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Abstract

While static type checking ensures that type errors do not occur at run time, many

other kinds of run-time errors cannot be prevented by conventional type systems.

To close this gap, there exist tools for the creation of optional type systems, i.e., type

systems that can be used in addition to a language’s existing type system. However,

these type systems are often over-approximative, i.e., they reject programs even if no

error can actually occur at run time. If one wants a general static analysis that leads to

fewer false positives, one can use formal veri�cation tools. On the other hand, using

these tools requires one to become familiar with them, which often includes learning a

separate speci�cation language.

This thesis presents a framework that allows programmers to de�ne optional type

systems for Java with as little speci�cation overhead as possible, and to check the

correctness of a program with regard to these type systems, while avoiding false

positives.

To achieve this, we implement a type-checking pipeline that consists of a type checker

developed in the Checker Framework – a framework for the creation of optional Java

type systems – and KeY – a formal veri�cation tool for Java. Whenever the type checker

cannot prove that some part of a program is correct, it translates the relevant type

properties to clauses in the Java Modeling Language (JML). Using this translation, KeY

can then be used to prove the program’s well-typedness.

We evaluate this pipeline in a case study by using it to specify and prove some

correctness properties of a small program. We see that the size of the speci�cation

is smaller than it would have been if we had only used JML and that the veri�cation

overhead is quite small as well.

Thus, we show that formal veri�cation tools can be used in conjunction with type

checkers to build a veri�cation pipeline that is easier to use than a traditional formal

veri�cation tool while also not being as over-approximative as a traditional type system.
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Zusammenfassung

Eine statische Typprüfung stellt zwar sicher, dass zur Laufzeit keine Typfehler auftreten,

aber viele andere Arten von Laufzeitfehlern können von herkömmlichen Typsystemen

nicht verhindert werden.

Um diese Lücke zu schließen, gibt es Werkzeuge für die Erstellung optionaler Typsys-

teme, die zusätzlich zum existierenden Typsystem einer Sprache genutzt werden können.

Allerdings sind diese Typsysteme oft überapproximativ, d.h. sie lehnen Programme ab,

selbst wenn zur Laufzeit überhaupt keine Fehler auftreten können. Wenn man eine

allgemeine statische Analyse will, die weniger falsch positive Ergebnisse mit sich bringt,

kann man auf Werkzeuge für formale Veri�kation zurückgreifen. Auf der anderen Seite

muss man sich, um diese Werkzeuge verwenden zu können, in sie einarbeiten, wobei

man oft auch eine separate Spezi�kationssprache lernen muss.

Diese Arbeit präsentiert ein Gerüst, das es Programmierern erlaubt, mit möglichst

wenig Spezi�kationsaufwand optionale Typsysteme für Java zu de�nieren und die

Korrektheit von Programmen ins Bezug auf diese Typsysteme zu überprüfen, und das

dabei falsch positive Ergebnisse vermeidet.

Um das erreichen, implementieren wir eine Typprüfungs-Pipeline, die aus einem im

Checker Framework – einem Gerüst für die Erstellung von optionalen Typsystemen für

Java – entwickelten Typprüfer und aus KeY – einem Werkzeug für formale Veri�kation

für Java – besteht. Wann immer der Typprüfer nicht beweisen kann, dass ein Teil eines

Programms korrekt ist, übersetzt er die relevanten Typeigenschaften in Klauseln der

Java Modeling Language (JML). Mit dieser Übersetzung kann dann KeY genutzt werden,

um die Wohlgetyptheit des Programms zu beweisen.

Wir evaluieren diese Pipeline in einer Fallstudie, indem wir sie nutzen, um einige

Korrektheitseigenschaften eines kleinen Programms zu spezi�zieren und zu beweisen.

Wir sehen, dass die Größe der Spezi�kation kleiner ist als wenn wir nur JML benutzt

hätten und dass der Veri�kationsaufwand ebenfalls recht gering ist.

So zeigen wir, dass Werkzeuge für formale Veri�kation zusammen mit Typprüfern

genutzt werden können, um eine Veri�kations-Pipeline zu bauen, die einfacher zu

benutzen ist als ein traditionelles Werkzeug für formale Veri�kation und gleichzeitig

nicht so überapproximativ ist wie ein traditionellen Typsystem.
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1. Introduction

Many programming errors, like type errors, can be detected by the compiler. Others,

however, can usually only be found at run time. This includes, among others, errors

where unstated assumptions about a variable’s properties are violated. For example, an

integer variable which should only contain non-negative numbers may be assigned a

negative number, or a string which should only contain dates of the form “1815-12-10”

may be assigned a date of the form “10.12.1815”.

One way to deal with this problem is to make the type system of the language

stronger so that it can detect more errors at compile time.

In fact, there already exist frameworks that allow the de�nition of new type systems

for existing programming languages. The Checker Framework [Die+11] allows users to

write custom compile-time checkers for pluggable Java type systems. A pluggable type

system is an optional type system that has no e�ect on a program’s run-time semantics,

and that can be used in conjunction with other pluggable type systems [Bra04, 2, 3].

Bean Validation [Mor19] o�ers an alternative approach by allowing users to de�ne

constraints like the date format constraint above within the program and to verify them

at run time.

However, run-time veri�cation brings with it a performance cost, and it can by its

nature not guarantee that no error occurs at a program’s run time. Type checkers

can o�er such a guarantee, but on the other hand they are limited to those properties

encoded in their types, and their static analysis often rejects programs that never

actually behave incorrectly. By using a formal veri�cation tool instead of a type checker,

one can avoid most such false positives, but that then requires learning a speci�cation

language and the intricacies of a veri�cation tool. That introduces a signi�cant overhead

that a compile-time type checker does not.

The �rst goal of this thesis is to develop a framework that allows the user to de�ne a

pluggable property type system with as little speci�cation and veri�cation overhead

as possible. By property type system, we mean a type system in which every type is

associated with a property – i.e., a boolean expression –, such that every instance of

that type satis�es the property.

The second goal is to allow the user to check the well-typedness of a program with

regard to such a type system while avoiding false positives.

To achieve this, we implement a type-checking pipeline that consists of a checker

developed in the Checker Framework and the formal veri�cation tool KeY [Ahr+16].

Whenever the type checker cannot prove that some part of a program is correct, it

1



1. Introduction

translates the relevant property types to clauses in the Java Modeling Language (JML)

[Lea+13], a behavioral speci�cation language for Java. This JML speci�cation can then

be read and proven by KeY.

In this way, we are able to combine the ease-of-use of pluggable type systems with

the power and �exibility of formal veri�cation.

