
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2010

Model Checking: Modeling Concurrency

Applications of Formal Verification

KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Focus of this Lecture

aim of SPIN-style model checking methodology:

exhibit

design

flaws in

concurrent and distributed

software systems

focus of this lecture:

modeling and analyzing concurrent systems

focus of next lecture:

modeling and analyzing distributed systems
(plus: staring with Temporal Logic Model Checking)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

Focus of this Lecture

aim of SPIN-style model checking methodology:

exhibit design flaws in

concurrent and distributed

software systems

focus of this lecture:

modeling and analyzing concurrent systems

focus of next lecture:

modeling and analyzing distributed systems
(plus: staring with Temporal Logic Model Checking)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

Focus of this Lecture

aim of SPIN-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

focus of this lecture:

modeling and analyzing concurrent systems

focus of next lecture:

modeling and analyzing distributed systems
(plus: staring with Temporal Logic Model Checking)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

Focus of this Lecture

aim of SPIN-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

focus of this lecture:

modeling and analyzing concurrent systems

focus of next lecture:

modeling and analyzing distributed systems
(plus: staring with Temporal Logic Model Checking)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

Focus of this Lecture

aim of SPIN-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

focus of this lecture:

modeling and analyzing concurrent systems

focus of next lecture:

modeling and analyzing distributed systems
(plus: staring with Temporal Logic Model Checking)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about

enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior

interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations

counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks

limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies

relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components

performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums

reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Concurrent/Distributed systems
difficult to get right

problems:
hard to predict, hard to form faithful intuition about
enormous combinatorial explosion of possible behavior
interleaving prone to unsafe operations
counter measures prone to deadlocks
limited control—from within applications— over ‘external’ factors:

scheduling strategies
relative speed of components
performance of communication mediums
reliability of communication mediums

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Testing Concurrent or Distributed
System is Hard

We cannot exhaustively test concurrent/distributed systems
lack of controllability
⇒ we miss failures in test phase

lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect
lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 4/37

Testing Concurrent or Distributed
System is Hard

We cannot exhaustively test concurrent/distributed systems
lack of controllability
⇒ we miss failures in test phase
lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 4/37

Testing Concurrent or Distributed
System is Hard

We cannot exhaustively test concurrent/distributed systems
lack of controllability
⇒ we miss failures in test phase
lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect
lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 4/37

Mission of SPIN-style Model
Checking

offer an efficient methodology to
improve the design
exhibit defects

of concurrent and distributed systems

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

Activities in SPIN-style Model
Checking

1 model (critical aspects of) concurrent/distributed system with
PROMELA

2 use assertions, temporal logic, ... to model crucial properties
3 use SPIN to check all possible runs of the model
4 analyze result, and possibly re-work 1. and 2.

I claim:
The hardest part of Model Checking is 1.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 6/37

Activities in SPIN-style Model
Checking

1 model (critical aspects of) concurrent/distributed system with
PROMELA

2 use assertions, temporal logic, ... to model crucial properties
3 use SPIN to check all possible runs of the model
4 analyze result, and possibly re-work 1. and 2.

I claim:
The hardest part of Model Checking is 1.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 6/37

Main Challenges of Modeling

expressiveness
model must be expressive enough to ‘embrace’ defects
the real system could have

simplicity
model simple enough to be ‘model checkable’,
theoretically and practically

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 7/37

Modeling Concurrent Systems in
Promela

corner stone of
modeling concurrent, and distributed, systems in SPIN approach are

PROMELA processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 8/37

Initializing Processes

there is always an initial process prior to all others

present implicitly when using ‘active’

can be declared explicitly with key word ‘init’

init {
printf("Hello world\n")

}

if explicit, init is used to start other processes with run statement

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 9/37

Initializing Processes

there is always an initial process prior to all others

present implicitly when using ‘active’

can be declared explicitly with key word ‘init’

init {
printf("Hello world\n")

}

if explicit, init is used to start other processes with run statement

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 9/37

Starting Processes

processes can be started explicitly using run

proctype P() {
byte local;
....

}

init {
run P();
run P()

}

each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

PROMELA’s run corresponds to Java’s start, not to Java’s run

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 10/37

Starting Processes

processes can be started explicitly using run

proctype P() {
byte local;
....

}

init {
run P();
run P()

}

each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

PROMELA’s run corresponds to Java’s start, not to Java’s run

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 10/37

Starting Processes

processes can be started explicitly using run

proctype P() {
byte local;
....

}

init {
run P();
run P()

}

each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

PROMELA’s run corresponds to Java’s start, not to Java’s run

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 10/37

Atomic Start of Multiple Processes

by convention, run operators enclosed in atomic block

proctype P() {
byte local;
....

}

init {
atomic {

run P();
run P()

}
}

effect: processes only start executing once all are created

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 11/37

Atomic Start of Multiple Processes

by convention, run operators enclosed in atomic block

proctype P() {
byte local;
....

}

init {
atomic {

run P();
run P()

}
}

effect: processes only start executing once all are created

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 11/37

Joining Processes

following trick allows ‘joining’, i.e., waiting for all processes to finish

byte result;

proctype P() {
....

}

init {
atomic {
run P();
run P()

}
(_nr_pr == 1) ->

printf("result =%d", result)
}

_nr_pr built in variable holding number of running processes
_nr_pr = 1 only init is running (anymore)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 12/37

Joining Processes

following trick allows ‘joining’, i.e., waiting for all processes to finish

byte result;

proctype P() {
....

}

init {
atomic {
run P();
run P()

}
(_nr_pr == 1) ->

printf("result =%d", result)
}

_nr_pr built in variable holding number of running processes
_nr_pr = 1 only init is running (anymore)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 12/37

Process Parameters

Processes may have formal parameters, instantiated by run:

proctype P(byte id; byte incr) {
...

}

init {
run P(7, 10);
run P(8, 15)

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 13/37

Active (Sets of) Processes

init can be made implicit by using the active modifier:

active proctype P() {
...

}

implicit init will run one copy of P

active [n] proctype P() {
...

}

implicit init will run n copies of P

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 14/37

Active (Sets of) Processes

init can be made implicit by using the active modifier:

active proctype P() {
...

}

implicit init will run one copy of P

active [n] proctype P() {
...

}

implicit init will run n copies of P

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 14/37

Local and Global Data

Variables declared outside of the processes are global to all
processes.

Variables declared inside a process are local to that processes.

byte n;

proctype P(byte id; byte incr) {
byte temp;
...

}

n is global
temp is local

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 15/37

Modeling with Global Data

pragmatics of modeling with global data:

shared memory of concurrent systems often modeled by global
variables of numeric (or array) type

status of shared resources (printer, traffic light, ...) often modeled by
global variables of Boolean or enumeration type
(bool/mtype).

communication mediums of distributed systems often modeled by
global variables of channel type (chan).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 16/37

Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n = %d\n", n);

}

active proctype Q() {
n = 2;
printf("Process Q, n = %d\n", n);

}

how many outputs possible now?

different processes can interfere on global data

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n = %d\n", n);

}

active proctype Q() {
n = 2;
printf("Process Q, n = %d\n", n);

}

how many outputs possible now?

different processes can interfere on global data

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n = %d\n", n);

}

active proctype Q() {
n = 2;
printf("Process Q, n = %d\n", n);

}

how many outputs possible now?

different processes can interfere on global data

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Interference on Global Data

byte n = 0;

active proctype P() {
n = 1;
printf("Process P, n = %d\n", n);

}

active proctype Q() {
n = 2;
printf("Process Q, n = %d\n", n);

}

how many outputs possible now?

different processes can interfere on global data

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Examples

1 interleave0.pml
SPIN simulation, SPINSPIDER automata + transition system

2 interleave1.pml
SPIN simulation, SPINSPIDER automata + transition system

3 interleave5.pml
SPIN simulation, SPIN model checking, trail inspection

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 18/37

Atomicity

limit the possibility of sequences being interrupted by other processes

weakly atomic sequence
can only be interrupted if a statement is not executable

defined in PROMELA by atomic{ . . . }

strongly atomic sequence
can not be interrupted at all

defined in PROMELA by d_step{ . . . }

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 19/37

Atomicity

limit the possibility of sequences being interrupted by other processes

weakly atomic sequence
can only be interrupted if a statement is not executable
defined in PROMELA by atomic{ . . . }

strongly atomic sequence
can not be interrupted at all
defined in PROMELA by d_step{ . . . }

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 19/37

Deterministic Sequences

d_step:
strongly atomic
deterministic
nondeterminism resolved in fixed way
⇒ good style to avoid nondeterminism in d_step

it is an error if any statement within d_step, other than the first
one (called guard), blocks

d_step {
stmt1; ← guard
stmt2;
stmt3

}

if stmt1 blocks, d_step is not entered, and blocks as a whole
it is an error if stmt2 or stmt3 block

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 20/37

Prohibit Interference by Atomicity

apply d_step to interference example

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 21/37

Synchronization on Global Data

PROMELA has no synchronization primitives,
like semaphores, locks, or monitors.

instead, PROMELA inhibits concept of statement executability

executability addresses many issues in the interplay of processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 22/37

Synchronization on Global Data

PROMELA has no synchronization primitives,
like semaphores, locks, or monitors.

instead, PROMELA inhibits concept of statement executability

executability addresses many issues in the interplay of processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 22/37

Synchronization on Global Data

PROMELA has no synchronization primitives,
like semaphores, locks, or monitors.

instead, PROMELA inhibits concept of statement executability

executability addresses many issues in the interplay of processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 22/37

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable
assignments always
assertions always

print statements always
expression statements iff value not 0/false

send/receive statements (coming soon)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 23/37

Executability (Cont’d)

Executability of compound statements:

atomic resp. d_step statement is executable
iff

guard (the first statement within) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Executability (Cont’d)

Executability of compound statements:

atomic resp. d_step statement is executable
iff

guard (the first statement within) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Executability (Cont’d)

Executability of compound statements:

atomic resp. d_step statement is executable
iff

guard (the first statement within) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Executability (Cont’d)

Executability of compound statements:

atomic resp. d_step statement is executable
iff

guard (the first statement within) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Executability (Cont’d)

Executability of compound statements:

atomic resp. d_step statement is executable
iff

guard (the first statement within) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Executability and Blocking

Definition (Blocking)
a statement blocks iff it is not executable
a process blocks iff its location counter points to a blocking statement

for each step of execution, the scheduler nondeterministically
chooses a process to execute

among the non-blocking processes

executability, resp. blocking are the key to PROMELA-style modeling of
solutions to synchronization problems
(to be discussed in following)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 25/37

Executability and Blocking

Definition (Blocking)
a statement blocks iff it is not executable
a process blocks iff its location counter points to a blocking statement

for each step of execution, the scheduler nondeterministically
chooses a process to execute among the non-blocking processes

executability, resp. blocking are the key to PROMELA-style modeling of
solutions to synchronization problems
(to be discussed in following)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 25/37

Executability and Blocking

Definition (Blocking)
a statement blocks iff it is not executable
a process blocks iff its location counter points to a blocking statement

for each step of execution, the scheduler nondeterministically
chooses a process to execute among the non-blocking processes

executability, resp. blocking are the key to PROMELA-style modeling of
solutions to synchronization problems
(to be discussed in following)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 25/37

The Critical Section Problem

archetypical problem of concurrent systems

given a number of looping processes, each containing a critical
section
design an algorithm such that:

Mutual Exclusion At most one process is executing it’s critical section
any time

Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must eventually
succeed

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually
succeed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

The Critical Section Problem

archetypical problem of concurrent systems

given a number of looping processes, each containing a critical
section
design an algorithm such that:
Mutual Exclusion At most one process is executing it’s critical section

any time

Absence of Deadlock If some processes are trying to enter their
critical sections, then one of them must eventually
succeed

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually
succeed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

The Critical Section Problem

archetypical problem of concurrent systems

given a number of looping processes, each containing a critical
section
design an algorithm such that:
Mutual Exclusion At most one process is executing it’s critical section

any time
Absence of Deadlock If some processes are trying to enter their

critical sections, then one of them must eventually
succeed

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually
succeed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

The Critical Section Problem

archetypical problem of concurrent systems

given a number of looping processes, each containing a critical
section
design an algorithm such that:
Mutual Exclusion At most one process is executing it’s critical section

any time
Absence of Deadlock If some processes are trying to enter their

critical sections, then one of them must eventually
succeed

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually
succeed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

Critical Section Pattern

for demonstration, and simplicity:
(non)critical sections only printf statements

active proctype P() {
do :: printf("Noncritical section P\n");

/* begin critical section */
printf("Critical section P\n");
/* end critical section */

od
}

active proctype Q() {
do :: printf("Noncritical section Q\n");

/* begin critical section */
printf("Critical section Q\n");
/* end critical section */

od
}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 27/37

No Mutual Exclusion Yet
need more infrastructure to achieve it:
adding two Boolean flags:

bool inCriticalP = false;
bool inCriticalQ = false;

active proctype P() {
do :: printf("Non-critical section P\n");

/* begin critical section */
inCriticalP = true;
printf("Critical section P\n");
inCriticalP = false
/* end critical section */

od
}

active proctype Q() {
...correspondingly...

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 28/37

Show Mutual Exclusion Violation
with SPIN

adding assertions

bool inCriticalP = false;
bool inCriticalQ = false;

active proctype P() {
do :: printf("Non-critical section P\n");

/* begin critical section */
inCriticalP = true;
printf("Critical section P\n");
assert(!inCriticalQ);
inCriticalP = false
/* end critical section */

od
}

active proctype Q() {
........assert(!inCriticalP);.......

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 29/37

Mutual Exclusion by Busy Waiting

bool inCriticalP = false;
bool inCriticalQ = false;

active proctype P() {
do :: printf("Non-critical section P\n");

/* begin critical section */
inCriticalP = true
do :: !inCriticalQ -> break

:: else -> skip
od;
printf("Critical section P\n");
assert(!inCriticalQ);
inCriticalP = false
/* end critical section */

od
}

active proctype Q() { ...correspondingly... }

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 30/37

Mutual Exclusion by Blocking

instead of Busy Waiting, process should
release control
continuing to run only when exclusion properties are fulfilled

We can use expression statement !inCriticalQ,
to let process P block where it should not proceed!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 31/37

Mutual Exclusion by Blocking

instead of Busy Waiting, process should
release control
continuing to run only when exclusion properties are fulfilled

We can use expression statement !inCriticalQ,
to let process P block where it should not proceed!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 31/37

Mutual Exclusion by Blocking

bool inCriticalP = false;
bool inCriticalQ = false;

active proctype P() {
do :: printf("Non-critical section P\n");

/* begin critical section */
inCriticalP = true;
!inCriticalQ;
printf("Critical section P\n");
assert(!inCriticalQ);
inCriticalP = false
/* end critical section */

od
}

active proctype Q() {
...correspondingly...

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 32/37

Verify Mutual Exclusion of this

SPIN
still errors (invalid end state)
⇒ deadlock
can make pan ignore the deadlock: ./pan -E
SPIN then proves mutual exclusion

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 33/37

Deadlock Hunting

find Deadlock with SPIN

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Deadlock Hunting

find Deadlock with SPIN

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

atomic {
!inCriticalQ;
inCriticalP = true

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 35/37

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

atomic {
!inCriticalQ;
inCriticalP = true

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 35/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:

ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)

temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans

semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.

several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.
several critical sections (Leidestraat in Amsterdam)

writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.
several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers

FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.
several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Variations of Critical Section Problem

the example was simplistic indeed
variations:

use other means for verification:
ghost variables (verification only)
temporal logic (next lecture)

max n processes allowed in critical section
modeling possibilities include:

counters instead of booleans
semaphores (see demo)

more fine grained exclusion conditions, e.g.
several critical sections (Leidestraat in Amsterdam)
writers exclude each other and readers
readers exclude writers, but not other readers
FIFO queues for entering sections (full semaphores)

... and many more

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Solving CritSectPr with
atomic/d step only?

actually possible in this case (demo)
also in interleaving example (counting via temp, see above)
But:

does not carry over to variations (see previous slide)
atomic only weakly atomic!
d_step excludes any nondeterminism!

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 37/37

	This Lecture
	Concurrent Processes in Promela
	Interference on Global Data
	Atomicity
	Synchronization on Global Data
	The Critical Section Problem
	Mutual Exclusion
	Absence of Deadlock
	Variations
	atomic + d_step enough?

