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Abstract

The KeY system has been developed to verify Java methods and classes. However,
very little examples exist where real-world Java code of more than a few lines is
verified. This thesis takes a step to close that gap. We specify real-world Java
code and afterwards verify the contracts with the KeY system. For that we take
java.math.BigInteger from the Java Class Library. The purpose of this class is
to provide arbitrary precision integers which behave similarly to Java’s primitive
type integers. Many security applications as well as Java’s security packages make
heavy use of BigInteger1, as algorithms of public-key cryptography like RSA need
very large primes to be considered as secure.

Deutsche Zusammenfassung

Das KeY-System wurde entwickelt, um Java-Methoden und Klassen zu verifizieren.
Allerdings gibt es nur sehr wenige Beispiele, in denen Java-Code aus dem Praxiseinsatz
mit mehr als ein paar Zeilen verifiziert wird. Das ist der Ansatzpunkt dieser Thesis.
Wir spezifizieren „real-world“ Java-Code und verifizieren die Verträge anschließend mit
dem KeY-System. Der Code stammt dabei aus der Klasse java.math.BigInteger
der Java Class Library. Zweck dieser Klasse ist es, beliebig große Ganzzahlen
darzustellen, die sich ähnlich wie Zahlen vom Datentyp int in Java verhalten.
Viele Sicherheitsanwendungen sowie Java’s Sicherheits-Packages nutzen die Klasse
BigInteger1, da Public-Key-Algorithmen wie RSA sehr große Primzahlen benötigen,
um als sicher zu gelten.

1https://docs.oracle.com/javase/7/docs/api/java/math/class-use/BigInteger.html
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1. Introduction

1.1. Motivation
Formal verification of software is a growing field of research. This may be associated
with general increasing needs of privacy and security, which displays for example in the
increasing amount of website and email encryption, but on the other hand with threatening
scenarios arising from software faults in advanced technologies, like for example self-driving
cars or planes. Furthermore, recent discoveries of implementation flaws like the Heartbleed
bug as well as leaks of observation techniques (for example Vault 7) increase the awareness
of security.

One of the tools that have been developed for formal verification is the KeY system1. It is
a tool developed since 1998, mainly to verify Java source code, and since then has been
greatly improved. However, the existing examples of verification usually consist of relatively
little lines of code and are often written with verification in mind. Since the long-term
objective of formal verification is to reason about real-world software, it is important to
know how a verification tool measured in that. To provide a case study and to examine
how KeY is able to deal with real-world code are the main goals of this thesis.

1.2. Approach
To test the capabilities of KeY, we take the class java.math.BigInteger from the Java
Class Library. This class provides arbitrary precision integers which behave similarly to
Java’s primitive type integers. Since Java does not support overloading of operators for
object types, the class contains public methods to provide the desired behavior, for example
add, subtract, mutliply, and many more. As the BigInteger class consist of more than
4400 lines of code (about 1650 logical executable lines), we have to limit our verification
approach to a little excerpt. For that, we take the public add() method and the methods
called from there. As a specification language we use the Java Modeling Language (JML),
which enables us to perform modular specification. This means, we do not have to describe
the functionality of the whole source code at once, but instead are able to specify and
afterwards verify each method separately. Because the public add() method relies on many
other private methods, we take a bottom up approach and verify the most basic and short
methods first before getting to the larger and more high level ones. This also has the
advantage that we can rely on already proved contracts for the calling methods.

1https://www.key-project.org/
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1. Introduction

As testing KeY with real-world code is our main objective, we will alter the source code as
little as possible. The only simplification2 put into effect is limiting our scope to the code
actually used, which is in the sense of modularity. Obviously, methods and constructors
never called from the code we consider are not influencing our verification in any way.

1.3. Related Work
From the developers of the JML standard there is already a specification of the BigInteger
class3. However, this is not a full functional specification, but just (mostly trivial) constraints
the public methods. Therefore, it is of no use for our thesis.

In chapters 18 of [Ahrendt et al., 2016] an electronic voting system is specified and verified.
Their approach using KeY and JML closely relates this work to ours. However, they go
beyond functional verification and additionally conduct an information flow proof. This
shows additional possibilities with the KeY system not covered by this thesis.

In chapter 19 of [Ahrendt et al., 2016], functional verification of a sorting algorithm is
presented. Their conclusion states that the biggest amount of rules applied comes from
reasoning about different heap states. This correlates with our results later on.

In [Huisman et al., 2001] another approach in verifying code from the Java Class Library
is presented. The tools used in this work are the LOOP compiler and the Prototype
Verification System (PVS), a higher-order theorem prover. However, no full functional
verification is done, but it is only reasoned about the class invariant of Java’s Vector class.

Full functional verification is realized in [Schmitt and Tonin, 2007]. In this work about 180
lines of JML are verified in KeY, while the source code consists of more than 300 lines of
JavaCard code, which is a lighter version of Java.

All theses works have in common that JML is used as specification language.

1.4. Contributions
In the context of this thesis the following contributions are made:

• We will present a case study which tests the capabilities of KeY. By discovering bugs
and usability weaknesses of KeY, it will support the development process.

• It will be shown that some contract parts which are impossible to verify in KeY can
be translated to a bounded model checker like CBMC and afterwards shown with
it very easily. Even an automatic translation for selected goals is conceivable. This
fruitful interplay of the two tools may result in a future integration of a bounded
model checker in KeY.

• In the context of JML we will show that JML’s approach of assuming the invariant
to hold after a RuntimeException or even Error in a constructor is questionable, as
those are not supposed to be caught. They instead indicate a serious implementation
or execution problem, which makes it impossible to create a valid instance of the
class.

• Finally, we provide a general modeling of BigInteger’s semantics. This enables us to
specify and verify several methods of the class and provide the foundations for future
proofs of others.

2As KeY is not able to deal with generic types, we also have to replace them in an appropriate way.
However, since we use exactly the same way the Java compiler handles them, this is more an equivalent
transformation than a simplification. The exact way how it is done can be found in Section 3.2.

3http://www.eecs.ucf.edu/~leavens/JML-release/javadocs/java/math/BigInteger.html
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1.5. Outline

1.5. Outline
Apart from this introduction, the thesis is composed of the following parts:

• Chapter 2 contains the preliminaries, which includes introductions to the specification
language JML as well as to the KeY system, which we mainly use in this thesis. In
addition, short notes on using CBMC for Java are given, as this tool is used for one
single method contract.

• Chapter 3 describes how specification and verification of the methods is done. This
includes an explanation of the general concepts of BigInteger, how they are modeled in
JML, and method contracts for the called library methods outside the BigInteger class.
After that, we continue with more technical sections: Necessary code adaptations
of the BigInteger code for KeY, user-defined inference rules, and settings of KeY,
before finally the actual method contracts for BigInteger methods an their proofs are
described.

• Chapter 4 provides a summary of the verification with statistics and experience
report, thoughts on future work, and a conclusion.

• The appendix contains the complete source code and specification used for this thesis
as well as a list of the settings of KeY.

3





2. Preliminaries

In this chapter we provide a quick introduction to the specification language and the tools
we will use for verification. This includes the Java Modeling Language (JML), the deductive
verification system KeY and the bounded model checker CBMC.

2.1. A Brief Introduction to JML
Before we start verifying the code, we have to know against what we want to verify and thus
write a formal specification. We derive this specification from the JavaDoc and comments
attached to the code as well as from the code itself. As a language to write this formal
specification we use the Java Modelling Language (JML), which brings all features required
to specify the functional as well as non-functional aspects of our code. In this section
we will give a brief introduction to JML. Because JML contains far more features (e.g.
for specification of concurrent programs) than we need, we will limit this introduction to
features actually needed for our work. Further information about JML can be found at
[Leavens et al., 2013].

The behavior of a class or method can be specified with JML annotations directly in
the Java source code file (.java). JML annotations are started using the Java comment
beginning // or /* directly followed by an at-sign (@). Thus for the Java compiler the code
is still unchanged and special tools like KeY can extract the JML specification from the
same file. We have to mention that additional @ symbols at the beginning of a line or before
the closing */ may be inserted for better readability. Furthermore, it is possible to again
use Java comments inside a JML annotation, for example to describe the specification
directly in place.

2.1.1. Method Contracts

JML takes the approach of modular specification. This means, the code is split up into
parts which are specified independently and can be verified in the same way. At different
levels those parts are interfaces, classes and methods.

Our goal is to describe the behavior of methods of java.math.BigInteger, which is done
via contracts. Those contracts have to state what the method is expected to do presuming
the specified preconditions hold when the method is called. We can go even further and
constrain what the method may do, for example which places it may access and which not.

5



2. Preliminaries

2.1.1.1. Normal Termination

Every method contract contains three parts: a precondition, a postcondition, and a framing
clause.

The precondition has to be guaranteed by the caller of the method, so that the method can
rely on it. In return the method has to ensure that after its termination the postcondition
holds. The assignable clause states which parts of the heap may be changed after the
method’s termination. All other locations are assumed to be unchanged. This deals with
the so called frame problem [Borgida et al., 1993].

We take a look at a simple contract example:
1 /*@ normal_behavior
2 @ requires y != 0;
3 @ ensures \result == x/y;
4 @ assignable \nothing;
5 @*/
6 public static int divide(int x, int y) {
7 return x/y;
8 }

Listing 2.1: A very simple method contract

At the first line we start a new method contract with normal termination. This means,
the method is expected not to throw an exception. We write our precondition after the
requires clause. In this case, y must not be 0, because otherwise the result of the division
would be undefined. If that precondition holds, our method has to ensure that the return
value of the method, noted by \result, is x divided by y with integer division. It is to
mention that all object parameters, which includes arrays, have an additional implicit
precondition: They are non-null by default. If we want to allow null values, we have to
explicitly prepend /*@ nullable */ to the parameter.

In case one of this three clauses is missing, the defaults apply for that clause. Those are:
requires true, ensures true, assignable \everything.

This little example shows that in general JML expressions can contain Java expressions as
in x!=0 or x/y. Precisely, every side effect free Java expression can be used. Side effect free
means that the expression must not change the heap state, for example by changing member
fields of an object. Apart from that there are several JML operators which are not part of
Java: The most common ones are equivalence <==> and implication ==>. Additionally we
will make use of some quantifiers: \forall and \exists, which represent the well known
quantifiers of predicate logics, and the \sum quantifier. In Listing 2.2 there is an example
shown to demonstrate the syntax of those.

1 (\forall int i; 0 <= i && i < a.length; a[i] < 100;)
2 (\exists int i; 0 <= i && i < 100; 2*i == 100)
3 (\sum int i; 1 <= i && i < 100; i) == 100*101/2

Listing 2.2: Example use of quantifiers

Here we have to remark that the KeY system only deals with bounded sums of the mentioned
form even if JML allows a much less restricted use of them, as for example unbounded
sums. We will see however that this isn’t an issue for our work.

If in the postcondition it is necessary to refer to the value of a field or parameter before
the start of the method, the keyword \old(...) can be used.

Some methods may contain recursion. In such case it is necessary to ensure termination
of the recursion. This is done via the measured_by keyword followed by a nonnegative
expression strictly decreasing with recursion depth.

6



2.1. A Brief Introduction to JML

1 /*@ normal_behavior
2 @ requires ...
3 @ ensures ...
4 @ measured_by exp;
5 @*/
6 public static long power(int base, int exp) {
7 return exp == 0 ? 1 : base * power(base, exp-1);
8 }

Listing 2.3: Example of a method contract with recursion

2.1.1.2. Exceptional Termination

It may occur that instead of normal termination a method terminates throwing an exception.
Therefore JML provides a possibility to specify exceptional termination as well. An example
is given below.

1 /*@ exceptional_behavior
2 @ requires b == 0;
3 @ signals_only ArtihmeticException;
4 @ signals (ArtihmeticException e) true;
5 @*/
6 public static int divide(int a, int b) {
7 throw new ArithmeticException("Division by 0!");
8 }

Listing 2.4: A very simple exceptional method contract

As we can see, we have a precondition here as well. In contrast to normal termination, there
is no ensures clause. Instead, we have one (or more) signals clauses here. The above
given means: If an ArithmeticException occurs, then the subsequent formula must hold.
In our case, this formula is "true", which always holds. So if the divisor is 0, our method
must always throw an ArithmeticException. The additional signals_only clause means
that no other kind of exception may occur.

2.1.1.3. Nontermination

Via the keyword diverges it is also possible to specify that a method may not terminate.
Since it is not needed in this thesis, we won’t give an example here.

2.1.1.4. Dependency Contracts

Sometimes it is useful to specify which locations the result of a method may depend on.
Thus we may easily deduce whether two calls to the same method return the same value or
not. The JML clause for this is accessible plus a location set. It is to mention that local
values, method parameters and locations of newly created objects may always be accessed
and therefore must not be added to the accessible clause. Besides, JML allows special
location set expressions \nothing and \everything.

In our simple example in Listing 2.5 we see, that two calls to roundedAvg() give the same
result, even if arraySum() is called in between. That is, because the result of roundedAvg()
depends just on the elements of the array (short notation: array[*]) and not on cache,
which is the only value potentially altered by arraySum().

We have seen now different parts of method specifications. Even if it is possible to include
all those parts into a one single method contract prepended by the keyword behavior or
even no keyword, in this thesis we will write several independent contracts and connect
them via the keyword also. This is a cleaner approach with much better readability.

7



2. Preliminaries

1 int[] arr;
2 int cache;
3
4 /*@ normal_behavior
5 @ accessible arr[*];
6 @*/
7 public int roundedAvg() {
8 ...
9 }

10
11 /*@ normal_behavior
12 @ assignable cache;
13 @*/
14 public int arraySum() {
15 ...
16 }

Listing 2.5: Dependency contract in interplay with a framing clause

2.1.2. Specification-Only Class Members
JML offers additional elements for help in specification. For this thesis we will make use of
model methods. Because they exist only in specification, they obviously must not have side
effects. Apart from that they use a combination of JML and Java syntax as you would
expect it.

In addition we use ghost fields in this thesis. Those are additional specification-only fields,
which may abstract from the concrete program state or even add additional information to
the specification. The value of ghost fields can be updated with a set statement.

1 int[] a;
2 //@ ghost \bigint sum;
3
4 /*@ public model \bigint calcSum() {
5 @ return (\sum int i; 0 <= i && i < a.length; a[i]);
6 @ }
7 @*/
8
9 public ArraySum(int[] a) {

10 this.a == a;
11 //@ set sum = calcSum();
12 }

Listing 2.6: Ghost field and model method

2.1.2.1. Data Types

While model and ghost elements may be of any Java type, JML provides an extension for
arbitrary precision of integers and reals: the types \bigint and \real. In this thesis, we
will make heavy use of the \bigint type. It acts like the well known primitive int type
but has arbitrary precision, which means that overflows can not occur. So the \bigint
type is able to represent mathematical integers. Apart from that, it may be used with
comparison (==, >, <, . . . ) or math (+, -, *, . . . ) operators as expected.

2.1.3. Invariants
In computer science, invariants are formulas that have to hold before and after the
execution of a specific block of code. They serve as a pre- and a postcondition to this block
simultaneously. In JML, two different kinds of invariants exist: type invariants and loop
invariants.
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2.1.3.1. Type Invariants

Type or class invariants can be used to describe a domain concept (like for example
nonnegativity of a member field), which has to be ensured in every (visible) program state.
Thus it is not necessary to include this constraint to the pre- and postconditions of all
methods. Instead it is enough to specify the invariant once and the methods implicitly
have to preserve it.

An invariant can be either a static or an instance invariant. Static methods have to consider
just the static invariants whereas instance methods and constructors have to take care of
instance invariants as well. It is to note here that we may omit the instance keyword since
it is the implicit default. There is a way to make a method or constructor independent of
the invariants: The keyword helper. A method or constructor specified as such can not
assume the invariants in precondition, but in return does not have to ensure them after
termination.

1 /*@ invariant (\forall int i; 0 <= i && i < a.length; a[i] >= 0);
2 @ accessible \inv: a.*;
3 @*/
4 //@ invariant sum >= 0;

Listing 2.7: Example invariants for the ghost field example from above

One final note on type invariants: Their accessible clause has the special syntax shown
in line 2 of Listing 2.7.

2.1.3.2. Loop Invariants

Loop invariants follow a different concept: They are not directly needed for specification,
but instead provide a help for verification. As we can see in the example below, each loop
specification consists of three parts: The actual invariant formula, a decreases clause and
an assignable clause. The actual invariant has to hold before and after each loop iteration
and even if the loop terminates, which may also be due to a return or a break instruction.
The decreases clause, sometimes called loop variant, is used to ensure termination of the
loop. The term after the decreases keyword has to be nonnegative and strictly decreasing
with each loop iteration.

1 /*@ normal_behavior
2 @ ensures \result == (\forall int i;
3 @ 0 <= i && i < a.length-1;
4 @ a[i] <= a[i+1]);
5 @ assignable \nothing;
6 @*/
7 public static boolean isSorted(int[] a) {
8 /*@ loop_invariant (\forall int j;
9 @ 0 <= j && j < i;

10 @ a[j] <= a[j+1]);
11 @ decreases a.length - i;
12 @ assignable \nothing;
13 @*/
14 for (int i = 0; i < a.length - 2; i++) {
15 if (a[i] > a[i+1])
16 return false;
17 }
18 return true;
19 }

Listing 2.8: Example of a loop invariant as a help for contract verification

9
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2.1.4. Conclusion

This overview enables us now to write the specification for the BigInteger methods considered
in this thesis. A more detailed view on JML can be found at [Leavens et al., 2013] or with
special regard to the KeY system at [Ahrendt et al., 2016, Chapter 7].

2.2. Introduction to the KeY System
The KeY system is an interactive theorem prover using a sequent calculus. In this section,
we will give an overview over the logic used by KeY and the features of Java and JML it
supports. After that we describe how KeY performs symbolic execution of Java instructions
and explain the powerful concept of taclets, KeY’s inference rules. We provide some short
hints on data types and the graphical user interface and finally give a quick outlook on
further features and possibilities of the KeY system.

2.2.1. JavaDL

For reasoning about the behavior of programs KeY uses Java Dynamic Logic (in short
JavaDL). Formulas in JavaDL may use the modalities [p] ("box") and 〈p〉 ("diamond"),
where p is an arbitrary1 sequence of Java statements. The meaning of these modalities is
as follows: 〈p〉ψ states that p terminates and after that ψ holds. [p]ψ is slightly different:
If p terminates, then ψ holds.

Of course, Java program code may only occur in the box and diamond modalities and not
in ψ, which has to be a formula of first-order predicate logic. However, this is not just
classical first-order logic, but an extension of it called Java first-order logic (JFOL). JFOL
basically adds a type hierarchy with integers, booleans, Java object types, heaps, fields
and locations sets as well as function and predicate symbols for theses types to the basic
first-order logic.

We can see that a method contract, given that the method terminates, can be expressed as
φ→ 〈p〉ψ, where φ is the precondition, p the code in the method body, and ψ denotes the
postcondition of the method. In fact this is the general concept how JML method contracts
are translated and expressed in JavaDL. However, in practice there are more details to
consider, for example recursion, framing, implicit pre- and postconditions, and exceptions.
A detailed view on creating JavaDL proof obligations from JML method contracts can be
found at chapter 8 of [Ahrendt et al., 2016].

2.2.2. Sequent Calculus

Logical reasoning in KeY is done via the sequent calculus. A sequent is of the form
φ1, . . . , φn =⇒ ψ1, . . . , ψm. Intuitively, this has the following meaning: If all the formulas
φ1, . . . , φn hold, we have to show that at least one of the formulas ψ1, . . . , ψm holds to
prove the sequent valid. The sequent calculus works by decomposing complex formulas
into simpler ones by the application of inference rules. As an example a rule to decompose
a conjunction on the right side of sequent arrow is shown:

andRight Γ =⇒ φ,∆ Γ =⇒ ψ,∆
Γ =⇒ φ ∧ ψ,∆

(Γ and ∆ are sets of formulas,
φ and ψ single formulas)

As we can see, this rule splits the proof into two branches. Of course, most of the rules (for
example for dealing with modalities) are more complex than this basic one. By applying

1In fact there are limitations: JavaDL for example does not support concurrency, floating-point types,
and dynamic class loading (reflection). A list of supported features of Java can be found at https:
//www.key-project.org/applications/program-verification.
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inference rules successively a proof tree is constructed. If all branches of the tree are closed
(proved), the sequent started from is valid.

How a sequent looks in KeY can be seen at Figure 2.1. We can see there the sequent arrow
at the left with the preconditions above (A) and the statement to show below. Also we
can see the program fragment inside modality brackets \<{ and }\>. The statement after
the modality is the postcondition to show (B).

Figure 2.1.: Example sequent from a proof in KeY

2.2.3. Symbolic Execution and Updates

As explained above, a proof obligation for a method contract in JavaDL looks like this:
φ → 〈p〉ψ, where p contains the Java Code from the method body. It is possible to
transform this statement about two states (before and after execution of p) into a statement
about a single state, the state before execution of p. For this, KeY successively decomposes
the program p into a smaller one until the modality is empty. This process is called symbolic
execution.

Decomposition rules for program fragments always apply to the first (if we ignore block
prefixes like "try ...") statement of a modality, which is called active statement. The active
statement gets highlighted in KeY’s graphical user interface (GUI) as shown in Figure 2.1,
marked with C.

Updates represent state transitions as well but have two important differences: They are
side-effect free, and they are always terminating. Again, Figure 2.1 shows an example of

11
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possible updates, marked with D. After the program fragment is completely decomposed,
all updates can be applied in parallel to the formula q, which is then a statement about
the pre-state of the method.

2.2.4. Taclets

Inference rules in KeY (taclets) are not hard coded, but written in a special declarative
language, called the taclet language. This makes the proof search much more flexible, as
additional rules can be added if necessary by developers as well as users. To maintain
soundness, such additional rules should be proved against the basic rules of KeY, though
this is not enforced.

Taclets are basically typed first-order rules as described in Section 2.2.2 with additional
information like heuristics and display information. With such, it can be controlled when
the taclet is used by automatic proof search strategies and how it is presented to the
user. Moreover, different taclet sets can be loaded for different purposes, such as proving
functional contracts, information flow, reasoning in Hoare logic, etc.

As an example, Listing 2.9 shows the taclet andRight already shown in textbook notation
above.

1 andRight {
2 \find (==> b & c)
3 \replacewith(==> b); \replacewith(==> c)
4 \heuristics(beta)
5 };

Listing 2.9: The taclet andRight

Note that the \find clause states where the rule can be applied, in this case to a conjunction
on the right side of the sequent arrow.

KeY has more than 1500 built-in rules of different categories:

• Nonprogram Rules are used to handle statements about a single state without
modalities.

• Symbolic Execution Rules transform a program inside a modality into updates and
case distinctions.

• Update Simplification Rules are used for transforming sequential to parallel updates
and discarding unnecessary ones.

• The last category are rules for program abstraction and modularization, which can
not be encoded in the taclet language, but are hard coded. This includes for example
rules dealing with loop invariants and method contracts.

As already mentioned above, in KeY it is not only possible to perform rule applications
manually, but also run automatic proof search strategies. With theses strategies KeY is
usually able to perform the symbolic execution and update simplification automated and
prove simple branches. For more difficult branches, interaction is needed afterwards with
nonprogram rules.

Here we have to note that the automatic strategies transform (in-)equations and formulas
into normal forms, which may be very counterintuitive and difficult for the user to read.
For the user it is often convenient to prune already done normalization steps and restart
from the basic formulas of that branch.

In chapter 3 we will see many examples of successful automatic proof search as well as
cases where it fails.
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2.2.5. JML*: Extensions of JML in KeY

In Section 2.1 we provided an overview over the concepts and features of JML. While KeY
supports these main concepts, some extensions and changes are made compared to the
official JML standard. This JML dialect is called as JML*. Additions to the official JML
standard which are important for our thesis are:

• It is possible to add an assignable clause to loop specifications. This greatly
simplifies reasoning about loops, since it then is known, which heap locations they
may change.

• The keyword \strictly_nothing in an assignable clause denotes that not only
existing objects and fields are not changed, but in addition no new objects are created
on the heap. In the same manner there is a modifier \strictly_pure, which is
syntactic sugar for assignable \strictly_nothing.

• Visible state semantics of invariants: An invariant may be broken by a method inside
method body, but has to be restored by the method and hold afterwards. This is less
restrictive than the original JML semantics.

• With the keywords \static_invariant_for(classname ) a method contract may
refer to the static invariant of a class and assume it in precondition or ensures it in
postcondition.

Similarly, some features of official JML are not supported by KeY. In general, KeY supports
the JML language level 0 (see section 2.9 of [Leavens et al., 2013]) and some parts of levels
1 and 2, but not the levels 3, C (for concurrency), and X (experimental). For example,
history constraints, math modifiers, and assume statements are not supported. The \real
type can be parsed, but not reasoned with in KeY.

2.2.6. Supported Java Features

While the KeY system supports a wide range of Java features, there are limitations though.
For example, KeY is not able to deal with floating point numbers. Other features of Java
not integrated in KeY include multithreading and Java 8 lambdas. Generic types are not
directly supported, but a workaround exists: Like the Java compiler does, we can replace
an unbounded generic type by java.lang.Object. Since the class BigInteger inherits from
the generic interface Comparable, we will see an example of this in Section 3.2. There is
also an Eclipse tool from the developers of KeY for doing this automatically2.

We have to remark that although syntactically supported in KeY, there are no rules for
reasoning about bitwise arithmetic operators. This is due to a design decision: Many
excellent tools for bitvectors exist, so why reinvent the wheel? In this thesis we will
therefore make use of the bounded model checker CBMC.

2.2.7. Data Types

In the specification language JML all Java types are allowed, which includes objects as
well as the primitive types byte, short, int, long, float, double, boolean and char. In
addition, the specification only types \bigint and \real are allowed. On the other hand
JavaDL’s type hierarchy includes the types integers, booleans, Java object types, heaps,
fields and locations (compare to Section 2.2.1). This leads to the question how the JML
types are translated to JavaDL. This is done as follows: All integer types from Java (byte,
short, int, long, char) as well as the \bigint type are translated to JavaDL’s integer

2More information about supported Java features and the tool to remove generic types can be found at
https://www.key-project.org/applications/program-verification/
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type. For this type three semantics are available: Ignoring overflows, which treats integers
as mathematical (unbounded) integers, Java semantics, in which overflows are calculated
as in Java, and integer semantics with overflow check, which checks if an overflow occurs.
If a semantic with bounds is chosen, the types are correctly checked for their ranges with
the predicates inInt(), inLong(), etc.

For float and double as well as the \real type, no JavaDL counterpart exists.

The other JML types, booleans and objects (which includes arrays), are translated to
JavaDL as expected.

2.2.8. KeY GUI

The graphical user interface (GUI) of KeY is an important part for working with it. We
will briefly describe the workflow for functional verification, which is what is needed later.

After start of KeY, the main window opens. For loading a contract to prove we click on
File → Load and open our file. The Proof Management Window appears, which shows
all contracts found in this file (and additionally, in all files of the same folder). We select
the contract we want to proof. After that, the proof obligation is shown in the Current
Goal window (D). In Figure 2.2 a screenshot of such a situation is shown. On the left side,
we have a list of proofs we started (A), as well as an outline of the current proof tree (B).
Other tabs provide a list of open goals, settings for the proof search, and information about
the available rules, functions and terms.

Figure 2.2.: A screenshot of KeY’s GUI

To advance in proof, there are basically two possibilities: manual rule applications or
automatic search. For manual application, we have to click on a formula or term in the
current goal view. Depending on the selection, the available rules are shown in the context
menu. Two other settings may influence the available rules: The taclet settings, and the
One Step Simplification. The former are general settings for the proof which are well
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explained in their settings window. The latter is an aggregation setting which combines
different simplification steps into a single proof step. Advantages of it are that the user
does not have to do all (often trivial and very numerous) simplification steps separately.
Also it speeds up the automatic proof search.

In the context menu (D) in addition to single rules some strategy macros show up. These
apply specific rule sets (rules of specific heuristics) until their purpose is served. Finish
Symbolic execution, for example, tries to decompose all program fragments. The Close
provable goals closes all branches, that are provable automatically (within the number of
steps specified in Strategy Settings).

In addition, we provide some tips which can make proof search much easier:

• To get an overview over the proof tree the option hide intermediate proof steps can
be selected from the context menu and afterwards expand goals only. That way the
user can get an idea, which parts of the proof are difficult or which parts of the
specification (for example loop invariants) require refinement.

• The option "View" → "Use pretty syntax" really makes the formulas better human
readable by using shortcuts for accessing fields and objects and for displaying numbers.
While this option should be activated by default, there is an additional one to display
unicode symbols. This makes KeY use the well known mathematical symbols for
conjunction (∧), quantifiers (∀,∃), and other operators.

• Formulas and terms can be dragged via the mouse and dropped to another one.
After releasing the mouse button, the available taclets for combining them are shown.
Drag & Drop can also be used if a taclet application opens a new window because
instantiation of a variable is required.

• The context menu of the proof tree allows pruning of branches, for example to get
rid of already performed normalization steps as explained above.

• The Full Auto Pilot macro structures the proof better than it is done by just starting
proof search with the green button. In general, just applying the strategy may lead
often to many erratic rule applications.

2.2.9. Other Frontends and Use Cases of KeY

Instead of the graphical user interface described in the previous section, KeY can be used
via its command line interface. As it is not possible to apply rules interactively, this is a
very limited feature. Approaches are made to include so called proof scripts, which describe
the steps (single rules or macros), that shall be applied. However, currently for every rule
the formula to apply it on has to be written completely, which usually results in very large
and confusing scripts.

For teaching, there is KeY Hoare, a version of KeY focusing on Hoare logic. Another
relatively new development is the Symbolic Execution Debugger (SED), which is able to
visualize the execution paths through a program. The SED does not use the KeY GUI,
but is an extension to the IDE Eclipse. There are other extensions for Eclipse like KeY
4 Eclipse Starter, which gives the ability to start the KeY GUI directly from Eclipse, or
KeYIDE, an alternative user interface of KeY in Eclipse.

Other interesting uses of KeY are counterexample and unit test generation as well as
information flow verification and verifying correct compilation.
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2.3. Short Remarks on Using CBMC for Java
CBMC stands for C Bounded Model Checker. A bounded model checker is a tool that
approaches the model checking problem by successively unwinding the state transition
relation a program represents. However, since the state space grows exponentially, the
bounded model checker only unrolls the state machine up to a given bound and encodes it
into a Boolean formula. Then it runs a SAT solver on it and tries to find a counterexample.
If such a counterexample is found, the model is proved valid. If not, the search may be
restarted with a greater bound. Of course, this approach is limited if iteration of any kind is
used, since the number of possible states and thus the Boolean formula grows exponentially
with the bound.

While the encoding even of a smaller program may already result in a large Boolean formula
(typically with many thousands of variables), normally the solution is found very fast due to
the excellent heuristics of today’s SAT-solvers. Although CBMC is a tool initially designed
for the C language, the developers recently added support for Java Bytecode. It is still
marked as experimental, but for our very simple use case it is completely enough. How we
translate our JML contract into assertions such that CBMC can handle it will be explained
in Section 3.3.2.1.

Because we just use a very small subset of CBMC’s capabilities, we do not provide further
explanations here and instead refer to the CProver Manual3.

3http://www.cprover.org/cprover-manual/
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In this chapter we will do the actual specification and verification of the selected methods. At
first we will explain the general concepts of the class java.math.BigInteger. Afterwards
we will provide an overview over our abstract modeling of these concepts for verification.
Since our verification tool is the KeY system, we then have to introduce and proof the user
defined rules used in this thesis. After that we are ready to go through the methods in a
bottom up approach and explain the contracts and their verification.

The Java code is taken from OpenJDK8, but however it does not differ from that of Oracle’s
JDK8. Our version of KeY is a branched version (taken from the 2.7 master), which was
adapted to allow the use of static invariants. The hash from the developers’ git repository
of the KeY version we use is 7954548a25a5ad9aa4aa6203da1449e0a121190f.

3.1. BigInteger Concepts
The class java.math.BigInteger provides arbitrary1 large integers, which behave similar
to Java’s primitive type integers. For this purpose the value is stored as an array of integers,
which has the size necessary to contain the desired value. This value array is interpreted
as if it was one large number in dual system. Thereby the first element of the array is the
most significant. In addition, the sign of the BigInteger is stored in a separate integer field,
which may contain the values 0, 1, and −1. A BigInteger object once created is immutable.
To ensure uniqueness of each BigInteger, the array must not have leading zeros and if the
sign is 0, then the value of the BigInteger must be 0 and vice versa. Because a BigInteger
with the value 0 is frequently used, it is created once and stored as the static constant
ZERO.

To make calculations on BigInteger objects possible, the class provides public methods for
many operations, for example addition, subtraction, multiplication, bitwise operations and
many more. Often those public methods call private methods for the actual calculations. In
this thesis, we limit our scope to the public add method and the methods and constructors
called from there.

1 Of course, in fact there is a limitation to the size due to Java’s maximum array size. The BigInteger
class itself performs checks (see method checkRange()) and limits the size of the integer array to
Integer.MAX_VALUE/Integer.SIZE + 1 = (231 − 1)/25 + 1 = 226. In addition, if the array has maximum
size, the first bit of the first element has to be 0. So the maximum number represented by a BigInteger
may be 2226·25−1 − 1 = 2231−1 − 1, which in decimal system is still a number with more than 640 million
digits.
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3.2. Code Adaptations for KeY

Not all features of Java are currently supported by KeY. Because of that, some code
adaptations are necessary such that we are able to load our code into KeY.

First of all, for simplification we use a shortened version of the BigInteger source code. This
file contains only methods we will consider in this thesis. Due to the modular approach of
JML as well as KeY this is possible without losing soundness of our proofs.

Since Java’s generic types are not directly supported within KeY, it is necessary to
rewrite them in java.math.BigInteger and java.lang.Comparable. For that, we take
the interface Comparable and replace the generic type T by java.lang.Object. This does
not change the semantics, since it is exactly the same way Java internally handles generic
types.

1 public interface Comparable/*<T>*/ {
2 compareTo(/*T*/ Object o);
3 }

Listing 3.1: Rewritten version of the interface java.util.Comparable. The original version
with generic types is commented out.

With this changes in the interface we are able to rewrite BigInteger without generics as
well:

1 public class BigInteger extends Number implements Comparable/*<BigInteger>*/ {...}

In addition to the adaptation for generic types, we have to provide all the code we are using
in one folder (and its subfolders). This includes the class BigInteger, the implemented
interface Comparable, and the classes Arrays and System, which BigInteger makes use of.

3.3. Modeling the Semantics of BigInteger

In this section we introduce a new abstraction layer on top of the actual implementation,
which will allow us to write clean specifications later on. This includes a field encoding
the actual value of a BigInteger object into a natural number, some model methods
for calculating this value, and the type invariants of the class. An overview is given in
Figure 3.1.

3.3.1. The Ghost Field for the Value

While the implementation stores the information in a sign-magnitude form, for our speci-
fication the semantics are better caught by a single value field. Therefore we introduce
an additional specification-only field (in JML denoted by the ghost keyword) of the type
\bigint. As explained in Section 2.1.2.1, the \bigint type can be used to represent
mathematical integers of potential infinite range.

1 //@ ghost \bigint value = 0;

Of course, initially our new value field has no meaningful value. To link the field with
the actual value of the BigInteger, we have to calculate it from signum and mag array
upon creation of a new BigInteger. Because a BigInteger object is final, we never have to
recalculate it after that.
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abstract layer
(used in specification)

conversion functions

implementation layer

\bigint value

toUnsigned()

twopower()calcValue()

int signum int[] mag
sign digits (signed integers)

place values

mathematical integer

summation

Figure 3.1.: Overview over the fields and methods introduced for modeling the semantics

3.3.2. Adding Helper Model Methods for Specification

The section below explains the functions for converting from implementation layer to the
abstract specification layer. While there are other model methods used in this thesis, those
in this section are used very frequently in many contracts and proofs. Those only used
locally as abbreviations or to provide lemmas are explained in the corresponding sections
of those methods.

3.3.2.1. toUnsigned()

A BigInteger object stores an array of single digits. As each digit is of type int, it can hold
a value from Integer.MIN_INT = −231 to Integer.MAX_INT = 231 − 1, both inclusive. In
a place value notation, negative digits are not allowed. Therefore the negative values of
the signed int are shifted up by 231 to achieve an unsigned int. In code, this is done by
(implicitly) casting to a long and then masking out the first 32 bits with a bitwise and
operation.

For our specification, however, we decided to encapsulate this computation into a separate
method. This is due to three reasons: At first, KeY is not good at dealing with bitwise
operations. Second, the method name works as abbreviation. And third, we can annotate
the method with a contract, which describes the behavior of our method. Especially this
last thing will simplify the proofs very much.

1 /*@ model_behavior
2 @ ensures value == 0 ==> \result == 0;
3 @ ensures value != 0 ==> \result > 0;
4 @ ensures value > 0 ==> \result == value;
5 @ ensures value < 0 ==> \result == value + 0x100000000L;
6 @ ensures \result >= 0;
7 @ ensures \result < 0x100000000L;
8 @ ensures (\forall int i; value != i ==> \result != toUnsigned(i)); // injective function
9 @ accessible \nothing;

10 @ static helper model long toUnsigned(int value) {
11 @ return (long)value & 0xffffffffL;
12 @ }
13 @*/

Listing 3.2: Definition and contract of our model method toUnsigned()
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Of course, we have to prove the contract in Listing 3.2. As mentioned above, dealing with
bitwise operations in KeY is very difficult. Therefore, we use CBMC for our proof. Listing
Listing 3.3 shows the contract prepared for CBMC.

1 public static long toUnsigned(int value) {
2 return (long)value & 0xffffffffL;
3 }
4
5 public static void main(int value, int other) {
6 long result = toUnsigned(value);
7 long otherRes = toUnsigned(other);
8
9 assert value != 0 || result == 0;

10 assert value == 0 || result > 0;
11 assert value <= 0 || result == value;
12 assert value >= 0 || result == value + 0x100000000L;
13 assert result >= 0;
14 assert result < 0x100000000L;
15 if (value != other) {
16 assert result != otherRes;
17 }
18 }

Listing 3.3: The contract of toUnsigned() prepared for proving in CBMC

As we can see, the first three lines simply contain the definition of our function, now
of course without the special JML operators and keywords. In the main method we
encoded all postconditions into assert statements, which will be checked by CBMC later
on. We note that the universal quantifier disappeared. That is because we transfered the
nondeterminism of the quantifier to a second input parameter. The implication within the
scope of the quantifier is translated into a conditional expression (line 15). As we compile
our source code to bytecode and run CBMC on it, we almost instantly get the results: All
assertions valid.

The dependency contract (accessible clause) of this method can be easily shown in KeY.

3.3.2.2. twopower()

Since BigInteger uses place-value notation, we have to supply our calcValue() method
with the power of two corresponding to each digit. Java has no built in power operator, in
addition we need very large powers of type \bigint. Therefore we use our own recursive
model method to calculate those values.

1 /*@ model_behavior
2 @ requires exp >= 0;
3 @ ensures \result >= 1;
4 @ ensures (\forall int i; 0 <= i && i < exp; twopower(i) < \result); // strictly increasing
5 @ measured_by exp;
6 @ accessible \nothing;
7 @ static helper model \bigint twopower(int exp) {
8 @ return exp == 0 ? 1 : twopower(exp - 1) * 0x100000000L;
9 @ }

10 @*/

Listing 3.4: The model method twopower()

We have to mention that the actual multiplication factor (line 8) is not 2, but 232. That is
because the digits have a maximum value of 232 − 1. Because it will come handy for some
proofs later on, we provide an additional postcondition which states that the method’s
result is strictly increasing with exp.
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As explained in Section 2.1.1.1, we use the measured_by clause to ensure termination of
the recursion: The term exp is non-negative and strictly decreasing with recursion depth.

Just as with the previous method, the accessible clause is proved automatically by KeY.

3.3.2.3. calcValue()

With the two methods from the previous sections providing the input, we can now specify
the method for calculating the value (compare Figure 3.1).

1 /*@ model_behavior
2 @ requires m.length > 0 ==> m[0] != 0;
3 @ requires s == 0 <==> m.length == 0;
4 @ ensures \result
5 @ == s*(\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
6 @ ensures s < 0 ==> \result < 0;
7 @ ensures s == 0 ==> \result == 0;
8 @ ensures s > 0 ==> \result > 0;
9 @ accessible m[*]; // m.length is a function in KeY, not a field, and thus not included here

10 @ static helper model \bigint calcValue(int s, int[] m) {
11 @ return s*(\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
12 @ }
13 @*/

Listing 3.5: The model method calcValue()

With the knowledge from the previous sections, the actual sum calculation now is straight-
forward. The only point to mention here is that while we start with the first element of
the array, we have to multiply with the largest power. This is due to the big-endian order
of the magnitude array. The precondition ensures the uniqueness of the BigInteger as
explained in Section 3.1.

3.3.3. Writing Type Invariants for BigInteger

In this section we show how the general concepts of BigInteger explained in Section 3.1 are
modeled as constraints. For that we use static and instance invariants.

3.3.3.1. Static Invariants

We use static invariants to describe the constant BigInteger ZERO. Since we do modular
verification, we will not create invariants for static fields not needed for this thesis.

It is a design decision of the KeY developers that the static invariants are not automatically
included in pre- and postcondition of a method. Instead, if we want to use it during a
proof, we have to add it explicitly.

ZERO In the Java code, this name refers to a static BigInteger constant with the value 0.
Because this object is a valid BigInteger, its invariant always has to hold.

1 //@ static invariant BigInteger.ZERO.<inv>;
2 //@ static invariant BigInteger.ZERO.value == 0;

3.3.3.2. Instance Invariants

In this section we describe the invariants which have to hold for each specific instance of
BigInteger.
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Value of the ghost field is correct: For establishing the connection between abstract
and implementation layer, we have to ensure that the value is always exactly the same as
computed by the calcValue() model method.

Possible signum values: There are only three values allowed for the signum field: 0 for
the BigInteger with value 0, 1 for positive BigIntegers, and −1 for negative ones.

Uniqueness of BigInteger 0: This invariant prevents that different BigInteger objects
with value 0 have differing mag fields by having a different amount of leading zeros. Each
BigInteger with sign 0 must have an empty magnitude array and vice versa.

First element of the magnitude array is not 0: As explained above, this invariant
is essential for uniqueness of the BigInteger object.

1 /*@ invariant value == calcValue(signum, mag);
2 @ invariant signum == 0 || signum == 1 || signum == -1;
3 @ invariant signum == 0 <==> mag.length == 0;
4 @ invariant mag.length > 0 ==> mag[0] != 0;
5 @ accessible \inv: signum, mag, mag[*], value;
6 @*/

Listing 3.6: Instance invariants that have to hold for a valid BigInteger

KeY is nearly able to prove the dependency contract automatically, only very little simple
interaction steps are required.

3.4. User-defined Taclets

As explained in Section 2.2.4, it is possible to extend KeY with User-defined taclets. In
this subsection we will explain the two custom rules used in our verification.

3.4.1. bsum_all_summands_gez

This taclet represents the rule that a sum is greater or equal to zero if all elements are.

1 \schemaVariables {
2 \term int i0,i1,t;
3 \variables int uSub;
4 }
5 bsum_all_summands_gez {
6 \find(bsum{uSub;}(i0,i1,t))
7 \varcond(\notFreeIn(uSub, i0, i1))
8 "Precondition": \add(==> \forall uSub; (i0 <= uSub & uSub < i1 -> t >= 0));
9 "Use Case": \add(bsum{uSub;}(i0,i1,t) >= 0 ==>)

10 };

The \find clause enables us to apply the rule to every bsum (bounded sum). With
application of the rule, two branches are added: In the "Precondition" case we have to
show that all elements are greater or equal to zero. After that we may use our statement
about the sum in the "Use Case". Of course our sum variable uSub must be chosen such
that it does not appear in lower and upper bounds of the sum, which is ensured by the
\varcond clause.
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Proof: The KeY system generates a proof obligation which after some simple proof
normalization steps in mathematical notation2 reads as follows:

i1

∀
i=i0

a[i] ≥ 0 =⇒
i1∑

i=i0
a[i] ≥ 0

While the proposition is intuitively clear, we make an induction over the length of the array
to show it in KeY:

hypothesis:
i0+nv

∀
i=i0

a[i] ≥ 0 =⇒
i0+nv∑
i=i0

a[i] ≥ 0

basis (nv = 0):
i0

∀
i=i0

a[i] ≥ 0 =⇒
i0∑

i=i0
a[i] = 0 ≥ 0

step:
i0+nv+1

∀
i=i0

a[i] ≥ 0 =⇒
i0+nv+1∑

i=i0
a[i] = a[i0 + nv + 1]︸ ︷︷ ︸

≥0 (quantifier)

+
i0+nv∑
i=i0

a[i]︸ ︷︷ ︸
≥0 (hypothesis)

≥ 0

�

In KeY, even though the induction is a bit more technical, the proof looks basically the
same. When we have finished our induction, in the "Use Case" branch we make a cut with
i1 ≥ i0 (otherwise the sum is empty) and then instantiate nv with i1− i0 in the quantifier.
Now KeY is able to perform a normalization of the inequations and close all remaining
branches.

3.4.2. bsum_estimation

This taclet provides an estimation for our frequently used sum term. Thus it looks more
difficult due to index shifting, it basically states that in a place-value system the order
of magnitude of digit n is greater than the maximum value that can be represented with
n− 1 digits. Since we use twopower() and toUnsigned(), the base of our numeral system
is 232.

1 \schemaVariables {
2 \term int t,a,b;
3 \term Heap h;
4 \variables int uSub;
5 }
6 bsum_estimation {
7 \find(bsum{uSub;}(a+1,b,(java.math.BigInteger::toUnsigned(h,t)
8 * java.math.BigInteger::twopower(h,b-uSub-1))))
9 \varcond(\notFreeIn(uSub, a,b,h))

10 "Valid Indices": \add(==> b >= a+1 & a+1 >= 0);
11 "Use Case": \add( bsum{uSub;}(a+1,b,java.math.BigInteger::toUnsigned(h,t)
12 * java.math.BigInteger::twopower(h,b-uSub-1))
13 < java.math.BigInteger::twopower(h,b-a-1) ==>)
14 };

Proof: We just provide a paper version of this proof. This is due to two reasons: At first
in KeY during the proof of a taclet the definition of a method can not be used and therefore
the taclet can not be verified. Second, the proof contains reversing the order of the sum
elements, which would be very difficult to perform in KeY.

2We use mathematical notation here as it is more pleasant to read. However, the terms can be translated
one-to-one to KeY’s ASCII based language.
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We abbreviate w := 232, such that twopower(i) ≡ wi. In addition, we write |k| short
for toUnsigned(k), where k is an arbitrary int value. Now the contract of toUnsigned()
provides the following statement for the elements of the magnitude array m:

∀i ∈ [0,m.length) : 0 ≤ |mi| < w

Now we consider our sum:

b∑
i=a+1

|ji| · wb−i

At first we shift the index down to zero:

=
b−a−1∑

i=0
|ji+a+1| · wb−i−a−1

Instead of iterating over the array from first to last element, we want to go backwards:

=
b−a−1∑

i=0
|jb−i| · wi !

< wb−a

We set n := b− a− 1. Now the proposition can be proved with a simple induction over n:

hypothesis:
n∑

i=0
|jb−i| · wi < wn+1

base case (n=0):
0∑

i=0
|jb−i| · wi = 0 < w1

step:
n+1∑
i=0
|jb−i| · wi

=
n∑

i=0
|jb−i| · wi + |jb−i| · wn+1

≤
n∑

i=0
(w − 1) · wi + (w − 1) · wn+1

< wn+1 + (w − 1) · wn+1

= w · wn+1

= wn+2

�

In addition to this taclet we also use a convenience version of it with indices shifted by one.
Apart from the slightly different indices, the proof can be repeated the same way.

3.5. Method Contracts for Required Library Methods
As some parts of the code we want to verify use library methods from the classes
java.util.Arrays and java.lang.System, we have to provide contracts for them as
well. The methods are assumed to fulfill their contracts as verifying them was beyond the
scope of this thesis. In the following section these contracts are explained.
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3.5.1. java.lang.System.arrayCopy()

The arrayCopy() method of the class System can be used to copy a specific amount of
elements from one array to another. We notice that src and dest are of type Object.
Because every array type in Java is a subtype of Object, this makes it possible to copy
arrays of any type. However, since we just want to copy arrays of int, we avoid unnecessary
complexity and limit our contract by putting that into the precondition. Also we assume
the array bounds to be correct as well as src and dest to be different. This assumptions
allow us to write a much simpler contract without considering exceptions, but of course
they have to be proved at every method call.

1 /*@ public normal_behavior
2 @ requires src instanceof int[] && dest instanceof int[];
3 @ requires src != dest;
4 @ requires srcPos >= 0 && destPos >= 0;
5 @ requires length >= 0;
6 @ requires srcPos + length <= ((int[])src).length && destPos + length <= ((int[])dest).length;
7 @ ensures (\forall int i; 0 <= i && i < length;
8 @ ((int[])dest)[destPos + i] == ((int[])src)[srcPos + i]);
9 @ assignable \strictly_nothing;

10 @*/
11 public static native void arraycopy(Object src, int srcPos, Object dest, int destPos, int length);

Listing 3.7: Contract of arrayCopy(): As can be seen, it is relatively simple due to
limitation to our specific use case.

3.5.2. java.util.Arrays.copyOfRange()

This second library method has a similar function to the one recently explained. The main
differences are: This one returns a new array to which the elements are copied. It may
even expand the array and fill it up with zeros. Furthermore it is limited to int arrays.
Listing 3.8 shows the full contracts for normal and exceptional behavior of the method.

1 /*@ public normal_behavior
2 @ requires 0 <= from && from <= original.length && from <= to && original != null;
3 @ ensures \result != original; // always returns a new array
4 @ ensures \result.length == to - from;
5 @ ensures (to <= original.length)
6 @ ==> (\forall int i; from <= i && i < to; \result[i - from] == original[i]);
7 @ ensures (to > original.length)
8 @ ==> ((\forall int i; from <= i && i < original.length; \result[i - from] == original[i])
9 @ && (\forall int i; original.length <= i && i < to; \result[i - from] == 0));

10 @ assignable \nothing;
11 @
12 @ also
13 @
14 @ public exceptional_behavior
15 @ requires from < 0 || from > original.length || from > to || original == null;
16 @ signals (IllegalArgumentException e) from > to;
17 @ signals (ArrayIndexOutOfBoundsException e) from < 0 || from > original.length;
18 @ signals (NullPointerException e) original == null;
19 @ signals_only IllegalArgumentException, ArrayIndexOutOfBoundsException, NullPointerException;
20 @ assignable \nothing;
21 @*/
22 public static int[] copyOfRange(int[] original, int from, int to) { ... }

Listing 3.8: Contract of copyOfRange()
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3.6. KeY’s Taclet Settings and Proof Search Strategy

Before we start with the actual method contracts, we have to make some remarks on the
settings of the KeY system.

3.6.1. Taclet Settings

Integer Semantics While there is a setting for taking integer overflows into account, it
makes the proofs much more complicated by introducing modulo operations. Therefore,
we treat integers as if they were unbounded. Of course this is not the way Java handles
the int type, but for proving the functionality of the methods it should be enough, as long
as no overflow may occur.

Implicit Exceptions In a similar way we simplify from Java’s runtime exceptions and
assume that an unchecked runtime exception results in a program crash. This is sound if
no runtime exceptions occur during execution, which we ensure with suitable preconditions.

Static Initialization Finally, we consider the static initialization as finished at proof
start, in contrast to Java where it is done when a class is first used. A complete list of
settings can be found at Section B.

3.6.2. Proof Search Strategy

As a proof search strategy we use the predefined strategy for Java verification. An list of
all settings can be found in Section B. However, it may sometimes be necessary to change
a settings, for example to deal with a system of inequations. This will be noted at the
respective text position.

3.7. Writing and Proving the Method Contracts

In this section we explain the actual method contracts and their verification. We intend
to verify as much as possible from the call hierarchy shown in Figure 3.2. To ensure
soundness of our proof, we approach verification bottom up, starting with very simple
methods providing and going on to more complex ones. This enables us to use the already
verified contracts of the small methods when proving the larger ones.

Figure 3.2.: Call hierarchy of the public add() method from Eclipse.
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3.7.1. reportOverflow()

This method provides very simple error reporting functions. Its only purpose is to signal
that the resulting BigInteger would be too big for the supported length of the magnitude
array.

1 /*@ private exceptional_behavior
2 @ signals (ArithmeticException e) true;
3 @ signals_only ArithmeticException;
4 @ assignable \nothing;
5 @*/
6 private static /*@ helper @*/ void reportOverflow() {
7 throw new ArithmeticException("BigInteger would overflow supported range");
8 }

Listing 3.9: The very simple method reportOverflow()

Because this method always throws an ArithmeticException and no other exception, we
use the signals_only clause and the signals clause to specify exactly this. Of course the
method must not assign any existing heap location. We don’t use strictly_nothing here
because the method may assign the newly created object for the return value.

As we can see, this method contract is very simple, which enables KeY to verify it fully
automated. We just have load the contract and start the verification.

3.7.2. checkRange()

This method checks if the BigInteger is in the supported range (see footnote1 on page
17). If the formula in the if clause holds, the method throws an exception, otherwise not.
We use that formula in the precondition of our exceptional_behavior contract and the
formula negated for normal_behavior.

1 /*@ private normal_behavior
2 @ requires mag.length <= MAX_MAG_LENGTH
3 @ && (mag.length != MAX_MAG_LENGTH || mag[0] >= 0);
4 @ assignable \nothing;
5 @
6 @ also
7 @
8 @ private exceptional_behavior
9 @ requires mag.length > MAX_MAG_LENGTH

10 @ || mag.length == MAX_MAG_LENGTH && mag[0] < 0;
11 @ signals (ArithmeticException e) mag.length > MAX_MAG_LENGTH
12 @ || mag.length == MAX_MAG_LENGTH && mag[0] < 0;
13 @ signals_only ArithmeticException;
14 @ assignable \nothing;
15 @*/
16 private void checkRange() {
17 if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
18 reportOverflow();
19 }
20 }

Listing 3.10: Contract and implementaion of checkRange()

As this method is still very simple, both contracts can be proved by KeY automatically.

3.7.3. stripLeadingZeroInts()

As explained in the BigInteger concept section Section 3.1, for uniqueness it is necessary
for the magnitude array not to have any leading zeros. Therefore this method strips any
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leading zero elements of a given array. We distinguish between three different cases: The
array is empty, it contains just zeros, or it contains at least one nonzero element. The
specification for each of these cases can be seen in listing Listing 3.11. In addition we
specify that the order of the values in the array must not change, that the resulting array
must have a less or equal number of elements, and that the result must not be a reference
to the given array.

1 /*@ public normal_behavior
2 @ ensures \result != val; // difference to trustedStripLeadingZeroInts
3 @ ensures \result.length <= val.length;
4 @ ensures val.length == 0 ==> result.length == 0; // case1: arr = {}
5 @ ensures (\forall int i; 0 <= i && i < val.length; val[i] == 0)
6 ==> \result.length == 0; // case2: arr = {0 .. 0}
7 @ ensures (\exists int i; 0 <= i && i < val.length; val[i] != 0)
8 ==> \result[0] != 0; // case3: arr = {x1 .. xn}
9 @ ensures (\forall int i; 0 <= i && i < \result.length;

10 \result[i] == val[firstNonZeroIndex(val) + i]); // copy of old values, same order
11 @ assignable \nothing;
12 @*/
13 private static int[] stripLeadingZeroInts(int val[]) {...}

Listing 3.11: Contract of stripLeadingZeroInts() with the three different cases as ex-
plained above

As we have to specify that nothing except from cropping the zeros happens (lines 9-10), we
have to know the index of the first nonzero element. That part is done by the helper model
method firstNonZeroIndex(). Of course for this method the array must contain such an
element, because otherwise the index would not exist. This is ensured by excluding the
cases 1 and 2 in the precondition.

1 /*@ public normal_behavior
2 @ requires arr.length > 0; // case 1: arr != {}
3 @ requires (\exists int i; 0 <= i && i < arr.length; arr[i] != 0); // case 2: arr != {0 .. 0}
4 @ ensures \result >= 0;
5 @ ensures \result < arr.length && arr[\result] != 0
6 && (\forall int i; 0 <= i && i < \result; arr[i] == 0); // case 3: arr = {x1 .. xn}
7 @ public static helper model int firstNonZeroIndex(int[] arr);
8 @*/

Listing 3.12: Helper method for specification which "calculates" the index of the first nonzero
element

Now we can start with the proving part. Even though the method looks still very simple,
it turns out that it is much more difficult to prove than the preceding ones. This is caused
by the loop: Since the loop bounds are not known during compilation time, KeY can
not simply unroll the iterations. Instead, we must help KeY through providing a loop
specification. As outlined in Section 2.1.3.2, this specification consists of a loop invariant,
an assignable clause, and a termination witness. The interesting loop invariant part
states, that up to the current index of the loop all preceding elements of the array are
zeros. The rest of the loop specification is pretty self-explanatory.

In proof, KeY uses an induction-like technique: When applying the loop specification, it
creates three branches. The first one is the base case, the situation before the first execution
of the loop code. The second one is the induction step, we have to prove here that the
loop maintains the loop invariant. In addition, it has to be shown that the loop variant is
really nonnegative and strictly decreasing as well as it is not written to any heap location.
If we have proved those two branches, we may continue our proof with the third branch,
called Use Case. This branch represents the situation after termination of the loop. We
may now use the loop invariant to show the postcondition of our method.
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1 private static int[] stripLeadingZeroInts(int val[]) {
2 int vlen = val.length;
3 int keep;
4
5 // Find first nonzero int
6 /*@ loop_invariant 0 <= keep && keep <= vlen && (\forall int i; 0 <= i && i < keep; val[i] == 0);
7 @ assignable \strictly_nothing;
8 @ decreases vlen - keep;
9 @*/

10 for (keep = 0; keep < vlen && val[keep] == 0; keep++)
11 ;
12 return java.util.Arrays.copyOfRange(val, keep, vlen);
13 }

Listing 3.13: Implementation of stripLeadingZeroInts() with loop specification

After we have written this, KeY is able to prove the method automatically. We can see that
the prover applies the loop specification and proves all three branches as explained above.

3.7.4. trustedStripLeadingZeroInts()

While the previous method served as an intermediate step, the current is the one we actual
need (see Figure 3.2). It does nearly the same as stripLeadingZeroInts. The difference is in
the last line: Instead of always returning a new array, if the array already has no leading
zeros the input array itself is returned without creating a new one and copying it.

12 return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);

Listing 3.14: The only line different to stripLeadingZeroInts()

To specify its behavior, we simply take the contract of stripLeadingZeroInts() (List-
ing 3.11) and omit line 2. As was the case with the previous method, this one can be
proved by KeY automatically if we provide the exact same loop specification.

3.7.5. compareMagnitude()

With this method, we get to the first non-static method. It takes another BigInteger as a
parameter and returns 0, −1 or 1 if the absolute value of that is equal, greater or less than
the one of the BigInteger on which the method is called. Of course the invariant for the
given BigInteger has to hold at method call, as well as implicitly the invariant of the this
object holds.

1 /*@ normal_behavior
2 @ requires val.<inv>;
3 @ ensures calcMagSum(val.mag) == calcMagSum(mag) ==> \result == 0;
4 @ ensures calcMagSum(val.mag) > calcMagSum(mag) ==> \result == -1;
5 @ ensures calcMagSum(val.mag) < calcMagSum(mag) ==> \result == 1;
6 @ assignable \nothing;
7 @*/
8 final int compareMagnitude(BigInteger val) { ... }

Listing 3.15: Contract of compareMagnitude()

As can be seen, for a clean specification we introduced the model method calcMagSum().
This method is the subject of the next section.
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3.7.5.1. The Helper Model Method calcMagSum()

In contrast to calcValue() this model method ignores the sign and calculates just the
absolute value. In addition, the contract contains two lemmas which we will use in our
proof of compareMagnitude(). Those lemmas are denoted with A and B in Listing 3.16.

1 /*@ private model_behavior
2 @ requires m.length > 0 ==> m[0] != 0;
3 @ ensures \result
4 @ == (\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
5 @ ensures m.length > 0 ==> \result > 0;
6 @ ensures \result >= 0;
7 @ ensures (\forall int[] m2; // A: a.length < b.length -> a.result < b.result
8 @ 0 <= m2.length && m2.length < m.length && (m2.length > 0 ==> m2[0] != 0);
9 @ calcMagSum(m2) < \result);

10 @ ensures (\forall int[] m3; // B: equal lengths and elements -> equal results
11 @ m3.length == m.length && (\forall int j; 0 <= j && j < m.length; m3[j] == m[j]);
12 @ \result == calcMagSum(m3));
13 @ accessible m[*];
14 @ private static helper model \bigint calcMagSum(int[] m) {
15 @ return (\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
16 @ }
17 @*/

Listing 3.16: Contract of the helper model method calcMagSum(). A and B are lemmas.

Of course we have to proof the contract of the model method as well, especially the two
lemmas.

Proof The first three ensures clauses are proved very easily by application of method
contracts and use of the precondition.

Lemma A This lemma is really important for the proof of compareMagnitude(). It
states that the result of calcMagSum() increases strictly monotonically with the size of the
given array. This is true because we use place value notation and the first (most significant)
elements of both arrays are assumed to be non-zero. For the same reason a 5-digit number
always is greater than a 4-digit number. Because the proof gets relatively technical due to
the base of our number system, model methods, and KeY itself, we will not describe it in
details.

Lemma B If two sums have equal length and elements, they are equal. This very
basic statement can be seen as a convenience lemma for abbreviation in the proof and is
shown simply by skolemization and instantiation of the inner quantifier.

3.7.5.2. Proof of compareMagnitude()

With the model method proved, we now turn towards the proof of the Java method. As
in the Java methods of the previous sections the implementation of compareMagnitude()
contains a loop. So we have to provide a loop specification. It simply states that the two
arrays are equal up to the current loop index (excluded).

After running the macro "Full Auto Pilot", 12 branches are still open. Outside the branches
related to the loop, we can see that the different cases of array lengths result in 4 open
branches (if clauses in lines 6 and 8). These goals can be shown by deducing a contradiction
from the relation between array lengths and calcMagSum() results on the left hand side of
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1 final int compareMagnitude(BigInteger val) {
2 int[] m1 = mag;
3 int len1 = m1.length;
4 int[] m2 = val.mag;
5 int len2 = m2.length;
6 if (len1 < len2)
7 return -1;
8 if (len1 > len2)
9 return 1;

10
11 /*@ loop_invariant 0 <= i && i <= len1 && (\forall int j; 0 <= j && j < i; m1[j] == m2[j]);
12 @ assignable \nothing;
13 @ decreases len1 - i;
14 @*/
15 for (int i = 0; i < len1; i++) {
16 int a = m1[i];
17 int b = m2[i];
18 if (a != b)
19 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
20 }
21 return 0;
22 }

Listing 3.17: Implementation of compareMagnitude() with loop specification.

the sequent arrow. For that, we need lemma A from our model method calcMagSum. The
base case of the loop specification is proved automatically by KeY.

In the use case branch 3 goals are still open: Two of them can be shown by deriving a
contradiction with the help of lemma B and for the remaining one we use the dependency
contract of the invariant of the object "this".

The interesting part of the proof is showing that the loop body preserves the loop invariant.
Here 5 branches are open. On can be shown just by using the dependency contract of
this.<inv>, another one can be closed automatically by KeY. The remaining 3 branches
require much user interaction. The relevant part of the sequence contains a relation between
the (magnitude) sums and the elements at current loop index.

1 calcMagSum(val.mag) < calcMagSum(self.mag);
2 toUnsigned(self.mag[i_3]) < toUnsigned(val.mag[i_3]);
3 ...
4 ==>
5 ...
6 val.mag[i_3] = self.mag[i_3];

Listing 3.18: Shortened version of the sequent of the most difficult proof part. i_3 stands
for the current loop index. The two other open goals are very similar to this
and require the same interactive steps.

Since we know that the arrays (and hence the sums) are equal up to current index, we can
subtract that part of the sum from the (in)equation. Then we pull out the first element
of the sums and use our taclets for estimations on the remaining sum terms. After that,
KeY should be able to proof the inequation system automatically. However, we have to
use the Strategy Setting "Model Search" and lead KeY to the right direction. This is done
by hiding all unused formulas and pulling out (i.e. replacing them by symbols) the sum
and method terms to prevent the system by further inserting definitions. With this help,
finally all branches get closed.
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In summary, we divided our problem into different lemmas (in postcondition and a taclet),
which reduced its complexity drastically. With this, we could prove our contract, even if
we needed interaction to push KeY to the focus of the problem.

3.7.6. subtract()

We will not provide a proof in KeY for this method. This is due to two reasons: First, since
the method creates an array on the heap and assigns its elements, there are different heap
states to reason about. Typically, for this we could use our framing clauses (assignable)
and dependency contracts of the methods. However, in KeY there is a limitation on the
latter: They may only be used if the exact same method call but referring to another heap
appears on the sequent. In our case, not the method call appears again, but the information
is provided in a slightly different form. Therefore we can not use the dependency contracts.
The second reason is that the method makes use of bitwise operations, for which no
reasoning rules exist in KeY.

There are workarounds (manual cuts and using CBMC) for both issues, but they are
laborious and too time-consuming for this thesis. Instead, we provide a proof on paper,
which may be transferred to KeY in future work, perhaps in an improved version of KeY.

3.7.6.1. Overview

As the name states, the method subtracts the two arrays given as parameters. For that, it
imposes the restriction that the value represented by the first parameter (via the place
value notation introduced in Section 3.3) is (strictly) greater than that represented by
the second one. Thus the value represented by the result is always positive. Overall the
subtraction is very similar to the method taught at school: The arrays are run through
from the last (least significant) digits to the most significant ones. By doing that, the
current two digits are subtracted with regard to a possible borrow from the previous places.
All this is done by the first loop. At some point, the end of the little array is reached.
If there is still a borrow, the second loop propagates it as long as there are zeros in the
big array, until it finally disappears. Due to the precondition, we know that this actually
happens. Finally the third loop just copies the remaining digits of the bigger number to
the result.

3.7.6.2. Preconditions

As already stated above, the method subtract() may be called only if the first parameter
represents a greater value than the second one. Other cases have to be checked first
by the calling methods. For modeling this precondition we use our already introduced
model method calcMagSum(), which in addition provides a lemma about the lengths of
the parameters (lemma A in Section 3.7.5.1).

The second precondition ensures that the arrays have no leading zeros. This is a simplifi-
cation, since the method fulfills its purpose otherwise as well. However, it simplifies the
proof and is ensured by all methods of BigInteger calling subtract().

1 /*@ private normal_behavior
2 @ requires calcMagSum(big) > calcMagSum(little);
3 @ requires (big.length > 0 ==> big[0] != 0) && (little.length > 0 ==> little[0] != 0);
4 @ ensures simpleSum(\result) == simpleSum(big) - simpleSum(little); // may have leading zeros
5 @ assignable \nothing;
6 @*/
7 private static /*@ helper @*/ int[] subtract(int[] big, int[] little) { ... }

Listing 3.19: Contract of the method subtract()
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3.7.6.3. Postconditions

The postcondition just states that the result is the difference of the parameters. The model
method simpleSum() just serves as an abbreviation for our usual place-value sum term.
The assignable clause states that no heap locations of existing objects are changed.

3.7.6.4. Proof structure

We subdivide the proof into three parts corresponding to the three loops of the method.
For each loop we provide a loop specification and afterwards justify the choice of it. As
with the loops in previous methods, we have to show three propositions for each of the
loops:

• Invariant initially Valid: The invariant holds before the first iteration.

• Body Preserves Invariant (induction step): If the loop invariant holds for an (arbitrary)
iteration, it also holds for the following one.

• Use Case: After loop termination the remaining method body establishes the method’s
postcondition. In this proof part we may assume the loop invariant as well as the
negated loop condition.

In all proof parts we will concentrate on the interesting and difficult statements and omit
trivial parts, for example showing that the indices are in the bounds given by the invariant.

3.7.6.5. Proof Part 1: First Loop

The first loop subtracts the two arrays starting at the last (least significant) digits with
decreasing indices until all elements of the smaller array (little) have been considered.
The subtraction (lines 19-21) is done by interpreting the digits as unsigned integers (see
Section 3.3.2.1) and taking a potentially existing borrow of the previous place into account.
This borrow is calculated by shifting difference (see line 12 of Listing 3.20). If the current
element of big is strictly smaller than that of little plus the possible borrow (0 or 1)
from the previous iteration, then diff� 32 evaluates to −1, otherwise to 0.

1 private static /*@ helper @*/ int[] subtract(int[] big, int[] little) {
2 int bigIndex = big.length;
3 int result[] = new int[bigIndex];
4 int littleIndex = little.length;
5 long difference = 0;
6
7 // Subtract common parts of both numbers
8 /*@ loop_invariant 0 <= littleIndex && littleIndex <= little.length
9 @ && 0 <= bigIndex && bigIndex <= big.length

10 @ && big.length - bigIndex == little.length - littleIndex
11 @ && partialSum(result, bigIndex)
12 @ + (difference >> 32) * twopower(big.length - bigIndex) // borrow from next digit
13 @ == partialSum(big, bigIndex)
14 @ - partialSum(little, littleIndex);
15 @ assignable result[(result.length-little.length)..(result.length-1)];
16 @ decreases littleIndex;
17 @*/
18 while (littleIndex > 0) {
19 difference = (big[--bigIndex] & LONG_MASK) -
20 (little[--littleIndex] & LONG_MASK) +
21 (difference >> 32);
22 result[bigIndex] = (int)difference;
23 }
24 ...

Listing 3.20: Section of the method body relevant for the first proof part
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The first three lines of the loop invariant state that the indices are valid and inside bounds.
The last part of the invariant is the interesting one. It states that the partial sum of
the result array up to the current loop index equals the difference of the partial sums of
the parameter arrays plus a possible borrow. This is expressed via the model method
partialSum(), which just serves as an abbreviation for the place-value sum starting from
the given index. Since the borrow is taken from the next place, it has to multiplied with
the corresponding place value calculated by twopower(). Note that the borrow is placed
on the left side of the equation, because it may be −1 or 0.

The assignable clause exactly specifies which elements are written by the loop. The bound
are included.

Abbreviations To improve the readability we will use the following abbreviations:

diff =̂ difference∑
r

=̂ partialSum(result,bigIndex)∑
b

=̂ partialSum(big,bigIndex)∑
l

=̂ partialSum(little,littleIndex)

wi =̂ twopower(i)

The last one means that w equates to 232, which is exactly the base of the function
represented by twopower().

We want to abstract from the fact that the indices of the two arrays are different (bigIndex
and littleIndex) and that we start from the end of the arrays. Therefore we use the
following abbreviation for the index of the current loop iteration:

i := big.length− bigIndex = little.length− littleIndex

A prime after a sum or variable (e.g.
∑

r
′, diff′) indicates the next loop iteration (index

increased by 1). Finally, R, B and L denote the first summand pulled out of the according
sum with prime:

R =̂ toUnsigned(result[bigIndex]) · twopower(i)
B =̂ toUnsigned(big[bigIndex]) · twopower(i)
L =̂ toUnsigned(little[littleIndex]) · twopower(i)

Putting all this together, our first loop invariant looks like this:∑
r

+(diff� 32) · wi =
∑

b

−
∑

l

Note that � denotes Java’s arithmetic right shift operator. An arithmetic right shift by n
has the effect of a division by 2n with the result rounded towards negative infinity3.

3For reference see http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-15.19
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Invariant Initially Valid With diff = 0 and empty partial sums:∑
r︸︷︷︸

=0

+ (diff� 32)︸ ︷︷ ︸
=0

· wi =
∑

b︸︷︷︸
=0

−
∑

l︸︷︷︸
=0

⇔ 0 = 0

�

Body Preserves Invariant

Here we assume that our invariant holds for an arbitrary index i:∑
r

+(diff� 32) · wi =
∑

b

−
∑

l

(*)

We show now that this statement also holds for the next loop iteration with index i+ 1.
Therefore, we have to proof the following statement:∑

r

′
+ (diff′� 32) · wi+1 =

∑
b

′
−

∑
l

′

We split off the first elements of all three sums (using the abbreviations given above):∑
r

+R · wi + (diff′� 32) · wi+1 =
∑

b

−
∑

l

+B · wi − L · wi

The sums on the right can be replaced with our assumption (*):∑
r

+R · wi + (diff′� 32) · wi+1 =
∑

r

+(diff� 32) · wi +B · wi − L · wi

Now we subtract the sum from both sides:

R · wi + (diff′� 32) · wi+1 = (diff� 32) · wi +B · wi − L · wi

Since we know it is greater than 0, we can divide by wi:

R+ (diff′� 32) · w = (diff� 32) +B − L

We insert the assignment R := (int)diff′ from the code (line 22), where (int) is the Java
cast operator:

(int)diff′︸ ︷︷ ︸
lower 32 bits of diff′

+ (diff′� 32) · w︸ ︷︷ ︸
upper 32 bits of diff′

= B − L+ (diff� 32)

As stated in the brace above, the cast4 to an int just takes the lower 32 bits of diff′. The
second brace is tricky: The arithmetic shift right shifts the upper half of the long to its
lower half while performing sign extension. This means, the upper half of the long consists
now either only of zeros or only of ones. Now we multiply with w = 232, which is equivalent
to shifting back left by 32, filling the lower half with zeros. Obviously by adding these two
results, we just get diff′ and thus the following equation:

diff′ = B − L+ (diff� 32)

This is exactly the assignment from lines 19-21 of the Java code above and thus holds.

�
4See http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.3
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3.7.6.6. Proof Part 2: Second Loop

We now continue our proof with the "Use Case" part of the first loop, which leads us to
the second loop. After the termination of the first loop, there may still be a borrow. This
borrow propagates as long as the according digits of the array big are zeros. The second
loop iterates until the borrow disappears.

1 ...
2 // Subtract remainder of longer number while borrow propagates
3 boolean borrow = (difference >> 32 != 0);
4
5 /*@ loop_invariant 0 <= bigIndex && bigIndex <= big.length
6 @ && partialSum(result, bigIndex) == partialSum(big, bigIndex)
7 @ - partialSum(little, 0)
8 @ + (borrow ? twopower(big.length-bigIndex) : (\bigint)0);
9 @ assignable result[*];

10 @ decreases bigIndex;
11 @*/
12 while (bigIndex > 0 && borrow)
13 borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
14 /* --bigIndex;
15 * result[bigIndex] = big[bigIndex] - 1;
16 * borrow = (big[bigIndex] == 0);
17 */
18 ...

Listing 3.21: Section of the method body relevant for the second proof part.

Line 13 of Listing 3.21 is composed of multiple statements. For better understanding, the
comments in lines 14-16 contain this line broken down into simple statements. It can be
seen that borrow remains true until a nonzero element of big is reached.

The loop invariant is very similar to that of the first loop. We have to note that the partial
sum of little now is constant and comprises all elements array. Contrary to the first
loop, the borrow stands now on the right side of the equation. This is simply because the
sign of the borrow term now is positive.

We have to mention that the assignable clause does not specify the bounds for changes
exactly. That is, because to give an exact specification we would need an additional model
method for calculating the lower bound. Since for the paper proof the assignable clause is
not needed, we will not provide such a method. Of course this problem also persist for the
next loop, this time for the upper bound.

Assumptions We can now presume the negated loop condition of the first loop:

¬(littleIndex > 0)

Because we also know that an array index has to be nonnegative, this becomes:

littleIndex = 0

In addition we assume the loop invariant of the previous loop:∑
r

+(diff� 32) · wi =
∑

b

−
∑

l
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Initially Valid We have to show the following statement:

∑
r

=
∑

b

−
∑

l

+(borr ? wi : 0)

We insert the invariant of the previous loop:∑
r

=
∑

r

+(diff� 32) · wi + (borr ? wi : 0)

Now we can subtract the sum from both sides:

0 = (diff� 32) · wi + (borr ? wi : 0)

Again we divide by wi:

0 = (diff� 32) + (borr ? 1 : 0)

This results in two different cases:

Case 1: borr = true:
(diff� 32) = −1

Case 2: borr = false:
(diff� 32) = 0

This looks contradictory, but with the definition of the first borrow

borr := (diff� 32 6= 0)

it is clear that the statements in both cases hold.

�

Body Preserves Invariant We now have a small change in the definition of a sum
abbreviation. Since we reached the end of the array,∑

l

= partialSum(little, 0)

is constant now for each loop iteration of the second loop. We again assume that the loop
invariant holds for an arbitrary index i:∑

r

=
∑

b

−
∑

l

+(borr ? wi : 0) (**)

The statement to show looks as follows (note that the sum of little has no prime):

∑
r

′
=

∑
b

′
−

∑
l

+(borr′ ? wi+1 : 0)
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We again pull out the first elements of the sums with prime, insert the assumption (**),
and subtract common parts from the equation:∑

r

+R · wi =
∑

b

−
∑

l

+B · wi + (borr′ ? wi+1 : 0)∑
b

−
∑

l

+(borr ? wi : 0) +R · wi =
∑

b

−
∑

l

+B · wi + (borr′ ? wi+1 : 0)

(borr ? wi : 0) +R · wi = B · wi + (borr′ ? wi+1 : 0)

Afterwards follows a division by wi:

(borr ? 1 : 0) +R = B + (borr′ ? w : 0)

We know that borr is true, because otherwise we would not have reached the next loop
iteration:

1 +R = B + (borr′ ? w : 0)

Here we have to be very careful with the integer semantics. The single digits of the arrays
use the unsigned integer semantics explained in Section 3.3.2.1. In our proof, integers have
the semantics of mathematical integers. This means, we have to convert our value if we
want to insert the assignment of R := B − 1 from the code. Therefore, we use |x|u as an
abbreviation for toUnsigned(x). With that, we now are allowed to insert our assignment
R := |B − 1|u:

1 + |B − 1|u = B + (borr′ ? w : 0)

From that we get two cases, in which we have to respect the assignment between borr′

and B as explained in line 16 of Listing 3.21 :

borr′ := (B == 0)

Case 1: borr′ = true: This means B equals 0.

1 + |−1|u = w

We use the following formula to translate the signed integer to unsigned:

|−1|u = w − 1

Now we can insert and simplify the formula with mathematical integer semantics:

1 + (w − 1) = w

w = w

Case 2: borr′ = false: This means B is greater than 0.

1 + |B − 1|u = B + 0

Since B − 1 is nonnegative, its unsigned value equals the signed one:

1 +B − 1 = B

B = B

�
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3.7.6.7. Proof Part 3: Final Loop

The "Use Case" part of the second loop now again contains the next loop. This simply
copies the remaining digits of big to result.

1 ...
2 // Copy remainder of longer number
3 /*@ loop_invariant bigIndex >= 0
4 @ && partialSum(result, bigIndex) == partialSum(big, bigIndex)
5 @ - partialSum(little, 0);
6 @ assignable result[*];
7 @ decreases bigIndex;
8 @*/
9 while (bigIndex > 0)

10 result[--bigIndex] = big[bigIndex];
11
12 return result;
13 }

Listing 3.22: Remaining method body for the third proof part

Assumptions We may now assume the negated loop condition of the second loop:

¬(bigIndex > 0 ∧ borr)

With De Morgan’s law:
(bigIndex ≤ 0) ∨ ¬borr

Since bigIndex is nonnegative (see invariant of previous loop), this becomes:

(bigIndex = 0) ∨ ¬borr

Due to the fact that big represents a greater number than little, we know that the case

(bigIndex = 0) ∧ borr

can not happen. So in summary the statement

¬borr

can be achieved via simple transformations.

Initially Valid We assume the previous loop invariant∑
r

=
∑

b

−
∑

l

+(borr ? wi : 0)

and have to show the following formula:∑
r

=
∑

b

−
∑

l

This can be directly deduced with the assumption ¬borr from the previous section.

�
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Body Preserves Invariant This induction proof is very simple. With∑
r

=
∑

b

−
∑

l

(***)

as as assumption and we have to show the following statement:

∑
r

′
=

∑
b

′
−

∑
l

We use the same strategy as above, pull out the first sum elements of the sums with prime,
insert the assumption (***), and divide by wi:

∑
r

+R · wi =
∑

b

−
∑

l

+B · wi

∑
r

+R · wi =
∑

r

+B · wi

R · wi = B · wi

R = B

The last line displays exactly the assignment of R from the code.

�

Use Case We have to show here that from the loop invariant after the final iteration
and the negated loop condition the method’s postcondition follows. The postcondition
part about the array lengths holds instantly, since the array is only assigned once with
exactly that length. Now the negated loop condition

¬(bigIndex > 0)

becomes (we again use the fact that an array index is nonnegative):

bigIndex == 0

With that, our partial sums from the loop invariant∑
r

=
∑

b

−
∑

l

are sums over the total array range and thus equal to the definition of simpleSum(). So
our postcondition

simpleSum(r) = simpleSum(b)− simpleSum(l)

holds.

�

We have seen that this method uses sophisticated bitshifting to calculate the borrow. In
addition, the heap is updated frequently. The rest of the proof is relatively simple. If
convenient techniques are found to deal with these problems, one should be able to perform
the proof from this section in the KeY system.
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3.7.7. add()

Though unfortunately it was not possible during this thesis to verify the following methods,
we provide contracts here. The explanations why it was impossible to prove them are
postponed here and can be found in Section 4.1.3.

The private add() method is very similar to the subtract() method. As that, it is a
static helper method which assigns nothing on the heap (expect the parameters, which
do not have to be explicitly mentioned). Of course the value represented by the resulting
array has to be the sum of the values of the two parameter arrays. Differences to subtract
are that the length of the result may be by 1 greater than that of the bigger parameter.
Additionally, we do not have to presume something about the input arrays. The contract
modeling this behavior is shown in Listing 3.23.

1 /*@ private normal_behavior
2 @ requires \static_invariant_for(BigInteger);
3 @ ensures simpleSum(\result) == simpleSum(x) + simpleSum(y);
4 @ ensures \result.length <= (x.length > y.length ? x.length : y.length) + 1;
5 @ assignable \nothing;
6 @*/
7 private static /*@ helper @*/ int[] add(int[] x, int[] y) { ... }

Listing 3.23: Method contract of the add() method

3.7.8. The Constructor BigInteger()

As explained in the comments provided by the developers in Listing 3.24, this is an internal
constructor that assumes that its arguments are correct. Because of that, we have to
include several preconditions: To make it possible to establish the instance invariants the
given signum parameter has to be one of the three possible values, the magnitude array
must not contain leading zeros, and a sign of 0 implies that the array is empty. Since the
constructor succeeds only if the magnitude array is in the permitted bounds, we need to
add this as a precondition. In exchange, the constructor ensures that the assignments of
the parameters are done correctly (explicit part of postcondition), and that the instance
invariant for the newly created object holds afterwards (implicit). In addition, it implicitly
guarantees that the newly created object is fresh, i.e. that it does not coincide with any
other object on the heap. Because only fields of the object are assigned, the constructor is
considered as pure. The case when the array is too large to fit into a BigInteger and an
ArithmeticException is thrown is modeled by the exceptional_behavior contract.

In the constructor we need to set our ghost field to a meaningful value. This is done in line
28 of Listing 3.24 via the set keyword and the model method calcValue().

It at first seems to be a good idea to add an additional invariant about correct ranges of
the magnitude (the statement shown in line 7). Since a BigInteger’s value is final (neither
signum nor mag are ever changed after construction) and exactly these bounds are checked
at creation of each BigInteger object, this would be a suitable invariant. However, the
JML standard and KeY prevent us from doing so because after an exception is thrown
(actually any instance of Throwable, even Error and RuntimeException) the invariant
has to hold also, even if the object is not completely constructed. In our case, there is no
way to recover from the once thrown ArithmeticException, since the BigInteger object is
not correctly created. However, Errors and RuntimeExceptions in Java are not meant to
be caught as they indicate serious system or implementation problems. So the way JML
specifies to treat those is questionable at least for constructors.
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1 /*@ normal_behavior
2 @ requires ( magnitude.length < MAX_MAG_LENGTH
3 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] >= 0)
4 @ && (signum == 0 || signum == 1 || signum == -1)
5 @ && (magnitude.length > 0 ==> magnitude[0] != 0)
6 @ && (signum == 0 ==> magnitude.length == 0);
7 @ ensures this.mag == magnitude;
8 @ ensures (magnitude.length == 0 ==> this.signum == 0) &&
9 @ (magnitude.length != 0 ==> this.signum == signum);

10 @ assignable \nothing; // special purity rules for constructors
11 @
12 @ also
13 @
14 @ exceptional_behavior
15 @ requires magnitude.length > MAX_MAG_LENGTH
16 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] < 0;
17 @ signals_only ArithmeticException;
18 @ signals (ArithmeticException e) magnitude.length > MAX_MAG_LENGTH
19 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] < 0;
20 @ assignable \nothing; // special purity rules for constructors
21 @*/
22 BigInteger(int[] magnitude, int signum) {
23 this.signum = (magnitude.length == 0 ? 0 : signum);
24 this.mag = magnitude;
25 if (mag.length >= MAX_MAG_LENGTH) {
26 checkRange();
27 }
28 /*@ set value = calcValue(this.signum, this.mag); @*/
29 }

Listing 3.24: Contracts and implementation of the constructor. Note the set statement in
line 28.

3.7.9. public add()

This method is the connection between all the previous ones. It consists mainly of case
distinctions and method calls and is only 13 lines long, since the real addition is done by
the add and (if one summand is negative) subtract methods. Accordingly the contract
(shown in Listing 3.25) is relatively simple.

1 /*@ public normal_behavior
2 @ requires val.<inv> && \static_invariant_for(BigInteger);
3 @ requires val.mag.length < MAX_MAG_LENGTH
4 @ || val.mag.length == MAX_MAG_LENGTH && val.mag[0] >= 0;
5 @ requires this.mag.length < MAX_MAG_LENGTH
6 @ || this.mag.length == MAX_MAG_LENGTH && this.mag[0] >= 0;
7 @ ensures \result.value == val.value + this.value;
8 @ assignable \nothing;
9 @*/

10 public BigInteger add(BigInteger val) { ... }

Listing 3.25: Contract of the public add() method

The actual functionality is now, thanks to our modeling, expressed very easily via the
ghost fields (line 7). Line 2 contains the invariants as precondition, which of course have
to hold, but must be included explicitly, since only the instance invariant of the object
the method is called on is implicitly included. Line 3 to 6 contain additional information
known for correct BigIntegers, which we (due to the reasons explained in the previous
section) unfortunately can not include into our invariants.
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4.1. Verification Summary
In this section we provide a summary of the verification. At first we will display statistics to
obtain an overview over the difficulty levels of the methods. After that we will summarize our
experiences with the KeY system, which includes some suggestions for future development.
Finally, we evaluate the class BigInteger itself and mention what made specification and
verification of the real-world code difficult.

4.1.1. Proof Statistics

In this section we provide statistics for each method we considered. Based on that we will
examine which properties of the methods have an impact on the degree of difficulty of the
verification.

In general, the measure used for counting the proof steps are the numbers of total and
interactive (abbreviated by tot. and int.) rule applications as displayed by KeY. Of course,
this allows only an approximate evaluation of how difficult a proof is, since there are great
differences in the difficulty of the rules. For example, an induction and a commutation of
an equation count both as a single rule application, even though the latter is very simple
while the former requires a large amount of considerations. Therefore, some additional
measures like the number of loops as well as notes are given.

For each method or taclet we include the lines of code (LOC) of the definition as well
as the lines of code needed for each single contract (abbreviated by LOC spec.). The
specification lines are counted as given, i.e. each line is counted as long it does not solely
contain comments. We have to note that the contracts may be split and parts of the
specification may be counted twice. This happens for example if the same precondition
clause is used for a functional as well as for a dependency contract. Then the line count of
the precondition is added to the line count of both contracts.

4.1.1.1. User-Defined Taclets

As explained in Section 3.4, two user-defined taclets (inference rules of KeY) have been
written and used in this thesis. While the proof of the second taclet is done on paper, the
first taclet can be proved in KeY. Even if it looks like the proof is mainly done automatically,
the opposite is the case: During the proof many nontrivial interactions such as induction and
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quantifier instantiations are required. KeY afterwards automatically performs inequation
normalization and closes the branches. We can already see in this simple example that
reasoning about sums is difficult in KeY and requires a large amount of interaction.

LOC proof steps notes
definition tot./int.

bsum_all_summands_gez 4 523/30
bsum_estimation 4 -/- proof on paper

(see Section 3.7.6)

Table 4.1.: Statistics of the user-defined taclets

4.1.1.2. Model Methods and Instance Invariant Dependency Contract

Due to a limitation in KeY method bodies of model methods may only consist of one single
return statement. Therefore, it is meaningless to provide the number of lines in method
body.

LOC static/ proof steps notes
spec. helper tot./int.

toUnsigned() X/X
model 7 -/-1 verified with CBMC
model (injectivity) 2 146/- for comparison, already proved

in CBMC
dependency 1 55/-

twopower() X/X
model 5 513/- recursive method
dependency 2 101/-

calcValue() X/X
model 7 17.705/52 custom taclets needed for sum

estimation
dependency 3 624/3

firstNonZeroIndex() 7 X/X 826/-
calcMagSum() X/X

model 7 1.821/103 custom taclets needed for sum
estimation

dependency 2 512/-
partialSum() dep. 0 X/X 549/-
simpleSum() dep. 1 X/X -/- just serves as abbreviation

instance inv. dep. 1 1.751/5

Table 4.2.: Statistics of model methods and instance invariant

We can see that the dependency contracts always require much less steps than the functional
contracts. Additionally, the two proofs where we needed our custom sum estimation taclet
are very large. This is a general result: If we had to reason about sums in the proof, it was
usually difficult and required many interactive steps.

The verification of the bitvector arithmetics in toUnsigned() was very easy and fast.
1The SAT-Solver gets a formula consisting of 2316 variables and 5475 clauses, which it is able to solve in a
split second.
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4.1.1.3. Java Methods

For the lines of Java code we count each line meaningful for the program. This includes
code lines and brackets, but not empty lines and comments. We count code in the method
body only.

Library Methods These library method are used from the code of BigInteger we consider.
The first method as native and thus there is no Java code. Intentionally we did not want
to prove the library methods but just write contracts for the use in BigInteger. However,
as we tried to check whether the specification was correct, the proof of copyOfRange()
arose as side product.

LOC static loops proof steps notes
spec. tot./int.

System.arraycopy() 9 X - -/- native, no proof
Arrays.copyOfRange() X -

normal 10 3.202/6
exceptional 7 -/-

Methods of BigInteger Here we can see that a loop notably increases the amount of
proof steps needed. In addition to that, if we have to deal with sums, this highly increases
the number of necessary proof steps (compareMagnitude()).

LOC static/ loops proof steps notes
Java/JML helper tot./int.

reportOverflow() 1/4 X/X - 367/-
checkRange() X/X -

normal 3/3 398/-
exceptional 3/5 505/4

strLZI()a 5/8 X/X 1 7.856/-
tStrLZI()b 5/7 X/X 1 8.840/-
comMag()c 15/6 X/X 1 23.858/570 needs leammas from

calcMagSum()
subtract() 16/6 X/X 3 -/- loops are consecutive
BigInteger() 5/14 X/X - -/- no proof
add() 31/5 X/X 3 -/ no proof
public add() 13/6 X/X - -/- no proof

astripLeadingZeroInts()
btrustedStripLeadingZeroInts()
ccompareMagnitude()

Newly created objects in the method body make verification much more complicated due to
different heap states. To sum up the results, we have specified 11 Java methods with a total
of 216 specification lines written. In comparison, we verified 5 methods of BigInteger in
KeY and therefore needed more than 66.500 verification steps of which were 773 interactive
steps (about 1%). This includes the steps from model and library methods as well as the
user-defined taclet, as they are needed for the verification of the BigInteger methods. Is is
remarkably that nearly a third of the total steps is needed for the method calcMagSum().
Also, this method needs most of the interactive steps. This is due to complicated sum
estimations and inequation system.
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4.1.2. BigInteger Evaluation

In this section we provide a short evaluation, how compatible the BigInteger class is with
formal specification and verification. However, the statements refer just to the parts of
BigInteger considered in this thesis.

Since it is a math library class providing calculation functionality, the code is already
written highly modular. None of the considered methods consists of more than 35 lines
of code. This in general simplifies verification. On the other hand, there are drawbacks:
Since the code was not written with formal verification in mind, there are some statements
that are hard to read, especially regarding the actual subtraction and borrow calculation,
which made it difficult for example to find appropriate loop invariants in Section 3.7.6.
In addition, because the first digit of the magnitude array is the most significant, the
index calculations for place value notation are relatively complicated. This became visible
for example in Section 3.4, where we had to reorder the elements of the array for our
induction proof. In general, the BigInteger code is reasonably well documented (comments
in code and JavaDoc), even if some confusing or simply wrong comments exists. The
documentation was of great help for specification.

4.1.3. Experiences with KeY and Development Ideas

This section summarizes the experiences with KeY and points out what was easy in KeY
and where problems appeared.

The first to mention is the symbolic execution: It works very well and nearly fully
automatically, regardless of the complexity of the Java statements. There was just one
single case during the proofs when it could not be performed without interaction: In the
constructor proof, when a set statement appeared in code. The simple reason of this is
that there had been no rule for translating the model method in code correctly to JavaDL.
This problem was recently fixed by the developers and can be expected to reach the master
branch soon.

Another feature to point out is the update and statement simplification with the One Step
Simplifier. It enables the user to perform multiple (often very many, in this thesis sometimes
around 200) simplification steps for updates or first order formulas. One interesting point
would be to enable the use of it not only for single formulas, but for multiple formulas at
once. This could be a great time saver.

During the work on this thesis, we were frequently faced with situations when we would
have wanted to apply a dependency contract to a bsum. It would be a nice feature to
include a generic rule for bsum, i.e. checking whether the bsum result depends on a given
location set, which can be reduced to checking whether any of the summands depends on
it.

As seen in Section 3.7.5, KeY uses normalization and Gröbner bases to solve systems of
inequations. This is a technique a human can not reasonably perform, as it requires a
huge amount of steps and is very counterintuitive. A good idea could be to add rules that
make interactive reasoning easier, for example an estimation rule. Such a version of KeY
especially targeting interactive use is currently in development.

For some model methods, lemmas have been proved helpful, for example the lemma that
toUnsigned() is injective in Section 3.3.2.1. If such a lemma is included in the method
contract, it is necessary to insert the whole method contract and instantiate a quantifier
every time it shall be used. An alternative approach to avoid that would be to create
a user-defined taclet. However, this makes it impossible to prove the taclet, as in the
taclet proof Java method definitions are not available (compare to Section 3.4). A possible
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future improvement of KeY may be to provide the method definition axiom and make
such proofs possible. This certainly requires some thoughts to not accidentally introduce
circular dependencies into proofs.

During this case study, multiple bugs showed up, for example with saving and loading
proofs, with the user interface, and with taclet side proofs.

If multiple dependent methods shall be proved, at small changes in specification of them
often many proofs have to be repeated. At the moment, this is very inconvenient, because
all invalidated proofs have to be found and replayed manually. A suggestion would be to
implement a proof manager that takes respect of this dependencies and allows some kind
of batch proving. Such a manager could even allow different tools for different contracts,
for example it could include CBMC. Actually, there has been a batch prover for KeY in
Eclipse (MONKeY), but it seems that this is not developed any more.

4.2. Future Work
BigInteger Verification With the corrections and improvements described in the pre-
vious paragraph, the proofs done by hand in this thesis could be transferred to a more
formal basis and revised in KeY. Another big step would be moving from the overflow
ignoring semantics of this thesis to checking overflows.

In this thesis the general modeling of the BigInteger semantics was done. With this as
a foundation, future verification may include more complex methods of BigInteger as
for example the multiplication method, which implements Karatsuba and Toom-Cook
algorithms. There are many other methods of the BigInteger class which are frequently
used and could be verified: For example the power method, division and modulo methods
or primality tests (especially interesting for security applications). To conduct complete
formal proofs of those would increase the security, as Javas security packages heavily rely
on them. Since the BigInteger class is a very basic part of the Java Class Library, it can be
expected to remain virtually unchanged in future Java versions. This additionally justifies
to spend some time to its verification.

4.3. Conclusion
In this thesis real-world code from the Java Class Library has been specified and verified.
Further verification of BigInteger is supposed to be possible in general, since no reason
prohibiting it showed up. As became visible during this thesis, unfortunately some bugs
and problems exist, which require workarounds and make the verification difficult and
time-consuming. Additionally, it has been shown that it could be of great use to integrate
reasoning about bitvectors to the KeY system, maybe by adding the possibility to interact
with an existing tool like CBMC.

At the moment, KeY’s main advantages are its flexibility and possibilities, while its main
drawbacks reasoning about real-world code are usability and stability.
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Appendix

A. Java Source Code

A.1. Arrays.java

1 package java.util;
2
3 public class Arrays {
4 /*@ public normal_behavior
5 @ requires 0 <= from && from <= original.length && from <= to && original != null;
6 @ ensures \result != original; // always returns a new array
7 @ ensures \result.length == to - from;
8 @ ensures (to <= original.length)
9 @ ==> (\forall int i; from <= i && i < to; \result[i - from] == original[i]);

10 @ ensures (to > original.length)
11 @ ==> ((\forall int i; from <= i && i < original.length; \result[i - from] == original[i])
12 @ && (\forall int i; original.length <= i && i < to; \result[i - from] == 0));
13 @ assignable \nothing;
14 @
15 @ also
16 @
17 @ public exceptional_behavior
18 @ requires from < 0 || from > original.length || from > to || original == null;
19 @ signals (IllegalArgumentException e) from > to;
20 @ signals (ArrayIndexOutOfBoundsException e) from < 0 || from > original.length;
21 @ signals (NullPointerException e) original == null;
22 @ signals_only IllegalArgumentException, ArrayIndexOutOfBoundsException, NullPointerException;
23 @ assignable \nothing;
24 @*/
25 public static int[] copyOfRange(int[] original, int from, int to) {
26 int newLength = to - from;
27 if (newLength < 0)
28 throw new IllegalArgumentException(from + " > " + to);
29 int[] copy = new int[newLength];
30 System.arraycopy(original, from, copy, 0,
31 Math.min(original.length - from, newLength));
32 return copy;
33 }
34 }

A.2. BigInteger.java
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1 package java.math;
2
3 import java.util.Arrays;
4
5 public class BigInteger extends Number implements Comparable/*<BigInteger>*/ {
6 /**
7 * The signum of this BigInteger: -1 for negative, 0 for zero, or
8 * 1 for positive. Note that the BigInteger zero <i>must</i> have
9 * a signum of 0. This is necessary to ensures that there is exactly one

10 * representation for each BigInteger value.
11 *
12 * @serial
13 */
14 final int signum;
15
16 /**
17 * The magnitude of this BigInteger, in <i>big-endian</i> order: the
18 * zeroth element of this array is the most-significant int of the
19 * magnitude. The magnitude must be "minimal" in that the most-significant
20 * int ({@code mag[0]}) must be non-zero. This is necessary to
21 * ensure that there is exactly one representation for each BigInteger
22 * value. Note that this implies that the BigInteger zero has a
23 * zero-length mag array.
24 */
25 final int[] mag;
26
27 //@ static invariant BigInteger.ZERO.<inv>;
28 //@ static invariant BigInteger.ZERO.value == 0;
29
30 //@ ghost \bigint value = 0;
31
32 /*@ invariant value == calcValue(signum, mag);
33 @ invariant signum == 0 || signum == 1 || signum == -1;
34 @ invariant signum == 0 <==> mag.length == 0;
35 @ invariant mag.length > 0 ==> mag[0] != 0;
36 @ accessible \inv: signum, mag, mag[*], value;
37 @*/
38
39 // no valid invariant (after RuntimeException inv. has to hold)
40 // @ invariant mag.length < MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] >= 0;
41
42 // returns the value of the input integer as if it was unsigned
43 /*@ model_behavior
44 @ ensures value == 0 ==> \result == 0;
45 @ ensures value != 0 ==> \result > 0;
46 @ ensures value > 0 ==> \result == value;
47 @ ensures value < 0 ==> \result == value + 0x100000000L;
48 @ ensures \result >= 0;
49 @ ensures \result < 0x100000000L;
50 @ ensures (\forall int i; value != i ==> \result != toUnsigned(i)); // injective function
51 @ accessible \nothing;
52 @ static helper model long toUnsigned(int value) {
53 @ return (long)value & 0xffffffffL;
54 @ }
55 @*/
56
57 // returns 2^(32*exp) = (2^(32)) êxp
58 /*@ model_behavior
59 @ requires exp >= 0;
60 @ ensures \result >= 1;
61 @ ensures (\forall int i; 0 <= i && i < exp; twopower(i) < \result); // strictly increasing
62 @ measured_by exp;
63 @ accessible \nothing;
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64 @ static helper model \bigint twopower(int exp) {
65 @ return exp == 0 ? 1 : twopower(exp - 1) * 0x100000000L;
66 @ }
67 @*/
68
69 // returns the value of the BigInteger as \bigint
70 /*@ model_behavior
71 @ requires m.length > 0 ==> m[0] != 0;
72 @ requires s == 0 <==> m.length == 0;
73 @ ensures \result
74 @ == s*(\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
75 @ ensures s < 0 ==> \result < 0;
76 @ ensures s == 0 ==> \result == 0;
77 @ ensures s > 0 ==> \result > 0;
78 @ accessible m[*]; // m.length is a function in KeY, not a field, and thus not included here
79 @ static helper model \bigint calcValue(int s, int[] m) {
80 @ return s*(\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
81 @ }
82 @*/
83
84 /**
85 * This constant limits {@code mag.length} of BigIntegers to the supported
86 * range.
87 */
88 private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
89
90 /**
91 * This mask is used to obtain the value of an int as if it were unsigned.
92 */
93 final static long LONG_MASK = 0xffffffffL;
94
95 /**
96 * The BigInteger constant zero.
97 *
98 * @since 1.2
99 */
100 public static final BigInteger ZERO = new BigInteger(new int[0], 0);
101
102 /**
103 * This internal constructor differs from its public cousin
104 * with the arguments reversed in two ways: it assumes that its
105 * arguments are correct, and it doesn’t copy the magnitude array.
106 */
107 /*@ normal_behavior
108 @ requires ( magnitude.length < MAX_MAG_LENGTH
109 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] >= 0)
110 @ && (signum == 0 || signum == 1 || signum == -1)
111 @ && (magnitude.length > 0 ==> magnitude[0] != 0)
112 @ && (signum == 0 ==> magnitude.length == 0);
113 @ ensures this.mag == magnitude;
114 @ ensures (magnitude.length == 0 ==> this.signum == 0) &&
115 @ (magnitude.length != 0 ==> this.signum == signum);
116 @ assignable \nothing; // special purity rules for constructors
117 @
118 @ also
119 @
120 @ exceptional_behavior
121 @ requires magnitude.length > MAX_MAG_LENGTH
122 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] < 0;
123 @ signals_only ArithmeticException;
124 @ signals (ArithmeticException e) magnitude.length > MAX_MAG_LENGTH
125 @ || magnitude.length == MAX_MAG_LENGTH && magnitude[0] < 0;
126 @ assignable \nothing; // special purity rules for constructors
127 @*/
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128 BigInteger(int[] magnitude, int signum) {
129 this.signum = (magnitude.length == 0 ? 0 : signum);
130 this.mag = magnitude;
131 if (mag.length >= MAX_MAG_LENGTH) {
132 checkRange();
133 }
134 /*@ set value = calcValue(this.signum, this.mag); @*/
135 }
136
137 /**
138 * Returns a BigInteger whose value is {@code (this + val)}.
139 *
140 * @param val value to be added to this BigInteger.
141 * @return {@code this + val}
142 */
143 /*@ public normal_behavior
144 @ requires val.<inv> && \static_invariant_for(BigInteger);
145 @ requires val.mag.length < MAX_MAG_LENGTH
146 @ || val.mag.length == MAX_MAG_LENGTH && val.mag[0] >= 0;
147 @ requires this.mag.length < MAX_MAG_LENGTH
148 @ || this.mag.length == MAX_MAG_LENGTH && this.mag[0] >= 0;
149 @ ensures \result.value == val.value + this.value;
150 @ assignable \nothing;
151 @*/
152 public BigInteger add(BigInteger val) {
153 if (val.signum == 0)
154 return this;
155 if (signum == 0)
156 return val;
157 if (val.signum == signum)
158 return new BigInteger(add(mag, val.mag), signum);
159
160 int cmp = compareMagnitude(val);
161 if (cmp == 0)
162 return ZERO;
163 int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
164 : subtract(val.mag, mag));
165 resultMag = trustedStripLeadingZeroInts(resultMag);
166
167 return new BigInteger(resultMag, cmp == signum ? 1 : -1);
168 }
169
170 /**
171 * Adds the contents of the int arrays x and y. This method allocates
172 * a new int array to hold the answer and returns a reference to that
173 * array.
174 */
175 /*@ private normal_behavior
176 @ requires \static_invariant_for(BigInteger);
177 @ ensures simpleSum(\result) == simpleSum(x) + simpleSum(y);
178 @ ensures \result.length <= (x.length > y.length ? x.length : y.length) + 1;
179 @ assignable \nothing;
180 @*/
181 private static /*@ helper @*/ int[] add(int[] x, int[] y) {
182 // If x is shorter, swap the two arrays
183 if (x.length < y.length) {
184 int[] tmp = x;
185 x = y;
186 y = tmp;
187 }
188
189 int xIndex = x.length;
190 int yIndex = y.length;
191 int result[] = new int[xIndex];
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192 long sum = 0;
193 if (yIndex == 1) {
194 sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
195 result[xIndex] = (int)sum;
196 } else {
197 // Add common parts of both numbers
198 while (yIndex > 0) {
199 sum = (x[--xIndex] & LONG_MASK) +
200 (y[--yIndex] & LONG_MASK) + (sum >>> 32);
201 result[xIndex] = (int)sum;
202 }
203 }
204 // Copy remainder of longer number while carry propagation is required
205 boolean carry = (sum >>> 32 != 0);
206 while (xIndex > 0 && carry)
207 carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
208
209 while (xIndex > 0)
210 result[--xIndex] = x[xIndex];
211
212 // Grow result if necessary
213 if (carry) {
214 int bigger[] = new int[result.length + 1];
215 System.arraycopy(result, 0, bigger, 1, result.length);
216 bigger[0] = 0x01;
217 return bigger;
218 }
219 return result;
220 }
221
222 // no assumptions for zeros, parameter and result may have arbitrary amount of leading zeros
223 /*@ private static helper model \bigint simpleSum(int[] m) {
224 @ return (\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
225 @ }
226 @*/
227
228 // partial sum of the array, starting from startIndex (inclusive)
229 /*@ private model_behavior
230 @ accessible m[startIndex .. (m.length-1)];
231 @ private static helper model \bigint partialSum(int[] m, int startIndex) {
232 @ return (\sum int i;
233 @ startIndex <= i && i < m.length;
234 @ toUnsigned(m[i]) * twopower(m.length-i-1));
235 @ }
236 @*/
237
238 /**
239 * Subtracts the contents of the second int arrays (little) from the
240 * first (big). The first int array (big) must represent a larger number
241 * than the second. This method allocates the space necessary to hold the
242 * answer.
243 */
244 /*@ private normal_behavior
245 @ requires calcMagSum(big) > calcMagSum(little);
246 @ requires (big.length > 0 ==> big[0] != 0) && (little.length > 0 ==> little[0] != 0);
247 @ ensures simpleSum(\result) == simpleSum(big) - simpleSum(little); // may have leading zeros
248 @ assignable \nothing;
249 @*/
250 private static /*@ helper @*/ int[] subtract(int[] big, int[] little) {
251 int bigIndex = big.length;
252 int result[] = new int[bigIndex];
253 int littleIndex = little.length;
254 long difference = 0;
255
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256 // Subtract common parts of both numbers
257 /*@ loop_invariant 0 <= littleIndex && littleIndex <= little.length
258 @ && 0 <= bigIndex && bigIndex <= big.length
259 @ && big.length - bigIndex == little.length - littleIndex
260 @ && partialSum(result, bigIndex)
261 @ + (difference>>32)*twopower(big.length-bigIndex) // borrow from next digit
262 @ == partialSum(big, bigIndex)
263 @ - partialSum(little, littleIndex);
264 @ assignable result[(result.length-little.length)..(result.length-1)];
265 @ decreases littleIndex;
266 @*/
267 while (littleIndex > 0) {
268 difference = (big[--bigIndex] & LONG_MASK) -
269 (little[--littleIndex] & LONG_MASK) +
270 (difference >> 32);
271 result[bigIndex] = (int)difference;
272 }
273
274 // Subtract remainder of longer number while borrow propagates
275 boolean borrow = (difference >> 32 != 0);
276 /*@ loop_invariant 0 <= bigIndex && bigIndex <= big.length
277 @ && partialSum(result, bigIndex)
278 @ == partialSum(big, bigIndex) - partialSum(little, 0)
279 @ + (borrow ? twopower(big.length-bigIndex) : (\bigint)0);
280 @ assignable result[*];
281 @ decreases bigIndex;
282 @*/
283 while (bigIndex > 0 && borrow)
284 borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
285 /* --bigIndex;
286 * result[bigIndex] = big[bigIndex] - 1;
287 * borrow = (big[bigIndex] == 0);
288 */
289
290 // Copy remainder of longer number
291 /*@ loop_invariant bigIndex >= 0
292 @ && partialSum(result, bigIndex) == partialSum(big, bigIndex)
293 @ - partialSum(little, 0);
294 @ assignable result[*];
295 @ decreases bigIndex;
296 @*/
297 while (bigIndex > 0)
298 result[--bigIndex] = big[bigIndex];
299
300 return result;
301 }
302
303 /**
304 * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
305 * out of the supported range.
306 *
307 * @throws ArithmeticException if {@code this} exceeds the supported range.
308 */
309 /*@ private normal_behavior
310 @ requires mag.length <= MAX_MAG_LENGTH
311 @ && (mag.length != MAX_MAG_LENGTH || mag[0] >= 0);
312 @ assignable \nothing;
313 @
314 @ also
315 @
316 @ private exceptional_behavior
317 @ requires mag.length > MAX_MAG_LENGTH
318 @ || mag.length == MAX_MAG_LENGTH && mag[0] < 0;
319 @ signals (ArithmeticException e) mag.length > MAX_MAG_LENGTH
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320 @ || mag.length == MAX_MAG_LENGTH && mag[0] < 0;
321 @ signals_only ArithmeticException;
322 @ assignable \nothing;
323 @*/
324 private void checkRange() {
325 if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
326 reportOverflow();
327 }
328 }
329
330 /*@ private exceptional_behavior
331 @ signals (ArithmeticException e) true;
332 @ signals_only ArithmeticException;
333 @ assignable \nothing;
334 @*/
335 private static /*@ helper @*/ void reportOverflow() {
336 throw new ArithmeticException("BigInteger would overflow supported range");
337 }
338
339 /*@ private model_behavior
340 @ requires m.length > 0 ==> m[0] != 0;
341 @ ensures \result
342 @ == (\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
343 @ ensures m.length > 0 ==> \result > 0;
344 @ ensures \result >= 0;
345 @ ensures (\forall int[] m2; // A: a.length < b.length -> a.result < b.result
346 @ 0 <= m2.length && m2.length < m.length && (m2.length > 0 ==> m2[0] != 0);
347 @ calcMagSum(m2) < \result);
348 @ ensures (\forall int[] m3; // B: equal lengths and elements -> equal results
349 @ m3.length == m.length && (\forall int j; 0 <= j && j < m.length; m3[j] == m[j]);
350 @ \result == calcMagSum(m3));
351 @ accessible m[*];
352 @ private static helper model \bigint calcMagSum(int[] m) {
353 @ return (\sum int i; 0 <= i && i < m.length; toUnsigned(m[i]) * twopower(m.length-i-1));
354 @ }
355 @*/
356
357 /**
358 * Compares the magnitude array of this BigInteger with the specified
359 * BigInteger’s. This is the version of compareTo ignoring sign.
360 *
361 * @param val BigInteger whose magnitude array to be compared.
362 * @return -1, 0 or 1 as this magnitude array is less than, equal to or
363 * greater than the magnitude aray for the specified BigInteger’s.
364 */
365 /*@ normal_behavior
366 @ requires val.<inv>;
367 @ ensures calcMagSum(val.mag) == calcMagSum(mag) ==> \result == 0;
368 @ ensures calcMagSum(val.mag) > calcMagSum(mag) ==> \result == -1;
369 @ ensures calcMagSum(val.mag) < calcMagSum(mag) ==> \result == 1;
370 @ assignable \nothing;
371 @*/
372 final int compareMagnitude(BigInteger val) {
373 int[] m1 = mag;
374 int len1 = m1.length;
375 int[] m2 = val.mag;
376 int len2 = m2.length;
377 if (len1 < len2)
378 return -1;
379 if (len1 > len2)
380 return 1;
381
382 /*@ loop_invariant 0 <= i && i <= len1 && (\forall int j; 0 <= j && j < i; m1[j] == m2[j]);
383 @ assignable \nothing;
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384 @ decreases len1 - i;
385 @*/
386 for (int i = 0; i < len1; i++) {
387 int a = m1[i];
388 int b = m2[i];
389 if (a != b)
390 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
391 }
392 return 0;
393 }
394
395 /*@ private model_behavior
396 @ requires arr.length > 0; // case 1: arr = {}
397 @ requires (\exists int i; 0 <= i && i < arr.length; arr[i] != 0); // case 2: arr = {0 .. 0}
398 @ ensures \result >= 0;
399 @ ensures \result < arr.length && arr[\result] != 0
400 @ && (\forall int i; 0 <= i && i < \result; arr[i] == 0); // case 3: arr = {x1 .. xn}
401 @ private static helper model int firstNonZeroIndex(int[] arr);
402 @*/
403
404 /**
405 * Returns a copy of the input array stripped of any leading zero bytes.
406 */
407 /*@ private normal_behavior
408 @ ensures \result != val; // difference to trustedStripLeadingZeroInts
409 @ ensures \result.length <= val.length;
410 @ ensures val.length == 0 ==> result.length == 0; // case 1: arr = {}
411 @ ensures (\forall int i; 0 <= i && i < val.length; val[i] == 0)
412 @ ==> \result.length == 0; // case 2: arr = {0 .. 0}
413 @ ensures (\exists int i; 0 <= i && i < val.length; val[i] != 0)
414 @ ==> \result[0] != 0; // case 3: arr = {x1 .. xn}
415 @ ensures (\forall int i; 0 <= i && i < \result.length;
416 @ \result[i] == val[firstNonZeroIndex(val) + i]); // copy of old values, same order
417 @ assignable \nothing;
418 @*/
419 private static /*@ helper @*/ int[] stripLeadingZeroInts(int val[]) {
420 int vlen = val.length;
421 int keep;
422
423 // Find first nonzero int
424 /*@ loop_invariant 0 <= keep && keep <= vlen
425 @ && (\forall int i; 0 <= i && i < keep; val[i] == 0);
426 @ assignable \strictly_nothing;
427 @ decreases vlen - keep;
428 @*/
429 for (keep = 0; keep < vlen && val[keep] == 0; keep++)
430 ;
431 return java.util.Arrays.copyOfRange(val, keep, vlen);
432 }
433
434 /**
435 * Returns the input array stripped of any leading zero bytes.
436 * Since the source is trusted the copying may be skipped.
437 */
438 /*@ private normal_behavior
439 @
440 @ ensures \result.length <= val.length;
441 @ ensures val.length == 0 ==> result.length == 0; // case1: arr = {}
442 @ ensures (\forall int i; 0 <= i && i < val.length; val[i] == 0)
443 @ ==> \result.length == 0; // case2: arr = {0 .. 0}
444 @ ensures (\exists int i; 0 <= i && i < val.length; val[i] != 0)
445 @ ==> \result[0] != 0; // case3: arr = {x1 .. xn}
446 @ ensures (\forall int i; 0 <= i && i < \result.length;
447 @ \result[i] == val[firstNonZeroIndex(val) + i]); // copy of old values, same order

58



B. Settings of KeY

448 @ assignable \nothing;
449 @*/
450 private static /*@ helper @*/ int[] trustedStripLeadingZeroInts(int val[]) {
451 int vlen = val.length;
452 int keep;
453
454 // Find first nonzero int
455 /*@ loop_invariant 0 <= keep && keep <= vlen
456 @ && (\forall int i; 0 <= i && i < keep; val[i] == 0);
457 @ assignable \strictly_nothing;
458 @ decreases vlen - keep;
459 @*/
460 for (keep = 0; keep < vlen && val[keep] == 0; keep++)
461 ;
462 return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
463 }
464 }

A.3. Comparable.java
1 package java.lang;
2 import java.util.*;
3
4 public interface Comparable/*<T>*/ {
5 public int compareTo(/*T*/ Object o);
6 }

A.4. System.java
1 package java.lang;
2
3 public final class System {
4 // remarks: assume src and dest to be int[], src != dest, no exceptional
5 // -> should be enough for our use case
6 /*@ public normal_behavior
7 @ requires src instanceof int[] && dest instanceof int[];
8 @ requires src != dest;
9 @ requires srcPos >= 0 && destPos >= 0;

10 @ requires length >= 0;
11 @ requires srcPos + length <= ((int[])src).length && destPos + length <= ((int[])dest).length;
12 @ ensures (\forall int i; 0 <= i && i < length;
13 @ ((int[])dest)[destPos + i] == ((int[])src)[srcPos + i]);
14 @ assignable \strictly_nothing;
15 @*/
16 public static native void arraycopy(Object src, int srcPos,
17 Object dest, int destPos,
18 int length);
19 }

B. Settings of KeY
1 [Strategy]Timeout=-1
2 [Strategy]MaximumNumberOfAutomaticApplications=7000
3 [Strategy]ActiveStrategy=JavaCardDLStrategy
4
5 [StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT
6 [StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED
7 [StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT
8 [StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT
9 [StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
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10 [StrategyProperty]DEP_OPTIONS_KEY=DEP_ON
11 [StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_ON
12 [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON
13 [StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS
14 [StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS
15 [StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED
16 [StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF
17 [StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
18 [StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
19 [StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF
20 [StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE
21
22 [Choice]DefaultChoices=assertions-assertions\:on,
23 initialisation-initialisation\:disableStaticInitialisation,
24 intRules-intRules\:arithmeticSemanticsIgnoringOF,
25 programRules-programRules\:Java,
26 runtimeExceptions-runtimeExceptions\:ban,
27 JavaCard-JavaCard\:off,
28 Strings-Strings\:on,
29 modelFields-modelFields\:treatAsAxiom,
30 bigint-bigint\:on,
31 sequences-sequences\:on,
32 moreSeqRules-moreSeqRules\:off,
33 reach-reach\:on,
34 integerSimplificationRules-integerSimplificationRules\:full,
35 wdOperator-wdOperator\:L,
36 wdChecks-wdChecks\:off,
37 permissions-permissions\:off,
38 joinGenerateIsWeakeningGoal-joinGenerateIsWeakeningGoal\:off

Listing 4.1: Settings of KeY as displayed by "Proof" → "Show All Active Settings"
(reordered and shortened for better readability).

C. User-Defined Taclets
1 // user-defined Taclets for the BigInteger verification case study
2
3 \schemaVariables {
4 \term int i0,i1,t,a,b;
5 \term Heap h;
6 \variables int uSub;
7 }
8
9 \rules(integerSimplificationRules:full){

10
11 \lemma
12 bsum_all_summands_gez {
13 \find(bsum{uSub;}(i0,i1,t))
14 \varcond(\notFreeIn(uSub, i0, i1))
15 "Precondition": \add(==> \forall uSub; (i0 <= uSub & uSub < i1 -> t >= 0));
16 "Use Case": \add(bsum{uSub;}(i0,i1,t) >= 0 ==>)
17 };
18
19 bsum_estimation {
20 \find(bsum{uSub;}(a+1,b,(java.math.BigInteger::toUnsigned(h,t)
21 * java.math.BigInteger::twopower(h,b-uSub-1))))
22 \varcond(\notFreeIn(uSub, a,b,h))
23 "Valid Indices": \add(==> b >= a+1 & a+1 >= 0);
24 "Use Case": \add( bsum{uSub;}(a+1,b,java.math.BigInteger::toUnsigned(h,t)
25 * java.math.BigInteger::twopower(h,b-uSub-1))
26 < java.math.BigInteger::twopower(h,b-a-1) ==>)
27 };
28
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29 bsum_estimation_2 {
30 \find(bsum{uSub;}(a,b,(java.math.BigInteger::toUnsigned(h,t)
31 * java.math.BigInteger::twopower(h,b-uSub-1))))
32 \varcond(\notFreeIn(uSub, a,b,h))
33 "Valid Indices": \add(==> b >= a & a >= 0);
34 "Use Case": \add( bsum{uSub;}(a,b,java.math.BigInteger::toUnsigned(h,t)
35 * java.math.BigInteger::twopower(h,b-uSub-1))
36 < java.math.BigInteger::twopower(h,b-a) ==>)
37 };
38
39 }
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