1.1. Contributions

The main contributions of this thesis are the following:

1. We de�ne a theoretical framework for pluggable property type systems in Java.

This includes the following components:

a) The property types themselves. Property types are immutable types that

are associated with two boolean expressions; the well-formedness condi-

tion determines if the type itself is well-formed, the property determines

which instances belong to the type. For example, consider the property

type @Interval(min="2", max="3") int. The user may have de�ned the

well-formedness condition 0 <= min && min <= max for @Interval types,

making this type well-formed. The property may have been de�ned as

min <= subject && subject <= max, meaning that every integer between

min and max is an instance of that type.

b) Type hierarchies between property types which are consistent with the

properties. For example, if we have two property types @Interval(min="2"

, max="3") int and @Interval(min="1", max="4") int, the former can

be a sub-type of the latter.

c) An algorithm that translates the property types in a Java program to JML

speci�cations, while taking into account the knowledge gained from the

type checker.

d) Di�erent theoretical notions of program correctness based on the type rules

and JML. A program may not respect the type rules given by the property

type hierarchy, but still respect all JML speci�cations when the property

types are translated to JML. We explain how this can be used to avoid false

positives.

2. The implementation of this framework consists of the following components:

a) A domain-speci�c language that allows the user to de�ne a property type

hierarchy and associate every property with a Java annotation type.

2



1. Introduction

b) A type checker in the Checker Framework which parses and uses multiple

such hierarchy de�nitions to check whether all variables in the program

observe the properties they are annotated with.

c) An implementation of the aforementioned translation algorithm, which

takes the program to be checked and the output of the type checker to

create a JML speci�cation. This speci�cation can then be proven in KeY.

3. During the implementation of this thesis, some additions were made to the

Checker Framework and to KeY:

a) To accommodate the fact that the user might want to use multiple property

type hierarchies simultaneously, the Checker Framework now allows a

checker to have multiple instantiations of the same checker type as sub-

checkers.

b) KeY lacked support for JML assume and assert statements, which were also

implemented during the development of this thesis.

1.2. Structure

Chapter 2 introduces some of the preliminaries necessary to de�ne property types. It

gives an overview over the Checker Framework, JML, and KeY, and it introduces some

existing pluggable Java type systems which the property type system is based upon.

In Chapter 3, we de�ne property types, property type hierarchies, and their transla-

tion to JML.

Chapter 4 explains all of the components in the type-checking pipeline and how

they work together using some small example programs, while also discussing how

this pipeline was implemented.

In Chapter 5, we evaluate this implementation in a small case study whose full source

code can be found in Appendix A.

Finally, Chapter 6 concludes the thesis, summarizing the results and giving an outlook

on how the approach introduced here may be re�ned in the future.

1.3. RelatedWork

As mentioned in the previous section, there already exist some frameworks that allow

programmers to de�ne and verify some properties via Java annotations, like Bean
Validation and the Checker Framework.

In this section, we give an overview over those two tools, as well as other tools and

type systems which this thesis is based on.

3



1. Introduction

1.3.1. Run-time verification

Bean Validation [Mor19] is an example of run-time validation. It allows the programmer

to de�ne annotations via Validator objects. These Validators provide a boolean method

which, when supplied with an object, must return true if and only if the object conforms

to the annotation’s constraints. Annotations de�ned this way can be used to annotate

types, �elds, methods, constructors, parameters, and container elements of JavaBeans
[Ham97] only. [Mor19, 3]

Listing 1.1 shows an example. The @NotNull and @Email annotations are prede�ned,

so no declaration and Validator needs to be provided. They ensure that a Person’s

name and email �elds cannot be set to null and that their email �eld can only be set to

well-formed email addresses.

The Validators are called at pre-de�ned times during run-time, e.g, whenever a setter

method is called. They can also be called manually. [Mor19, 6.4]

1 public class Person {
2 private @NotNull String name;
3 private @NotNull @Email String email;
4

5 public String getName() { return name; }
6 public void setName(String name) { this.name = name; }
7 public String getEmail() { return email; }
8 public void setEmail(String email) { this.email = email; }
9 }

Listing 1.1: A Java program with annotations

1.3.2. Pluggable type system frameworks

1 public @Nullable String getNameFromDB(boolean useDefaultIfEmpty) {
2 String s = db.getName();
3 if (s == null && useDefaultIfEmpty) return "John Doe";
4 else return s;
5 }
6

7 public void foo(Person person) {
8 person.setName(getNameFromDB(true));
9 }

Listing 1.2: Possible NullPointerException

4



1. Introduction

The Checker Framework [Die+11] and the property types introduced in this thesis

are frameworks that allow for the addition of optional type systems to Java. In [Bra04,

2], optional type systems are de�ned as optional extensions of a language’s existing

type system that have no e�ect on the run-time semantics. I.e., any Java program that

uses some checker from the Checker Framework and is correct with respect to that

checker’s type system is also a valid Java program with the same run-time semantics it

would have without the checker.

Any type system implemented in Checker Framework also constitutes a pluggable
type system as de�ned in [Bra04, 3] because the Checker Framework – as its name

implies – provides a standardized framework through which multiple optional type

systems may be added to the Java compiler.

Rather than de�ning the annotations that form these type systems via Java methods,

as is the case for Bean Validation, the Checker Framework provides multiple di�erent

checker programs for di�erent sets of related annotations, along with an API to allow

the user to write their own checkers [Che20, 31].

The semantics of an annotation and in which program states the constraints have to

hold depends on the individual checker.

One example for a pluggable type system implemented in the Checker Framework

which is relatively easy to understand is the nullness checker [Che20, 3], which we use

as an example in this section. An example for a more complex type system is PUnit
[XLD20], which implements a type system for units of measurements.

If we look again at the example in Listing 1.1, we could show the correctness of

that program in the Checker Framework by using the nullness checker, along with a

custom e-mail checker. The nullness checker’s type system would ensure at compile

time that a variable of type @NotNull Object – in the Checker Framework it is called

@NonNull Object instead – is never null after it has been initialized. Our custom e-mail

type system would similarly ensure at compile time that a string of type @Email String

always contains a valid e-mail address after it has been initialized.

The advantage of this when compared to something like Bean Validation is that we

verify the correctness of the program at compile time, and can thus eschew run-time

checks. The Checker Framework has no impact on a program’s run-time performance.

The biggest disadvantage is that most type systems can only ever be a conservative

approximation of the property we want to show. For example, it is very easy to write a

program that never causes a NullPointerException but is still not well-typed according

to the nullness checker. Take Listing 1.2 as an example. To prove that that program never

throws a NullPointerException, we must show that the method getNameFromDB()

never returns null if its parameter is set to true – not just for this class but for any sub-

class as well. While the nullness checker does have some capabilities to deal with such

method post-conditions, those do not cover all conceivable post-conditions, meaning

5



1. Introduction

that in some situations we have to live with false positives. With run-time checks such

false positives can obviously not occur.

This disadvantage can be mitigated by using formal veri�cation systems, which bring

with them their own sets of advantages and disadvantages.

1.3.3. Formal verification

Formal veri�cation systems formally prove or disprove that a given program respects

a given speci�cation. These speci�cations are often written in dedicated speci�cation
languages like the Java Modeling Language.

The Java Modeling Language (JML) [Lea+13] is a behavioral interface speci�cation

language for Java. It applies the design-by-contract [Mey92] methodology to Java by

allowing programmers to de�ne a method’s behavior using a pre-condition – which

describes the program states in which the method is allowed to be called – and a post-

condition – which describes the valid program states after the method has terminated.

[Lea+13, 1.1]

There exist many formal veri�cation tools that work with JML speci�cations.

OpenJML [Cok11] encodes the JML-annotated Java code into a set of SMT formulas

in SMT-LIB [BFT17] format, which can then be passed to any SMT-LIB-compatible

solver.

KeY [Ahr+16] veri�es the correctness of JML contracts by translating them into

sequents of JavaDL formulas, JavaDL being a logic whose formulas can contain Java

programs. [Ahr+16, 1.4]

While formal veri�cation tools like KeY cannot prove everything, they lead to fewer

false positives than most type systems. For example, we could annotate the method

getNameFromDB() in Listing 1.2 with the post-condition ensures useDefaultIfEmpty

==> \result != null; and check that post-condition using OpenJML or KeY.

On the other hand, writing a speci�cation and learning the intricacies of a veri�cation

system is much more di�cult than using a type checker.

1.3.4. Dependent types and refinement types

The property types introduced in this thesis are very similar to re�nement types as seen

for example in LiquidHaskell [Vaz+14].

LiquidHaskell’s re�nement types allow the programmer to decorate types with logical

predicates. Depending on where such a decorated type occurs, its predicate can be

interpreted as a function pre-condition, a function post-condition, or an invariant.

Re�nement type systems are a type of dependent type systems. In a language with

a dependent type system, references to programs and variables can appear inside of

types [Chl13, 1.2.2].

6



1. Introduction

The type system of LiquidHaskell limits itself to SMT-decidable predicates. The

well-typedness of a LiquidHaskell program can then always be decided by translating

all re�nement predicates to SMT and giving them to an SMT solver. [Vaz+14, 1, 2.1]

Full dependent type systems go a step further and make no restrictions about which

values can appear in types. This of course comes at the cost of the well-typedness of a

program no longer being decidable. An example for a language with full dependent

types is Idris [Bra13].

7



2. Preliminaries

In this chapter, we give an overview over the type systems and tools presented in

Section 1.3, as well as some other foundations that are necessary to understand this

thesis.

Before we begin, some notes on notation.

1. For any n : N, we de�ne [n] := {1, . . . ,n} to be the set containing all positive

natural numbers less than or equal to n.

2. For any n : N, we de�ne (ei)[n] to be a tuple containing n elements ei , indexed by

i : [n]. We also write just (ei) if the index set is obvious from the context.

3. We sometimes use Java booleans as operators of logical symbols. For example,

we write a → b to mean that if a evaluates to true, then so does b (i.e., a → b is

true if and only if !a || b evaluates to true).

4. We use a colon (:) to denote both type membership and set membership. I.e.,

x : X means either that x is a variable or expression of type X , or that x is an

element of the set X .

2.1. Partial orders & lattices

Lattices are a kind of partial order important in type theory. In particular, the Checker

Framework expects all annotation hierarchies to be bounded lattices.

De�nition 2.1 (Partial order). A partial order is a pair (S, �) consisting of a set S
and a relation � on S such that

1. � is re�exive, i.e., ∀s : S . s � s .

2. � is transitive, i.e., ∀a,b, c : S . a � b ∧ b � c → a � c .

3. � is anti-symmetric, i.e., ∀a,b : S . a � b ∧ b � a → a = b.

8



2. Preliminaries

De�nition 2.2 (Lattice). A lattice is a partial order (S, �) such that

1. ∀a,b : S . ∃j : S . a � j ∧ b � j ∧ ∀c : S . a � c ∧ b � c → j � c . We denote j
as a ∨ b and call it the least upper bound or join of a and b.

2. ∀a,b : S . ∃m : S . m � a ∧m � b ∧ ∀c : S . c � a ∧ c � b → c � m. We

denotem as a ∧ b and call it the greatest lower bound or meet of a and b.

De�nition 2.3 (Bounded lattice). A bounded lattice is a lattice (S, �) such that

1. ∃⊥ : S . ∀s : S . ⊥ � s . We call ⊥ the bottom element, or bottom for short.

2. ∃> : S . ∀s : S . s � >. We call > the top element, or top for short.

We now de�ne direct products of partial order, which later allow us to combine two

type systems into a single type system.

De�nition 2.4 (Direct product). Given two partial orders (S1, �1), (S2, �2), we

de�ne the direct product of those two partial orders as

(S1, �1) × (S2, �2) := (S1 × S2, �1 × �2)

such that S1×S2 is the Cartesian product of S1 and S2 and �1 × �2 is the relation

de�ned by

(a1,a2) (�1 × �2) (b1,b2) ⇐⇒ a1 �1 b1 ∧ a2 �2 b2

2.2. The Checker Framework

In this section, we give an overview over Java annotations and the Checker Framework.

As mentioned in the introduction, the Checker Framework [Che20] is a framework

for the creation of pluggable type systems for Java.

2.2.1. Java annotations

Java annotation types are a special kind of interface type [Gos+15, 9.6]. Listing 2.1

shows an example for an annotation type de�nition.

9
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1 public @interface Regex {
2 String value();
3 }

Listing 2.1: Regex.java

1 public void @Regex(value="(ab)*") String foo(int n) {
2 String result = "";
3 for (int i = 0; i < n; ++i) {
4 result += "ab";
5 }
6 return result;
7 }

Listing 2.2: Regex usage

The main di�erence between annotation types and other interface types is that

annotation types are subject to some restrictions. [Gos+15, 9.6]

1. They cannot be generic.

2. They cannot explicitly extend another type.

3. Their methods can have neither parameters nor type parameters.

4. Their methods cannot have throws clauses.

The main feature of annotation types is that they instantiate annotations, which can

(usually) appear next to any declaration.

Listing 2.2 shows an example. The annotation @Regex(value="(ab)*") is de�ned

by writing the @ sign, followed by the annotation type’s name, followed by a value for

every method belonging to the annotation type.

Annotations are used by so-called annotation processors [Che20, 2.2.2], compiler plug-

ins that evaluate some annotations. Some annotation processors, like those developed

in the Checker Framework, use this to expand Java’s type system. Some, like those that

evaluate the SuppressWarnings annotation type
1
, use it to suppress compiler warnings

or change a program’s semantics in some other way.

For our example annotation type Regex, we can imagine an annotation processor

which veri�es that every String annotated with @Regex(value="x") matches the

regular expression x .

1https://docs.oracle.com/javase/7/docs/api/java/lang/SuppressWarnings.html

10

https://docs.oracle.com/javase/7/docs/api/java/lang/SuppressWarnings.html


2. Preliminaries

1 public @NonNull Object foo(@Nullable Object x) {
2 return x;
3 }
4

5 public @NonNull Object bar(@NonNull Object x) {
6 return x;
7 }
8

9 public @Nullable Object baz() {
10 return null;
11 }

Listing 2.3: Nullness example I

2.2.2. The nullness checker

Checkers developed in the Checker Framework are annotation processors that evaluate

annotations on type de�nitions to expand Java’s type system [Che20, 2].

We now go through a small example using the Checker Framework’s nullness checker

to illustrate the most important features of the Checker Framework. The documentation

for this checker can be found under [Che20, 3].

Listing 2.3 shows three methods, which demonstrate two of the annotation types

supported by the nullness checker: A variable annotated with @NonNull must not be null,

whereas a variable annotated with @Nullable can be null. The @NonNull annotations

are actually unnecessary because @NonNull is the default annotation, but we have

written them out in this example for the sake of clarity.

Like all annotation hierarchies in the Checker Framework, these two annotations

form a bounded lattice, with @NonNull as bottom and @Nullable as top. By taking the

direct product of this lattice and the Java program’s type hierarchy (see De�nition 3.11),

we obtain this checker’s type hierarchy.

The checker checks that the type system de�ned by this hierarchy is respected. For

example, it checks that bar() is only called with non-null arguments. If any method

tries calling bar() with a null argument, the checker emits a type error. The checker

also sees that the method foo is not well-typed, since it may return null despite being

annotated with @NonNull. bar and baz on the other hand, are well-typed.

The Checker Framework also supports the implementation of type re�nement rules

[Che20, 29.7], as demonstrated by the example in Listing 2.4. Inside the if branch, x is

implicitly cast to the type @NonNull Object, making the method refined() well-typed.

However, the nullness checker’s re�nement rules are only a conservative approxima-

tion. The method notRefined() also never returns null but the checker still emits an

error.

11
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1 public @NonNull Object refined(@Nullable Object x) {
2 if (x != null) {
3 return x;
4 } else {
5 return new Object();
6 }
7 }
8

9 public @NonNull Object notRefined(@Nullable Object x) {
10 boolean b = x == null;
11 if (!b) {
12 return x;
13 } else {
14 return new Object();
15 }
16 }

Listing 2.4: Nullness example II

Despite these issues, the Checker Framework and the nullness checker are obviously

useful and powerful tools and remain widely used in practice. In fact, the typing rules

could be expanded to be able to handle methods like notRefined(), but expanding

them to be able to handle all or even most correct programs requires some sort of formal

veri�cation.

2.3. JML and KeY

In this section, we give an overview over JML and the JML veri�cation tool KeY.

2.3.1. JML

The Java Modeling Language (JML) [Lea+13] allows programmers to specify the behav-

ior of their program. The most common way to do this is to apply the design-by-contract
[Mey92] methodology and specify a method contract for every method. Such a contract

consists, among other things, of a pre-condition and a post-condition. When a method,

which we call the callee, is called by a caller, the caller must prove the callee’s pre-

condition. It can then assume that after the callee returns, its post-condition will hold.

The callee on the other hand can always assume that its pre-condition holds when it is

called. It must then prove that when it returns, its post-condition holds. [Lea+13, 1.1]

Method contracts serve as a way to not only specify how a program should behave,

but also as a way to divide the proof that a program is correct into smaller sub-proofs.

12
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This is because the correctness of each method contract can be proven separately, and

there is no need for the caller to know the callee’s implementation as long as it knows

that the callee’s contract holds.

2.3.2. Method contracts

In this section, we explain how to specify a method contract in JML using a simple

example.

The full documentation for JML method contracts is found under [Lea+13, 9].

The contract starts with the keywords public behavior.

public means that this contract is public and can be used by all callers.

behavior is the default behavior keyword and does nothing. There are other behav-

iors like normal_behavior, which would specify that this method always terminates

normally, i.e., without an exception. All contracts in this thesis use the default behavior.

Next, diverges gives us the condition under which the method may not terminate.

By writing diverges true, we are saying that the method may not terminate in any

case. Obviously, the method in our example does always terminate, but since this thesis

does not concern itself with termination proofs, we always write diverges true on

our contracts to make the proofs easier.

Next, requires true is the method’s pre-condition. Normally JML would also im-

plicitly add the pre-condition requires x != null but we prevented that by writing

/*@nullable@*/ next to x’s type. y, however, is not nullable, so we get the additional

pre-condition requires y != null.

Lastly, ensures \result == x || result == y is the post-condition. Since the

return type is not /*@nullable@*/, we also have the additional post-condition ensures

\result != null.

Thus, this method’s contract states that when this method is called in any state in

which its second argument y is not null, the method either returns a result which is

identical to one of the arguments, or does not terminate.
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1 /*@ public behavior
2 @ diverges true;
3 @ requires true;
4 @ ensures \result == x || \result == y;
5 @*/
6 public Object neverReturnsNull(/*@nullable@*/ Object x, Object y) {
7 boolean b = x == null;
8 if (!b) {
9 return x;

10 } else {
11 return y;
12 }
13 }

Listing 2.5: Method contract

2.3.3. Block contracts

KeY also supports block contracts. Block contracts, which were introduced in [Wac12]

and further developed in [Lan18], allow programmers to specify a contract for any code

block.

Listing 2.6 shows an example, which is very similar to the method contract in

Listing 2.5.

A block contract works much like a method contract. In our example, we must

prove �rst that, if the block is entered in a state in which y != null, either it does

not terminate (since we again have the clause diverges true), or it sets the variable

result to either x or y. Then, we must prove that whenever the block is entered, y !=

null holds. We can then skip the block and assume that result == x || result == y

holds.

14



2. Preliminaries

1 /*@ behavior
2 @ diverges true;
3 @ requires y != null;
4 @ ensures result == x || result == y;
5 @*/
6 {
7 boolean b = x == null;
8 if (!b) {
9 result = x;

10 } else {
11 result = y;
12 }
13 }

Listing 2.6: Block contract

2.3.4. Assertions and assumptions

The last JML speci�cation element we will talk about are assertions and assumptions,

which can also be read about in [Lea+13, 13.3, 13.4].

Observe the program in Listing 2.7.

It starts with an assume statement containing the expression y != null. This tells

KeY that it should assume without checking that y is never null at this point in the

program.

The assert statement in the last line tells KeY to prove that, at this point in the

program, x can never be null.

Assertions and assumptions were implemented in KeY during the development of this

thesis. They are transformed into equivalent block contracts, as shown in Listing 2.8.

The block contract generated by the assumption contains a clause of the kind

ensures_free, which we have not talked about yet. This is a so-called free post-condition.

It can be assumed by the caller (or, in the case of a block contract, by the surrounding

method) to hold, but it does not have to be shown by the callee (or, in this case, the

block).

1 //@ assume y != null;
2 x = y;
3 //@ assert x != null;
4

Listing 2.7: Assertions and assumptions
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1 /*@ behavior
2 @ ensures_free y != null;
3 @*/
4 { }
5

6 x = y;
7

8 /*@ behavior
9 @ ensures x != null;

10 @*/
11 { }
12

Listing 2.8: Transformation into block contracts

There are also free pre-conditions, speci�ed using requires_free, which can be

assumed to hold by the callee without having to be shown by the caller.

Thus, the JML speci�cations in Listing 2.7 and Listing 2.8 are equivalent; they both

state that, if we assume y != null to hold before the assignment x = y, then x != null

will hold after the assignment.

2.3.5. KeY

KeY [Ahr+16] works by translating every JML method contract into a sequent of JavaDL

formulas. JavaDL is a logic whose formulas can contain and reason about Java programs.

[Ahr+16, 1.4]

De�nition 2.5 (Sequent). [Ahr+16, 2.2.2] A sequent is a pair of sets of formulas

denoted as

Φ =⇒ Ψ

Φ is called the antecedent and Ψ the succedent of the sequent.

The sequent Φ =⇒ Ψ is valid if and only if the formula∧
ϕ:Φ

ϕ →
∨
ψ :Ψ

ψ

is valid.

It then applies rules from a sequent calculus to show the contracts’ correctness.
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One of the most important concepts in KeY’s calculus is that of symbolic execution.

Symbolic execution, like its name implies, executes a program step by step without

ever substituting speci�c values for the program’s variables.

We demonstrate this concept by the following (simpli�ed) example.

Example 2.1 (Symbolic execution). We start with the sequent

=⇒ x > 0→ [ if (x > 0) { y = 0; } else { y = 1; } ] y = 0

This sequent contains only a single formula, which states that, if x > 0, then

after executing the given program, y = 0 will hold.

After applying one rule, we get the equivalent sequent

x > 0 =⇒ [ if (x > 0) { y = 0; } else { y = 1; } ] y = 0

Because we know that x > 0, symbolically executing the if construct yields

x > 0 =⇒ [ y = 0; ] y = 0

Now, symbolically executing the assignment to y yields

x > 0,y = 0 =⇒ y = 0

which is obviously valid.

This example should make it clear how we can use KeY as a sort of super-type-

re�nement tool. If we translated the NonNull and Nullness annotations from Sec-

tion 2.2.2 to JML, we could verify that the method notRefined from Listing 2.4 never

returns null.

2.4. A restricted Java fragment

We refrain from presenting property types using either a fully formalized theoretical

language or an abstract language-independent presentation. Instead, we use a restricted

subset of Java 8 [Gos+15], which we outline in this section.

De�nition 2.6 (Well-typedness (Java)). We de�ne the set of all well-typed Java
programs WTJava as the set of all Java programs pr such that

17
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1. pr conforms to the Java Language Speci�cation [Gos+15],

2. generic types do not occur in pr,

3. assignments only occur in pr as top-level statements, i.e., a statement like

(x = 5) + foo(x) is illegal. A statement like foo(x++) is also illegal because

the operator. ++ contains an implicit assignment.

We now de�ne the set of types for a given Java program.

De�nition 2.7 (Set of types J ). For a given programpr : WTJava , letCl(pr) be the

set of all classes and interfaces (not counting annotation types) in pr. Furthermore,

let P be the set of primitive Java types.

Then J (pr) := Cl(pr) Û∪P Û∪{>J ,⊥J , nulltype}.

We also give some informal de�nitions for type contexts and program states.

De�nition 2.8 (Context). A context Γ for a program pr : WTJava maps variables

to types in J (pr).
We say that a variable is accessible in Γ if it is contained in Γ’s domain.

We say that an expression is legal in Γ if all variables used in the expression are

accessible and the expression is a well-formed Java expression.

We write Γ(id) = T if, in the context Γ, the identi�er id refers to a variable of

type T .

We write Γ(id) = (T , (Ti)[n]) if, in the context Γ, the identi�er id refers either to

a method with return type T and parameter types Ti , or to a constructor of class

T with parameter types Ti . In non-static methods, p1 : T1 is the method receiver

this.

We write Γ |= e : T if, in the context Γ, the expression e is legal, always terminates

normally, and has type T .

We write Γ |= e : T c
if, in the context Γ, the expression e is legal, always

terminates normally, has type T , and is constant.

We write Γ |= e : Tp
if, in the context Γ, the expression e is legal, always

terminates normally, has type T , and is pure.

We write id : Exprinit

T (Γ) if, in the context Γ

1. the identi�er id refers to a variable of type T that is initialized, and

2. if id is a �eld access o.f, then o is initialized.
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A de�nition of initialized variables is given in Section 2.6.

De�nition 2.9 (Program state). Given a program pr : WTJava and its set of types

J (pr), a program state ς is a run-time state of pr.

We consider such a state to be a function which maps valid expressions to their

type and value, that value being either a primitive literal or an object.

De�nition 2.10 (States in context). Let Γ be a context in a program pr : WTJava .

We de�ne S(Γ) to be the set of all program states in which all variables that are

accessible in Γ are also accessible.

De�nition 2.8 references the concepts of “constant expressions” and “pure expres-

sions”, which we de�ne below.

Intuitively, a constant expression is one whose value is known at compile time,

regardless of the context in which it occurs. A pure expression’s value does not have to

be known at compile time, but the expression must be deterministic and side-e�ect free.

De�nition 2.11 (Constant expression). Given a context Γ, a constant expression
is a Java expression denoting a value of primitive type or a String that – when

executed in a state ς : S(Γ) – terminates normally, and is composed using only the

following: [Gos+15, 15.28]

1. literals of primitive type and literals of type String,

2. casts to primitive types and casts to type String,

3. the operators +, -, ~, !, *, /, %, +, -, <<, >>, >>>, <, <=, >, >=, ==, !=, &, ^, |, &&,

||, ?:,

4. parenthesized expressions whose contained expression is a constant expres-

sion,

5. simple names that refer to constant variables, i.e., variables of primitive

type or type String that are initialized with a constant expression [Gos+15,

4,12,4], and
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6. quali�ed names of the form TypeName.identifier that refer to constant

variables, i.e. �nal variables of primitive type or type String that are initialized

with a constant expression.

ExprcT is the set of all constant Java expressions e such that ΓG |= e : T , where

ΓG is the global type context in which only public static members of public classes

are accessible.

StringcT is the set of all string representations of such expressions. I.e., for

every expression e : ExprcT , we have "e" : StringcT .

ExprcT (v1 : V1, . . . ,vn : Vn) is the set of all constant Java expressions e such that

Γ |= e : T for the context Γ in which

1. all members accessible in the global context are accessible,

2. local variables vi are accessible and initialized to constant expressions, and

3. nothing else is accessible.

StringcT (v1 : V1, . . . ,vn : Vn) is the set of all string representations of such

expressions.

ExprcT (Γ) is the set of all constant Java expressions of type T in the context Γ.

StringcT (Γ) is the set of all string representations of such expressions.

De�nition 2.12 (Pure method). A methodm is pure if and only if

1. it is side-e�ect free, i.e., it does not modify any heap locations that already

existed before it was called. It is still allowed to create and modify new

objects.

2. it is deterministic, i.e., when called with the same parameters and in the

same program state, it returns the same result.

3. all methods that overridem are also side-e�ect free and deterministic.

De�nition 2.13 (Pure expression). Given a context Γ, a pure expression is a Java

expression that – when executed in any state ς : S(Γ) – terminates normally and is

composed only of
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1. any constituents allowed in constant expressions.

2. calls to pure methods visible in Γ.

3. immutable, e�ectively �nal local variables, parameters, and �elds that are

initialized with a pure expression. Immutability is de�ned in Section 2.5.

4. the this reference.

Expr
p
T is the set of all pure Java expressions e such that ΓG |= e : T , where ΓG is

the global type context in which only public static members of public classes are

accessible.

String
p
T is the set of all string representations of such expressions.

Expr
p
T (v1 : V1, . . . ,vn : Vn) is the set of all pure Java expressions e such that

Γ |= e : T for the context Γ in which

1. all members accessible in the global context are accessible,

2. local variables vi are accessible and initialized to pure expressions, and

3. nothing else is accessible.

String
p
T (v1 : V1, . . . ,vn : Vn) is the set of all string representations of such

expressions.

Expr
p
T (Γ) is the set of all pure Java expressions of type T in the context Γ.

String
p
T (Γ) is the set of all string representations of such expressions.

De�nition 2.14 (Evaluation of constant expressions). Let e : ExprcT (Γ). Then we

de�ne vΓ(e) to be the evaluation of e .

For e : StringcT (Γ), we de�ne vΓ(s) analogously.

De�nition 2.15 (Evaluation of pure expressions). Let e : Expr
p
T (Γ). Then, given a

program state ς : S(Γ), we de�ne vΓ,ς (e) to be the evaluation of e in ς .

For e : String
p
T (Γ), we de�ne vΓ,ς (s) analogously.
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1 public @Immutable class C {
2 private int field;
3 public C() { field = 42; }
4 public void foo() { field = 43; }
5 }

Listing 2.9: Violation of immutability property

2.5. Immutability

This section gives an overview over the immutability type system from Glacier [Cob+17],

an immutability checker for Java, which is implemented in the Checker Framework

[Cob+17, 3.C].

Glacier allows the programmer to mark classes as either immutable ormaybe-mutable
[Cob+17, 3.A]. It then guarantees transitive class immutability, i.e., it ensures that no

heap location that is reachable from an instance of an immutable class can be modi�ed.

For example, Glacier would emit an error for the program in Listing 2.9 because

even though the class C is supposed to be immutable, its �eld is modi�ed outside of its

constructor.

We start with the de�nitions for immutable classes and interfaces.

De�nition 2.16 (Immutable types). A class is immutable if and only if

1. it is annotated with the annotation @Immutable,

2. all of its �elds are of a primitive type or an immutable class type, and

3. all of its �elds are e�ectively �nal, i.e., they cannot be assigned outside the

class’s constructors.

An interface is immutable if and only if it is annotated with the annotation

@Immutable.

A class or interface that is not immutable is referred to as maybe-mutable.
All sub-classes of an immutable class must also be immutable. All implementing

classes of an immutable interface must also be immutable.

Sub-classes of a maybe-mutable class can be both immutable and maybe-mutable.

Implementing classes of a maybe-mutable interface can be both immutable and

maybe-mutable.

Given a program pr : WTImmutability, we de�ne Immutable(pr) to be the set

containing all primitive types and all immutable types in pr.
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We now de�ne what it means for variables and objects to be immutable.

These de�nitions di�er from those in Glacier. While Glacier only considers the

immutability of objects, we also consider the immutability of variables.

De�nition 2.17 (Immutable object). An object is immutable if and only if its class

is immutable.

For simplicity’s sake, we do not use Glacier’s rules for array types. We instead

consider arrays to never be immutable.

De�nition 2.18 (Immutable variable). A variable is immutable if and only if its

type is either primitive or immutable.

Note that an immutable variable does not have to be �nal!

Finally, we de�ne the setWTImmutability of programs that are well typed in this system.

De�nition 2.19 (Well-typedness (immutability)). We de�ne WTImmutability ⊆

WTJava as the set of all well-typed Java programs such that all classes and in-

terfaces that are annotated with @Immutable are actually immutable.

2.6. Initialization

1 public class C {
2 private @NonNull Object field;
3 public C() { foo(field); }
4 public static void foo(@NonNull Object arg) { }
5 }

Listing 2.10: Access to uninitialized �eld

This section presents an initialization type system based on the one from the Checker

Framework [Che20, 3.8], which is itself based on [SM11].

This system allows programmers to type objects as under initialization or initialized.

An object under initialization becomes initialized when its commitment point is reached,

this being a point in the program at which the object and any heap locations reachable

from the object have been initialized. [SM11, 3.1]
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When coupled with another type system – e.g., the nullness checker or property

types – this initialization type system can ensure that a variable’s type is only taken into

account after it has been initialized. For example, the program in Listing 2.10 should

not be considered well-typed because even though the actual parameter field in the

call to foo has the same type as the formal parameter, it has not been initialized, and

thus, contains the value null.

[SM11] presents an initialization type system as an extension to a non-null type

system. However, as stated in [SM11, 5.8], the same approach can be applied to invariant

type systems like the property types from this thesis.

De�nition 2.20 (Initialized). An object o is initialized if o itself and any heap

locations reachable from o have been initialized.

A variable v is initialized if

1. it refers to a primitive value or an initialized object, and

2. its de�nition is annotated with @Initialized.

An object or variable that is not initialized is under initialization.

De�nition 2.21 (Type system). The initialization type system consists of types

(AInitialization,TJava) where TJava is an (unannotated) Java type and AInitialization is

one of the following three type annotations:

1. @Initialized, for initialized variables.

2. @UnderInitialization, for variables under initialization.

3. @UnknownInitialization, the super-quali�er of both @Initialized and

@UnderInitialization.

If the programmer does not specify an annotation, @Initialized is used as the

default.

In this thesis, we use the initialization type system to ensure that a variable’s property

type is only used if that variable has been initialized.

We further restrict the use of uninitialized variables by allowing them only in con-

structors and so-called helper methods.
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De�nition 2.22 (Helper method). A helper method is a method whose receiver

parameter is annotated with @UnderInitialization or @UnknownInitialization.

We can now de�ne the setWTInitialization of programs that observe these rules.

De�nition 2.23 (Well-typedness (initialization)). We de�neWTInitialization ⊆ WTJava
as the set of all well-typed Java programs pr such that

1. pr is well-typed in the initialization type system.

2. the type modi�ers @UnderInitialization or @UnknownInitialization are

only applied to method receiver parameters.
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hierarchies

In this chapter, we introduce property annotations and property types, and how they can

be used in a Java program. Property annotations are annotations that are associated

with a boolean expression. Property types are types that are annotated with such an

annotation.

For example, if we have the property annotation @Interval(min="2", max="3")

with the associated expression 2 <= subject && subject <= 3, then the property

type @Interval(min="2", max="3") int contains all integers for which the associated

expression evaluates to true. Property types are de�ned in Section 3.1 and Section 3.2.

We further state which hierarchies may exist between property annotations, and, by

extension, which hierarchies may exist between property types by de�ning property
annotation lattices in Section 3.3.

As stated in the introduction, our type-checking pipeline consists of a type checker

developed in the Checker Framework, as well as the JML veri�cation tool KeY. This

means that we have two di�erent approximations of program correctness, one for the

type checker and one for JML. Section 3.4 explains how these approximations can be

used together to check a program’s correctness.

All Java programs that appear in this chapter and the chapter beyond are implicitly

normal as de�ned below. Normal programs are subject to some further restrictions that

had to be instated to make the introduction of property types feasible.

De�nition 3.1 (Normal program). We de�ne the set of normal programs Normal

as containing all programs pr such that

1. pr : WTImmutability ∩WTInitialization.

2. PA(pr) = PAvalid(pr) ∧ PAT(pr) = PATvalid(pr).

3. property annotations only appear on �eld, parameter, and local variable

declarations, on method return types, and on constructor declarations. An-

26



3. Property annotations and type hierarchies

notations on new expressions and on casts are not supported by the type

system.

4. static �elds are only annotated with trivial annotations, and only trivial

annotations appear in static initializers. We call an annotation a : A trivial if

its associated property PropA(a) is equal to "true". This is a constraint of the

initialization type system because “it is in general not possible to determine

modularly when static class initializers execute” [SM11, 5.3].

5. any �eld or method that is referred to in a property, a well-formedness con-

dition, or an annotation parameter is public. Otherwise, the implementation

of the type checker would not be able to access it when it wants to evaluate

an annotation.

6. variables in an inner scope never shadow variables from an outer scope. The

JML translation assumes that this is the case.

3.1. Property annotations

In this section, we formalize our notion of property annotations.

Firstly, a property annotation type is an annotation type that is associated with a

boolean expression which we call its property and whose value may only depend on

the annotation type’s parameters and the variable being annotated, which is called

the subject. In addition, every property annotation type has a well-formedness condition
that is essentially a constraint on its parameters’ values.

For example, if we imagine a property annotation type Length with two parameters

min, max and the associated property min <= subject.size() && subject.size() <=

max, a sensible well-formedness condition would be 0 <= min && min <= max, since

lists with negative lengths do not exist, and a closed interval whose upper bound is

smaller than its lower bound is empty.

This intuition is captured by the following de�nitions:

De�nition 3.2 (Property annotation type). A property annotation type A is a Java

annotation type that is associated with

1. a subject type TA : J (pr),

2. a well-formedness condition WfA : String,

3. a property PropA : String, and
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4. a list of parameters (pi)[n]. Every parameter pi must be associated with an

evaluation type Tpi : J (pr). Every parameter pi must be of type String.

We de�ne PAT(pr) to be the set of all property annotation types that occur in a

given program pr : Normal.

The reason every parameter pi of a property annotation type must be a string as-

sociated with an evaluation type Tpi : J (pr) is that this allows pi to contain not only

literals of type Tpi , but also expressions.

The above de�nition is not complete by itself. For example, both PropA and WfA are

represented by a string, but the de�nition does not require that those strings contain

well-formed Java expressions of type boolean.

In addition, as stated in the introduction, we only concern ourselves with annotations

of immutable types. To that end, we want to require that the subject type as well as all

evaluation types be immutable. In fact, we will be even stricter and require that the

evaluation types be primitive types or String.

As an exception to this, we allow non-immutable types as long as the property is

equal to "true". This is because, later in this chapter, we want every variable in a

program to be annotated somehow.

All of these constraints are captured by the following de�nition:

De�nition 3.3 (Validity of property annotation types). Given a program pr :

Normal, a property annotation type A is valid if and only if

1. WfA : String
p
boolean(p1 : Tp1, . . . ,pn : Tpn ),

2. PropA : String
p
boolean(subject : TA,p1 : Tp1, . . . ,pn : Tpn ),

3. PropA = "true" ∨TA : Immutable(pr), and

4. ∀i : [n], Tpi : P ∪ String.

A property annotation type that is not valid is called invalid.

We de�ne PATvalid(pr) to be the set of all valid property annotation types that

occur in pr.

Before moving on to de�ning property annotations, let us look at an example of a

property annotation type.
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Example 3.1 (Property annotation types). We de�ne the property annotation

type Length
with

1. TLength = List,

2. p0 = min, p1 = max,

3. Tmin = Tmax = int,

4. WfLength = "min >= 0 && min <= max",

5. PropLength = "subject.size() >= min && subject.size() <= max".

Is this property annotation type valid?

The �rst condition, WfLength : String
p
boolean(min : int, max : int), holds

because if the parameters min and max are initialized to pure expressions, the

expression min >= 0 && min <= max is also pure.

