

Master's Thesis / Praxis der Forschung

Formal verification of a vector library and a convex hull algorithm

Context. The use of floating point number is a common approximation of real numbers, proposing a compromise between range, accuracy and processing times.

Problematic. At the same time approximating real numbers by floating point numbers have consequences that are hard to predict.

Potential. Formal methods can help to detect automatically or manually errors in implementations.

Objectif. In colaboration with the IAM-CMS lab. of material science at KIT (http://www.iam.kit.edu/cms/), we want to show that a library for vectors and an algorithm computing the convex hull, both using floating points, has no runtime errors and is correct, i.e. input and/or result within a desired range.

Your Task. You can choose between abstract interpretation or verification condition generation using Frama-C (https://frama-c.com) to achive one or more of the objectives. The proposed tool and methods are not mandatory.

Software Analyzers

Your profile. Ideally, you have a basic background in *formal systems* (e.g., from respective lectures of the KIT curricula). You are interested in applying existing Formal Methodes and have experience in C programming.

lionel.blatter@kit.edu

Office: 50.34, R228