
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2010

Model Checking: Introduction to PROMELA

Applications of Formal Verification

KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Literature

THE COURSE BOOK:
Ben-Ari Mordechai Ben-Ari: Principles of the Spin Model

Checker, Springer, 2008(!).
Authored by receiver of ACM award for outstanding
Contributions to CS Education. Recommended by
G. Holzmann. Excellent student text book.

further reading:
Holzmann Gerard J. Holzmann: The Spin Model Checker,

Addison Wesley, 2004.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 2/37

A Major Case Study with SPIN

Checking feature interaction for telephone call processing
software

Software for PathStarTM server from Lucent Technologies
Automated abstraction of unchanged C code into PROMELA

Web interface, with SPIN as back-end, to:
track properties (ca. 20 temporal formulas)
invoke verification runs
report error traces

Finds shortest possible error trace, reported as C execution trace
Work farmed out to 16 computers, daily, overnight runs
18 months, 300 versions of system model, 75 bugs found
strength: detection of undesired feature interactions
(difficult with traditional testing)
Main challenge: defining meaningful properties

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 3/37

Towards Model Checking

System Model

Promela Program

byte n = 0;
active proctype P() {

n = 1;
}
active proctype Q() {

n = 2;
}

System Property

[] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 4/37

What is PROMELA?

PROMELA is an acronym
Process meta-language

PROMELA is a language for systems

multi-threaded
synchronisation and message passing
few control structures, pure (no side-effects) expressions
data structures with finite and fixed bound

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

What is PROMELA?

PROMELA is an acronym
Process meta-language

PROMELA is a language for modeling concurrent systems
multi-threaded

synchronisation and message passing
few control structures, pure (no side-effects) expressions
data structures with finite and fixed bound

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

What is PROMELA?

PROMELA is an acronym
Process meta-language

PROMELA is a language for modeling concurrent systems
multi-threaded
synchronisation and message passing

few control structures, pure (no side-effects) expressions
data structures with finite and fixed bound

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

What is PROMELA?

PROMELA is an acronym
Process meta-language

PROMELA is a language for modeling concurrent systems
multi-threaded
synchronisation and message passing
few control structures, pure (no side-effects) expressions

data structures with finite and fixed bound

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

What is PROMELA?

PROMELA is an acronym
Process meta-language

PROMELA is a language for modeling concurrent systems
multi-threaded
synchronisation and message passing
few control structures, pure (no side-effects) expressions
data structures with finite and fixed bound

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 5/37

What is PROMELA Not?

PROMELA is not a programming language
Very small language, not intended to program real systems
(we will master most of it in today’s lecture!)

No pointers
No methods/procedures
No libraries
No GUI, no standard input
No floating point types
Fair scheduling policy (during verification)
No data encapsulation
Non-deterministic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 6/37

A First PROMELA Program

active proctype P() {
printf("Hello world\n")

}

Command Line Execution
Simulating (i.e., interpreting) a PROMELA program

> spin hello.pml
Hello world

First observations
keyword proctype declares process named P

C-like command and expression syntax
C-like (simplified) formatted print

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 7/37

A First PROMELA Program

active proctype P() {
printf("Hello world\n")

}

Command Line Execution
Simulating (i.e., interpreting) a PROMELA program

> spin hello.pml
Hello world

First observations
keyword proctype declares process named P

C-like command and expression syntax
C-like (simplified) formatted print

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 7/37

Arithmetic Data Types
active proctype P() {

int val = 123;
int rev;
rev = (val % 10) * 100 + /* % is modulo */

((val / 10) % 10) * 10 + (val / 100);
printf("val = %d, rev = %d\n", val, rev)

}

Observations
Data types byte, short, int, unsigned with operations
+,-,*,/,%

All declarations implicitly at beginning of process
(avoid to have them anywhere else!)
Expressions computed as int, then converted to container type
Arithmetic variables implicitly initialized to 0

No floats, no side effects, C/Java-style comments
No string variables (only in print statements)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 8/37

Arithmetic Data Types
active proctype P() {

int val = 123;
int rev;
rev = (val % 10) * 100 + /* % is modulo */

((val / 10) % 10) * 10 + (val / 100);
printf("val = %d, rev = %d\n", val, rev)

}

Observations
Data types byte, short, int, unsigned with operations
+,-,*,/,%

All declarations implicitly at beginning of process
(avoid to have them anywhere else!)
Expressions computed as int, then converted to container type
Arithmetic variables implicitly initialized to 0

No floats, no side effects, C/Java-style comments
No string variables (only in print statements)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 8/37

Booleans and Enumerations
bit b1 = 0;
bool b2 = true;

Observations
bit is actually small numeric type containing 0,1 (unlike C,
JAVA)
bool, true, false syntactic sugar for bit, 0, 1

mtype = { red, yellow, green };
mtype light = green;
printf("the light is %e\n", light)

Observations
literals represented as non-0 byte: at most 255
mtype stands for message type (first used for message names)
There is at most one mtype per program

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 9/37

Booleans and Enumerations
bit b1 = 0;
bool b2 = true;

Observations
bit is actually small numeric type containing 0,1 (unlike C,
JAVA)
bool, true, false syntactic sugar for bit, 0, 1

mtype = { red, yellow, green };
mtype light = green;
printf("the light is %e\n", light)

Observations
literals represented as non-0 byte: at most 255
mtype stands for message type (first used for message names)
There is at most one mtype per program

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 9/37

Control Statements

Sequence using ; as separator; C/JAVA-like rules
Guarded Command
— Selection non-deterministic choice of an alternative
— Repetition loop until break (or forever)

Goto jump to a label

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 10/37

Guarded Statement Syntax

:: guard-statement -> command;

Observations
symbol -> is overloaded in PROMELA

semicolon optional
first statement after :: used as guard

:: guard is admissible (empty command)
Can use ; instead of -> (avoid!)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 11/37

Guarded Commands: Selection

active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
:: a >= b -> max = a; branch = 1
:: a <= b -> max = b; branch = 2
fi

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 12/37

Guarded Commands: Selection

active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
:: a >= b -> max = a; branch = 1
:: a <= b -> max = b; branch = 2
fi

}

Command Line Execution
Trace of random simulation of multiple runs

> spin -v max.pml
> spin -v max.pml
> ...

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 12/37

Guarded Commands: Selection

active proctype P() {
byte a = 5, b = 5;
byte max, branch;
if
:: a >= b -> max = a; branch = 1
:: a <= b -> max = b; branch = 2
fi

}

Observations
Guards may “overlap” (more than one can be true at the same
time)
Any alternative whose guard is true is randomly selected
When no guard true: process blocks until one becomes true

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 12/37

Guarded Commands: Selection
Cont’d

active proctype P() {
bool p = ...;
if
:: p -> ...
:: true -> ...
fi;

}

active proctype P() {
bool p = ...;
if
:: p -> ...
:: else -> ...
fi;

}

Second alternative can be se-
lected anytime, regardless of
whether p is true

Second alternative can be se-
lected only if p is false

So far, all our programs terminate: we need loops

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 13/37

Guarded Commands: Selection
Cont’d

active proctype P() {
bool p = ...;
if
:: p -> ...
:: true -> ...
fi;

}

active proctype P() {
bool p = ...;
if
:: p -> ...
:: else -> ...
fi;

}

Second alternative can be se-
lected anytime, regardless of
whether p is true

Second alternative can be se-
lected only if p is false

So far, all our programs terminate: we need loops

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 13/37

Guarded Commands: Selection
Cont’d

active proctype P() {
bool p = ...;
if
:: p -> ...
:: true -> ...
fi;

}

active proctype P() {
bool p = ...;
if
:: p -> ...
:: else -> ...
fi;

}

Second alternative can be se-
lected anytime, regardless of
whether p is true

Second alternative can be se-
lected only if p is false

So far, all our programs terminate: we need loops

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 13/37

Guarded Commands: Selection
Cont’d

active proctype P() {
bool p = ...;
if
:: p -> ...
:: true -> ...
fi;

}

active proctype P() {
bool p = ...;
if
:: p -> ...
:: else -> ...
fi;

}

Second alternative can be se-
lected anytime, regardless of
whether p is true

Second alternative can be se-
lected only if p is false

So far, all our programs terminate: we need loops

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 13/37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */
int a = 15, b = 20;
do

:: a > b -> a = a - b
:: b > a -> b = b - a
:: a == b -> break

od
}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 14/37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */
int a = 15, b = 20;
do

:: a > b -> a = a - b
:: b > a -> b = b - a
:: a == b -> break

od
}

Command Line Execution
Trace with values of local variables

> spin -p -l gcd.pml
> spin --help

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 14/37

Guarded Commands: Repetition

active proctype P() { /* computes gcd */
int a = 15, b = 20;
do

:: a > b -> a = a - b
:: b > a -> b = b - a
:: a == b -> break

od
}

Observations
Any alternative whose guard is true is randomly selected
Only way to exit loop is via break or goto
When no guard true: loop blocks until one becomes true

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 14/37

Counting Loops

Counting loops such as for-loops as usual in imperative programming
languages are realized with break after the termination condition:

#define N 10 /* C-style preprocessing */
active proctype P() {

int sum = 0; byte i = 1;
do
:: i > N -> break /* test */
:: else -> sum = sum + i; i++ /* body, increment */
od

}

Observations
Don’t forget else, otherwise strange behaviour
Can define for(var,start,end) macro, but we advise
against:

not a structured command (scope), can cause hard-to-find bugs

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 15/37

Counting Loops

Counting loops such as for-loops as usual in imperative programming
languages are realized with break after the termination condition:

#define N 10 /* C-style preprocessing */
active proctype P() {

int sum = 0; byte i = 1;
do
:: i > N -> break /* test */
:: else -> sum = sum + i; i++ /* body, increment */
od

}

Observations
Don’t forget else, otherwise strange behaviour
Can define for(var,start,end) macro, but we advise
against:

not a structured command (scope), can cause hard-to-find bugs

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 15/37

Arrays

#define N 5
active proctype P() {
byte a[N];
a[0] = 0;a[1] = 10;a[2] = 20;a[3] = 30;a[4] = 40;
byte sum = 0, i = 0;
do

:: i > N-1 -> break;
:: else -> sum = sum + a[i]; i++

od;
}

Observations
Arrays start with 0 as in Java and C
Arrays are scalar types: a 6=b always different arrays
Array bounds are constant and cannot be changed
Only one-dimensional arrays (there is an (ugly) workaround)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 16/37

Arrays

#define N 5
active proctype P() {
byte a[N];
a[0] = 0;a[1] = 10;a[2] = 20;a[3] = 30;a[4] = 40;
byte sum = 0, i = 0;
do

:: i > N-1 -> break;
:: else -> sum = sum + a[i]; i++

od;
}

Observations
Arrays start with 0 as in Java and C
Arrays are scalar types: a 6=b always different arrays
Array bounds are constant and cannot be changed
Only one-dimensional arrays (there is an (ugly) workaround)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 16/37

Record Types

typedef DATE {
byte day, month, year;

}
active proctype P() {
DATE D;
D.day = 1; D.month = 7; D.year = 62

}

Observations
C-style syntax
Can be used to realize multi-dimensional arrays:

typedef VECTOR {
int vector[10]

};
VECTOR matrix[5]; /* base type array in record */
matrix[3].vector[6] = 17;

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Record Types

typedef DATE {
byte day, month, year;

}
active proctype P() {
DATE D;
D.day = 1; D.month = 7; D.year = 62

}

Observations
C-style syntax
Can be used to realize multi-dimensional arrays:

typedef VECTOR {
int vector[10]

};
VECTOR matrix[5]; /* base type array in record */
matrix[3].vector[6] = 17;

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 17/37

Jumps

#define N 10
active proctype P() {
int sum = 0; byte i = 1;
do
:: i > N -> goto exitloop;
:: else -> sum = sum + i; i++
od;

exitloop:
printf("End of loop")

}

Observations
Jumps allowed only within a process
Labels must be unique for a process
Can’t place labels in front of guards (inside alternative ok)
Easy to write messy code with goto

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 18/37

Jumps

#define N 10
active proctype P() {
int sum = 0; byte i = 1;
do
:: i > N -> goto exitloop;
:: else -> sum = sum + i; i++
od;

exitloop:
printf("End of loop")

}

Observations
Jumps allowed only within a process
Labels must be unique for a process
Can’t place labels in front of guards (inside alternative ok)
Easy to write messy code with goto

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 18/37

Inlining Code

PROMELA has no method or procedure calls

typedef DATE {
byte day, month, year;

}
inline setDate(D, DD, MM, YY) {

D.day = DD; D.month = MM; D.year = YY
}
active proctype P() {

DATE d;
setDate(d,1,7,62);

}

The inline construct
macro-like abbreviation mechanism for code that occurs multiply
creates new local variables for parameters, but no new scope

avoid to declare variables in inline — they are visible

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 19/37

Inlining Code

PROMELA has no method or procedure calls

typedef DATE {
byte day, month, year;

}
inline setDate(D, DD, MM, YY) {
D.day = DD; D.month = MM; D.year = YY

}
active proctype P() {
DATE d;
setDate(d,1,7,62);

}

The inline construct
macro-like abbreviation mechanism for code that occurs multiply
creates new local variables for parameters, but no new scope

avoid to declare variables in inline — they are visible

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 19/37

Inlining Code

PROMELA has no method or procedure calls

typedef DATE {
byte day, month, year;

}
inline setDate(D, DD, MM, YY) {
D.day = DD; D.month = MM; D.year = YY

}
active proctype P() {
DATE d;
setDate(d,1,7,62);

}

The inline construct
macro-like abbreviation mechanism for code that occurs multiply
creates new local variables for parameters, but no new scope

avoid to declare variables in inline — they are visible

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 19/37

Non-Deterministic Programs

Deterministic PROMELA programs are trivial
Assume PROMELA program with one process and no overlapping
guards

All variables are (implicitly or explictly) initialized
No user input possible
Each state is either blocking or has exactly one successor state

Such a program has exactly one possible computation!

Non-trivial PROMELA programs are non-deterministic!

Possible sources of non-determinism
1 Non-deterministic choice of alternatives with overlapping guards
2 Scheduling of concurrent processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 20/37

Non-Deterministic Programs

Deterministic PROMELA programs are trivial
Assume PROMELA program with one process and no overlapping
guards

All variables are (implicitly or explictly) initialized
No user input possible
Each state is either blocking or has exactly one successor state

Such a program has exactly one possible computation!

Non-trivial PROMELA programs are non-deterministic!

Possible sources of non-determinism
1 Non-deterministic choice of alternatives with overlapping guards
2 Scheduling of concurrent processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 20/37

Non-Deterministic Generation of
Values

byte range;
if
:: range = 1
:: range = 2
:: range = 3
:: range = 4

fi

Observations
assignment statement used as guard

assignment statement always succeeds (guard is true)
side effect of guard is desired effect of this alternative
could also write :: true -> range = 1, etc.

selects non-deterministically a value in {1, 2, 3, 4} for range

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 21/37

Non-Deterministic Generation of
Values Cont’d

Generation of values from explicit list impractical for large range

#define LOW 0
#define HIGH 9
byte range = LOW;
do

:: range < HIGH -> range++
:: break

od

Observations
Increase of range and loop exit selected with equal chance
Chance of generating n in random simulation is 2−(n+1)

Obtain no representative test cases from random simulation!
Ok for verification, because all computations are generated

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 22/37

Non-Deterministic Generation of
Values Cont’d

Generation of values from explicit list impractical for large range

#define LOW 0
#define HIGH 9
byte range = LOW;
do
:: range < HIGH -> range++
:: break

od

Observations
Increase of range and loop exit selected with equal chance
Chance of generating n in random simulation is 2−(n+1)

Obtain no representative test cases from random simulation!
Ok for verification, because all computations are generated

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 22/37

Sources of Non-Determinism

1 Non-deterministic choice of alternatives with overlapping guards
2 Scheduling of concurrent processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 23/37

Concurrent Processes

active proctype P() {
printf("Process P, statement 1\n");
printf("Process P, statement 2\n")

}

active proctype Q() {
printf("Process Q, statement 1\n");
printf("Process Q, statement 2\n")

}

Observations
Can declare more than one process (need unique identifier)
At most 255 processes

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 24/37

Execution of Concurrent Processes

Command Line Execution
Random simulation of two processes

> spin interleave.pml

Observations
Scheduling of concurrent processes on one processor
Scheduler selects process randomly where next statement
executed
Many different computations are possible: non-determinism
Use -p and -g options to see more execution details

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 25/37

Execution of Concurrent Processes

Command Line Execution
Random simulation of two processes

> spin interleave.pml

Observations
Scheduling of concurrent processes on one processor
Scheduler selects process randomly where next statement
executed
Many different computations are possible: non-determinism
Use -p and -g options to see more execution details

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 25/37

Sets of Processes

active [2] proctype P() {
printf("Process %d, statement 1\n", _pid);
printf("Process %d, statement 2\n", _pid)

}

Observations
Can declare set of identical processes
Current process identified with reserved variable _pid

Each process can have its own local variables

Command Line Execution
Random simulation of set of two processes

> spin interleave_set.pml

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

Sets of Processes

active [2] proctype P() {
printf("Process %d, statement 1\n", _pid);
printf("Process %d, statement 2\n", _pid)

}

Observations
Can declare set of identical processes
Current process identified with reserved variable _pid

Each process can have its own local variables

Command Line Execution
Random simulation of set of two processes

> spin interleave_set.pml

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 26/37

PROMELA Computations

1 active [2] proctype P() {
2 byte n;
3 n = 1;
4 n = 2;
5 }

One possible computation of this program

2, 2

0, 0
3, 2

1, 0
3, 3

1, 1
3, 4

1, 2
4, 4

2, 2

Notation
Program pointer (line #) for each process in upper compartment
Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 27/37

PROMELA Computations

1 active [2] proctype P() {
2 byte n;
3 n = 1;
4 n = 2;
5 }

One possible computation of this program

2, 2

0, 0
3, 2

1, 0
3, 3

1, 1
3, 4

1, 2
4, 4

2, 2

Notation
Program pointer (line #) for each process in upper compartment
Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 27/37

PROMELA Computations

1 active [2] proctype P() {
2 byte n;
3 n = 1;
4 n = 2;
5 }

One possible computation of this program

2, 2

0, 0
3, 2

1, 0
3, 3

1, 1
3, 4

1, 2
4, 4

2, 2

Notation
Program pointer (line #) for each process in upper compartment
Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 27/37

Admissible Computations:
Interleaving

Definition (Interleaving of computations)
Assume n processes P1, . . . , Pn and process i has computation
c i = (si

0, si
1, si

2, . . .).
The computation (s0, s1, s2, . . .) is an interleaving of c1, . . . , cn iff for
all sj = si

j′ and sk = si
k ′ with j < k it is the case that j ′ < k ′.

The interleaved state sequence
respects the execution order of each process

Observations
Semantics of concurrent PROMELA program are all its
interleavings
Called interleaving semantics of concurrent programs
Not universal: in Java certain reorderings allowed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 28/37

Admissible Computations:
Interleaving

Definition (Interleaving of computations)
Assume n processes P1, . . . , Pn and process i has computation
c i = (si

0, si
1, si

2, . . .).
The computation (s0, s1, s2, . . .) is an interleaving of c1, . . . , cn iff for
all sj = si

j′ and sk = si
k ′ with j < k it is the case that j ′ < k ′.

The interleaved state sequence
respects the execution order of each process

Observations
Semantics of concurrent PROMELA program are all its
interleavings
Called interleaving semantics of concurrent programs
Not universal: in Java certain reorderings allowed

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 28/37

Interleaving Cont’d
Can represent possible interleavings in a DAG

1 active [2] proctype P() {
2 byte n;
3 n = 1;
4 n = 2;
5 }

2, 2

0, 0

3, 2

1, 0

2, 3

0, 1

3, 3

1, 1

4, 2

2, 0

2, 4

0, 2

3, 4

1, 2

4, 3

2, 1
4, 4

2, 2

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 29/37

Atomicity

At which granularity of execution can interleaving occur?

Definition (Atomicity)
An expression or statement of a process that is executed entirely
without the possibility of interleaving is called atomic.

Atomicity in PROMELA

Assignments, jumps, skip, and expressions are atomic
In particular, conditional expressions are atomic:

(p -> q : r), C-style syntax, brackets required

Guarded commands are not atomic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 30/37

Atomicity

At which granularity of execution can interleaving occur?

Definition (Atomicity)
An expression or statement of a process that is executed entirely
without the possibility of interleaving is called atomic.

Atomicity in PROMELA

Assignments, jumps, skip, and expressions are atomic
In particular, conditional expressions are atomic:

(p -> q : r), C-style syntax, brackets required

Guarded commands are not atomic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 30/37

Atomicity Cont’d

int a,b,c;
active proctype P() {
a = 1; b = 1; c = 1;
if

:: a != 0 -> c = b / a
:: else -> c = b

fi
}
active proctype Q() {

a = 0
}

Command Line Execution
Interleaving into selection statement forced by interactive simulation

> spin -p -g -i zero.pml

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 31/37

Atomicity Cont’d

int a,b,c;
active proctype P() {
a = 1; b = 1; c = 1;
if

:: a != 0 -> c = b / a
:: else -> c = b

fi
}
active proctype Q() {

a = 0
}

Command Line Execution
Interleaving into selection statement forced by interactive simulation

> spin -p -g -i zero.pml

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 31/37

Atomicity Cont’d

How to prevent interleaving?
1 Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a) : b)

2 Put code inside scope of atomic:

active proctype P() {
a = 1; b = 1; c = 1;
atomic {
if
:: a != 0 -> c = b / a
:: else -> c = b

fi
}

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 32/37

Atomicity Cont’d

How to prevent interleaving?
1 Consider to use expression instead of selection statement:

c = (a != 0 -> (b / a) : b)

2 Put code inside scope of atomic:

active proctype P() {
a = 1; b = 1; c = 1;
atomic {
if
:: a != 0 -> c = b / a
:: else -> c = b

fi
}

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 32/37

Usage Scenario of PROMELA

1 Model the essential features of a system in PROMELA
abstract away from complex (numerical) computations

make usage of non-deterministic choice of outcome

replace unbounded data structures with finite approximations
assume fair process scheduler

2 Select properties that the PROMELA model must satisfy
Generic Properties (discussed in later lectures)

Mutal exclusion for access to critical resources
Absence of deadlock
Absence of starvation

System-specific properties
Event sequences (e.g., system responsiveness)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 33/37

Formalisation with PROMELA

System

Requirements

Formal
Execution

Model

Formal
Requirements
Specification

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

System

Requirements

PROMELA
Model

Formal
Properties

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

System

Requirements

C

Code

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

Abstraction

System

Requirements

C

Code

PROMELA

Model

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

Abstraction

System

Requirements

C

Code

PROMELA

Model

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

System

Requirements

C

Code

PROMELA

Model

Generic
Properties

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Formalisation with PROMELA

System

Requirements

C

Code

PROMELA

Model

Generic
Properties

System

Properties

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 34/37

Usage Scenario of PROMELA Cont’d

1 Model the essential features of a system in PROMELA
abstract away from complex (numerical) computations

make usage of non-deterministic choice of outcome

replace unbounded datastructures with finite approximations
assume fair process scheduler

2 Select properties that the PROMELA model must satisfy
Mutal exclusion for access to critical resources
Absence of deadlock
Absence of starvation
Event sequences (e.g., system responsiveness)

3 Verify that all possible runs of PROMELA model satisfy properties
Typically, need many iterations to get model and properties right
Failed verification attempts provide feedback via counter examples

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 35/37

Verification: Work Flow (Simplified)

PROMELA Program

byte n = 0;
active proctype P() {

n = 1;
}
active proctype Q() {

n = 2;
}

Properties

[](!csp || !csq)

Spin

48

csp= 0 1 1
csq= 1 0 1

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 36/37

Literature for this Lecture

Ben-Ari Chapter 1, Sections 3.1–3.3, 3.5, 4.6, Chapter 6
Spin Reference card (linked from jSpin website)
jSpin User manual, file doc/jspin-user.pdf in distribution

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2010 37/37

	Promela
	Hello World
	Simple Data Types
	Control Statements
	Complex Data Types
	Inlining
	Non-Determinism
	Concurrent Processes
	Computations
	Interleaving
	Atomicity
	Usage Scenario of Promela
	Literature