The second condition, PropLength : String
p
boolean(subject : TA, min : int, max :

int), holds if and only if List.size() is a pure method that terminates normally.

The third condition, PropA = "true"∨TA : Immutable(pr), depends on whether

List is immutable.

The fourth condition, ∀i : [n], Tpi : P ∪ String, is ful�lled because both

parameters have the type int.

All in all, this property annotation type is valid if and only if List is immutable

and List.size() is pure and terminates normally.

Now, we can de�ne property annotations as instances of property annotation types.

De�nition 3.4 (Property annotation). A property annotation a is a tuple consisting

of a property annotation type A and a list of actual parameters (ai)[n] such that

(ai)[n] and the list of A’s parameters have the same length.

We de�ne PA(pr) to be the set of all property annotations that occur in a given

program pr : Normal.

Like De�nition 3.2, this de�nition is too permissible because it does not require that

the property annotation’s type be valid, nor that the parameter ai contain an expression

of type Tpi .
These constraints are captured by the following de�nition:
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De�nition 3.5 (Validity of property annotations). A property annotation a de�ned

in a context Γ is valid if and only if its type A is valid and

∀i : [n], a : String
p
Tpi
(Γ)

i.e., if every actual parameter is a pure expression of the correct type.

A property annotation that is not valid is called invalid.

Given a valid property annotation a, we de�ne ai : String to be a’s actual

parameters.

We further de�neWfA(a) := WfA(a1, . . . ,an) and PropA(s,a) := PropA(s,a1, . . . ,an)
for any subject s .

PAvalid(pr) is the set of all valid property annotations that occur in a given

program pr : Normal.

For a given property annotation type A : PATvalid(pr), we also de�ne Avalid :=

A ∩ PAvalid(pr).

Note that we do not require that a valid property annotation a respect its type’s

well-formedness conditions. This is because, unless all parameters of a are constant

expressions, we may not be able to determine if the well-formedness condition will

hold in every program state.

Look at the following for an example of this:

Example 3.2 (Property annotations). We de�ne the following property annota-

tions using the type Length from Example 3.1:

1 @Length(min="1", max="0") List l0 = l1;

@Length(min="1", max="0") is valid because both 1 and 0 evaluate to a result

of type int. However, the well-formedness condition min >= 0 && min <= max is

violated, which means that the declaration of l0 cannot be well-typed. For details

on the well-typedness of assignments and programs, see Section 3.4.

Now, we look at another example using some more complex annotations.

1 public @Length(min="a+c", max="b+d") List
2 concat(int a, int b, int c, int d,
3 @Length(min="a", max="b") List l0,
4 @Length(min="c", max="d") List l1) {
5 ...
6 }
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All property annotations in this second program fragment are valid. Essentially,

for all values of a,b, c,d which make the well-formedness conditions of the three

property annotations true, this function maps two lists of lengths in [a,b] and

[c,d] respectively to a list of length in [a + c,b + d].

Even though both code fragments in the previous example are valid, there is still an

important di�erence between the property annotations @Length(min="1", max="0")

and @Length(min="a+c", max="b+d").

For annotations like @Length(min="1", max="0") or @Length(min="0", max="1")

or even @Length(min="0", max="1 + 1"), we can tell at compile-time whether or not

they respect their well-formedness conditions.

But for @Length(min="a+c", max="b+d"), the actual parameters of the annotation

depend on the method parameters. While these method parameters must be e�ectively

�nal for the annotation to be valid (i.e., they must not be modi�ed in the method body),

their values cannot be known at compile time. Thus, we also cannot tell at compile-time

whether this annotation is well-formed.

This di�erence is formalized by the following de�nition:

De�nition 3.6 (Constant property annotation). A property annotation a is called

constant in Γ if and only if

1. a : PAvalid(pr),

2. ∀i : [n]. ai : StringcTpi
(Γ), i.e., all of its actual parameters are constant

expressions in Γ,

3. WfA : Stringcboolean(p1 : Tp1, . . . ,pn : Tpn ), i.e., the well-formedness condi-

tion is a constant expression, and

4. PropA : Stringcboolean(subject : TA,p1 : Tp1, . . . ,pn : Tpn ), i.e., the property

is a constant expression.

For a given property annotation type A : PAT(pr), we de�ne Ac(Γ) to be the set

of all property annotations of type A that are constant in Γ.

Non-constant property annotations allow us to specify what are essentially dependent

types. However, in this thesis, we mostly focus on constant annotations – i.e., non-

dependent types.
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3.2. Evaluating property annotations

In the previous section, we de�ned the parameters of property annotations as strings

containing Java expressions of a speci�c type. In this section, we de�ne an evaluation

function to evaluate these expressions.

First, we de�ne evaluated property annotations, which are essentially property anno-

tations that contain values instead of expressions.

De�nition 3.7 (Evaluated property annotation). An evaluated property annotation
is a pair consisting of

1. a valid property annotation type A : PATvalid(pr).

2. a list p of values where the type of pi is Tpi , the evaluated type of A’s ith
parameter.

We write this pair as A(p).
We further de�ne WfA(A(p)) := WfA(p) and PropA(s,A(p)) := PropA(s,p) for any

subject s .

Now, we can de�ne the evaluation function as a function that maps a valid property

annotation to an evaluated property annotation.

De�nition 3.8 (Evaluation of a property annotation). For a valid property an-

notation a : Avalid with actual parameters ai , we de�ne the evaluation of a in the
context Γ and the program state ς as

vΓ,ς (a) := A((vΓ,ς (ai)))

If a is constant, the evaluation does not depend on the program state. We thus

write it simply as vΓ(a).

This now allows us to de�ne the concept ofwell-formedness. Whereas a valid property

annotation may or may not always respect its well-formedness condition, a well-formed

property annotation must respect it.

De�nition 3.9 (Well-formed evaluated property annotation). An evaluated prop-

erty annotation A(p) is well-formed if and only if WfA(p).
An evaluated property annotation that is not well-formed is called mal-formed.
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De�nition 3.10 (Well-formed property annotation). A property annotation a : A
is well-formed in the context Γ and the program state ς if and only if vΓ,ς (a) is

well-formed.

An property annotation that is not well-formed is called mal-formed.

Let us look at some examples, again using the Length property annotation type from

Example 3.1.

Example 3.3 (Well-formedness). We begin with a simple example.

1 public static final int ONE = 1;
2

3 public static void foo() {
4 @Length(min="1", max="0") List l0; // a0
5 @Length(min="0", max="ONE") List l1; // a1
6 @Length(min="0", max="1 + 1") List l2;// a2
7 }

Let Γ be the type context for foo().

Then we have

vