge, is there a way that they
can make it to the concert on time?

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 68 / 99

System modules Playing with Maude

Crossing the bridge

• The current state of the group can be represented by a multiset (a
term of sort Group below) consisting of performers, the flashlight,
and a watch to keep record of the time.

• The flashlight and the performers have a Place associated to them,
indicating whether their current position is to the left or to the right
of the bridge.

• Each performer, in addition, also carries the time it takes him to
cross the bridge.

• In order to change the position from left to right and vice versa,
we use an auxiliary operation changePos.

• The traversing of the bridge is modeled by two rewrite rules: the
first one for the case in which a single person crosses it, and the
second one for when there are two.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 69 / 99

System modules Playing with Maude

Crossing the bridge

mod U2 is

protecting NAT .

sorts Performer Object Group Place .

subsorts Performer Object < Group .

ops left right : -> Place .

op flashlight : Place -> Object .

op watch : Nat -> Object .

op performer : Nat Place -> Performer .

op __ : Group Group -> Group [assoc comm] .

op changePos : Place -> Place .

eq changePos(left) = right .

eq changePos(right) = left .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 70 / 99

System modules Playing with Maude

Crossing the bridge

op initial : -> Group .

eq initial

= watch(0) flashlight(left) performer(1, left)

performer(2, left) performer(5, left) performer(10, left) .

var P : Place .

vars M N N1 N2 : Nat .

rl [one-crosses] :

watch(M) flashlight(P) performer(N, P)

=> watch(M + N) flashlight(changePos(P))

performer(N, changePos(P)) .

crl [two-cross] :

watch(M) flashlight(P) performer(N1, P) performer(N2, P)

=> watch(M + N1) flashlight(changePos(P))

performer(N1, changePos(P))

performer(N2, changePos(P))

if N1 > N2 .

endm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 71 / 99

System modules Playing with Maude

Crossing the bridge

• A solution can be found by looking for a state in which all
performers and the flashlight are to the right of the bridge.

• The search command is invoked with a such that clause that
allows to introduce a condition that solutions have to fulfill, in our
example, that the total time is less than or equal to 17 minutes:

Maude> search [1] initial

=>* flashlight(right) watch(N:Nat)

performer(1, right) performer(2, right)

performer(5, right) performer(10, right)

such that N:Nat <= 17 .

Solution 1 (state 402)

N --> 17

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 72 / 99

System modules Playing with Maude

Crossing the bridge

• The solution takes exactly 17 minutes (a happy ending after all!)
and the complete sequence of appropriate actions can be shown with
the command

Maude> show path 402 .

• After sorting out the information, it becomes clear that Bono and
Edge have to be the first to cross. Then Bono returns with the
flashlight, which gives to Adam and Larry. Finally, Edge takes the
flashlight back to Bono and they cross the bridge together for the
last time.

• Note that, in order for the search command to stop, we need to tell
Maude to look only for one solution. Otherwise, it will continue
exploring all possible combinations, increasingly taking a larger
amount of time, and it will never end.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 73 / 99

System modules Playing with Maude

The Khun Phan puzzle

• Can we move the big square to where the small ones are?

• Can we reach a completely symmetric configuration?

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 74 / 99

System modules Playing with Maude

The Khun Phan puzzle

mod KHUN-PHAN is

protecting NAT .

sorts Piece Board .

subsort Piece < Board .

*** each piece carries the coordinates of its upper left corner

ops empty bigsq smallsq hrect vrect : Nat Nat -> Piece .

*** board is nonempty multiset of pieces

op __ : Board Board -> Board [assoc comm] .

op initial : -> Board .

eq initial

= vrect(1, 1) bigsq(2, 1) vrect(4, 1)

empty(1, 3) hrect(2, 3) empty(4, 3)

vrect(1, 4) smallsq(2, 4) smallsq(3, 4) vrect(4, 4)

smallsq(2, 5) smallsq(3, 5) .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 75 / 99

System modules Playing with Maude

The Khun Phan puzzle

vars X Y : Nat .

rl [sqr] : smallsq(X, Y) empty(s(X), Y)

=> empty(X, Y) smallsq(s(X), Y) .

rl [sql] : smallsq(s(X), Y) empty(X, Y)

=> empty(s(X), Y) smallsq(X, Y) .

rl [squ] : smallsq(X, s(Y)) empty(X, Y)

=> empty(X, s(Y)) smallsq(X, Y) .

rl [sqd] : smallsq(X, Y) empty(X, s(Y))

=> empty(X, Y) smallsq(X, s(Y)) .

rl [Sqr] : bigsq(X, Y) empty(s(s(X)), Y) empty(s(s(X)), s(Y))

=> empty(X, Y) empty(X, s(Y)) bigsq(s(X), Y) .

rl [Sql] : bigsq(s(X), Y) empty(X, Y) empty(X, s(Y))

=> empty(s(s(X)), Y) empty(s(s(X)), s(Y)) bigsq(X, Y) .

rl [Squ] : bigsq(X, s(Y)) empty(X, Y) empty(s(X), Y)

=> empty(X, s(s(Y))) empty(s(X), s(s(Y))) bigsq(X, Y) .

rl [Sqd] : bigsq(X, Y) empty(X, s(s(Y))) empty(s(X), s(s(Y)))

=> empty(X, Y) empty(s(X), Y) bigsq(X, s(Y)) .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 76 / 99

System modules Playing with Maude

The Khun Phan puzzle

rl [hrectr] : hrect(X, Y) empty(s(s(X)), Y)

=> empty(X, Y) hrect(s(X), Y) .

rl [hrectl] : hrect(s(X), Y) empty(X, Y)

=> empty(s(s(X)), Y) hrect(X, Y) .

rl [hrectu] : hrect(X, s(Y)) empty(X, Y) empty(s(X), Y)

=> empty(X, s(Y)) empty(s(X), s(Y)) hrect(X, Y) .

rl [hrectd] : hrect(X, Y) empty(X, s(Y)) empty(s(X), s(Y))

=> empty(X, Y) empty(s(X), Y) hrect(X, s(Y)) .

rl [vrectr] : vrect(X, Y) empty(s(X), Y) empty(s(X), s(Y))

=> empty(X, Y) empty(X, s(Y)) vrect(s(X), Y) .

rl [vrectl] : vrect(s(X), Y) empty(X, Y) empty(X, s(Y))

=> empty(s(X), Y) empty(s(X), s(Y)) vrect(X, Y) .

rl [vrectu] : vrect(X, s(Y)) empty(X, Y)

=> empty(X, s(s(Y))) vrect(X, Y) .

rl [vrectd] : vrect(X, Y) empty(X, s(s(Y)))

=> empty(X, Y) vrect(X, s(Y)) .

endm

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 77 / 99

System modules Playing with Maude

The Khun Phan puzzle

• With the following command we get all possible 964 final
configurations to the game:

Maude> search initial =>* B:Board bigsq(2, 4) .

• The final state used, B:Board bigsq(2,4), represents any final
situation such that the upper left corner of the big square is at
coordinates (2, 4).

• The search command does not enumerate the different ways of
reaching the same configuration.

• The shortest path leading to the final configuration, due to the
breadth-first search, reveals that it consists of 112 moves:

Maude> show path labels 23721 .

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 78 / 99

System modules Playing with Maude

The Khun Phan puzzle

• The following command shows that it is not possible to reach a
position symmetric to the initial one.

Maude> search initial

=>* vrect(1, 1) smallsq(2, 1) smallsq(3, 1) vrect(4, 1)

smallsq(2, 2) smallsq(3, 2)

empty(1, 3) hrect(2, 3) empty(4, 3)

vrect(1, 4) bigsq(2, 4) vrect(4, 4) .

No solution.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 79 / 99

Reflection

Reflection
• Rewriting logic is reflective, because there is a finitely presented

rewrite theory U that is universal in the sense that:

• we can represent any finitely presented rewrite theory R and
any terms t, t′ in R as terms R and t, t′ in U ,

• then we have the following equivalence

R ` t −→ t′ ⇐⇒ U ` 〈R, t〉 −→ 〈R, t′〉.

• Since U is representable in itself, we get a reflective tower

R ` t→ t′

m
U ` 〈R, t〉 → 〈R, t′〉

m

U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉
...

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 80 / 99

Reflection Maude’s metalevel

Maude’s metalevel

META-LEVEL

META-MODULE

NAT-LISTQID-LIST META-TERM

QID

QID-SET*(β)

QID-SET

*(β)

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 81 / 99

Reflection Maude’s metalevel

Maude’s metalevel

In Maude, key functionality of the universal theory U has been efficiently
implemented in the functional module META-LEVEL:

• Maude terms are reified as elements of a data type Term in the
module META-TERM;

• Maude modules are reified as terms in a data type Module in the
module META-MODULE;

• operations upModule, upTerm, downTerm, and others allow moving
between reflection levels;

• the process of reducing a term to canonical form using Maude’s
reduce command is metarepresented by a built-in function
metaReduce;

• the processes of rewriting a term in a system module using Maude’s
rewrite and frewrite commands are metarepresented by built-in
functions metaRewrite and metaFrewrite;

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 82 / 99

Reflection Maude’s metalevel

Maude’s metalevel

• the process of applying a rule of a system module at the top of a
term is metarepresented by a built-in function metaApply;

• the process of applying a rule of a system module at any position of
a term is metarepresented by a built-in function metaXapply;

• the process of matching two terms is reified by built-in functions
metaMatch and metaXmatch;

• the process of searching for a term satisfying some conditions
starting in an initial term is reified by built-in functions metaSearch
and metaSearchPath; and

• parsing and pretty-printing of a term in a module, as well as key sort
operations such as comparing sorts in the subsort ordering of a
signature, are also metarepresented by corresponding built-in
functions.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 83 / 99

Reflection Metaprogramming

Metaprogramming

• Programming at the metalevel: the metalevel equations and rewrite
rules operate on representations of lower-level rewrite theories.

• Reflection makes possible many advanced metaprogramming
applications, including

• user-definable strategy languages,
• language extensions by new module composition operations,
• development of theorem proving tools, and
• reifications of other languages and logics within rewriting logic.

• Full Maude extends Maude with special syntax for object-oriented
specifications, and with a richer module algebra of parameterized
modules and module composition operations

• Theorem provers and other formal tools have underlying inference
systems that can be naturally specified and prototyped in rewriting
logic. Furthermore, the strategy aspects of such tools and inference
systems can then be specified by rewriting strategies.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 84 / 99

Reflection Metaprogramming

Developing theorem proving tools
• Theorem-proving tools have a very simple reflective design in Maude.

• The inference system itself may perform theory transformations, so
that the theories themselves must be treated as data.

• We need strategies to guide the application of the inference rules.

• Example: Inductive Theorem Prover (ITP).

?

?

6

6

Object theory

Object level

Induction inference rules

Metalevel

Proof strategies

Meta-metalevel

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 85 / 99

Reflection Full Maude

Full Maude

• The systematic and efficient use of reflection through its predefined
META-LEVEL module makes Maude remarkably extensible and
powerful.

• Full Maude is an extension of Maude, written in Maude itself, that
endows the language with an even more powerful and extensible
module algebra of parameterized modules and module composition
operations, including parameterized views.

• Full Maude also provides special syntax for object-oriented modules
supporting object-oriented concepts such as objects, messages,
classes, and multiple class inheritance.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 86 / 99

Reflection Full Maude

Object-oriented systems

• An object in a given state is represented as a term

< O : C | a1 : v1,..., an : vn >

where O is the object’s name, belonging to a set Oid of object
identifiers, C is its class, the ai’s are the names of the object’s
attributes, and the vi’s are their corresponding values.

• Messages are defined by the user for each application.

• In a concurrent object-oriented system the concurrent state, which is
called a configuration, has the structure of a multiset made up of
objects and messages that evolves by concurrent rewriting (modulo
the multiset structural axioms) using rules that describe the effects
of communication events between some objects and messages.

• We can regard the special syntax reserved for object-oriented
modules as syntactic sugar, because each object-oriented module
can be translated into a corresponding system module.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 87 / 99

Reflection Full Maude

Full Maude

• Full Maude itself can be used as a basis for further extensions, by
adding new functionality.

• Full Maude becomes a common infrastructure on top of which one
can build other tools:

• Church-Rosser and coherence checkers for Maude,
• declarative debuggers for Maude, for wrong and missing

answers,
• Real-Time Maude tool for specifying and analyzing real-time

systems,
• MSOS tool for modular structural operational semantics,
• Maude-NPA for analyzing cryptographic protocols,
• strategy language prototype.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 88 / 99

Recent features

Unification

• Given terms t and u, we say that t and u are unifiable if there is a
substitution σ such that σ(t) ≡ σ(u).

• Given an equational theory A and terms t and u, we say that t and u
are unifiable modulo A if there is a substitution σ such that
σ(t) ≡A σ(u).

• Maude 2.4 supports at the core level and at the metalevel
order-sorted equational unification modulo combinations of comm
and assoc comm attributes as well as free function symbols.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 89 / 99

Recent features

Narrowing

• A term t narrows to a term t′ using a rule l⇒ r in R and a
substitution σ if

1 there is a subterm t|p of t at a nonvariable position p of t such
that l and t|p are unifiable via σ, and

2 t′ = σ(t[r]p) is obtained from σ(t) by replacing the subterm
σ(t|p) ≡ σ(l) with the term σ(r).

• Narrowing can also be defined modulo an equational theory A.

• Full Maude 2.4 supports a version of narrowing modulo with
simplification, where each narrowing step with a rule is followed by
simplification to canonical form with the equations.

• There are some restrictions on the allowed rules; for example, they
cannot be conditional.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 90 / 99

Recent features

Narrowing reachability analysis

Narrowing can be used as a general deductive procedure for solving
reachability problems of the form

(∃~x) t1(~x)→ t′1(~x) ∧ . . . ∧ tn(~x)→ t′n(~x)

in a given rewrite theory.

• The terms ti and t′i denote sets of states.

• For what subset of states denoted by ti are the states denoted by t′i
reachable?

• No finiteness assumptions about the state space.

• Sound and complete for topmost rewrite theories.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 91 / 99

Applications

Application areas

• Models of concurrent computation

• Equational programming
• Lambda calculi
• Petri nets
• CCS and π-calculus
• Actors

• Operational semantics of languages

• Structural operational semantics (SOS)
• Agent languages
• Active networks languages
• Mobile Maude
• Hardware description languages

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 92 / 99

Applications

Application areas

• Logical framework and metatool

• Linear logic
• Translations between HOL and Nuprl theorem provers
• Pure type systems
• Open calculus of constructions
• Tile logic

• Distributed architectures and components

• UML diagrams and metamodels
• Middleware architecture for composable services
• Reference Model for Open Distributed Processing
• Validation of OCL properties
• Model management and model transformations

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 93 / 99

Applications

Application areas

• Specification and analysis of communication protocols

• Active networks
• Wireless sensor networks
• FireWire leader election protocol

• Modeling and analysis of security protocols

• Cryptographic protocol specification language CAPSL
• MSR security specification formalism
• Maude-NPA

• Real-time, biological, probabilistic systems

• Real-Time Maude Tool
• Pathway Logic
• PMaude

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 94 / 99

Satisfied users

From a satisfied user

In any case, I’d like to say thank you for the great job you have been
doing with Full Maude. I find it to be incredibly useful. I’ve used Full
Maude to model a distributed virtual memory system for TCP/IP
networks, and there’s a pretty good chance that this model will turn into
real software that becomes part of the product of my employer. I have
known Maude for a while, but that was the first time I actually used it to
approach a real world problem. I was surprised how simple and
straightforward the process turned out to be. I had a working prototype
that exposed all tricky design decisions within less than a week. I’ve
modeled software in Haskell before, and quite liked it, but I have to say
that Full Maude is the best system I know so far. My favorite feature are
parameterized views. Please know that your efforts are appreciated.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 95 / 99

Satisfied users

More satisfied users

I’m happy to inform you that with my coworker Marc
Nieper-Wisskirchen, we successfully used your Maude program to
implement the vertex algebra of operators on the cohomology of Hilbert
schemes of points on surfaces. We obtained new results on the
characteristic classes of some bundles. Our paper is published in the
Journal on Mathematics and Computations (London Math. Soc.) and
can be accessed at the following address:
http://www.lms.ac.uk/jcm/10/lms2006-045/
I hope this can be of some interest for you!
Best regards,
Samuel Boissiere
Universite de Nice, France

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 96 / 99

Work in progress

Some work in progress

• Connecting Maude to HETS, heterogeneous verification system
developed at Bremen, Germany, which is already connected to
theorem provers like Isabelle.

• Semantics of modeling, real-time, and hardware languages.

• Modeling of cyberphysical systems (avionics, medical systems, . . .).

• Secure-by-design browsers.

• More and better equational unification algorithms.

• Temporal logic of rewriting.

• Matching logic on top of K framework.

• Multicore reimplementation of Maude.

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 97 / 99

The End

The Book

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 98 / 99

The End

Many thanks

• JAIST-FSSV2010 organizers:

• Kokichi Futatsugi

• Maude team:

• José Meseguer
• Francisco Durán
• Steven Eker
• Manuel Clavel
• Carolyn Talcott
• Pat Lincoln

Narciso Mart́ı-Oliet (UCM) An introduction to Maude JAIST-FSSV2010, March 2010 99 / 99

	Introduction
	Functional modules
	Many-sorted equational specifications
	Modularization
	Order-sorted equational specifications
	Structural axioms
	Hierarchy of data types
	Membership equational logic specifications
	Sorted lists

	Parameterization
	Theories and views
	Parameterized lists
	Parameterized trees

	System modules
	Rewriting logic
	Playing with Maude

	Reflection
	Maude's metalevel
	Metaprogramming
	Full Maude

	Recent features
	Applications
	Satisfied users
	Work in progress
	The End

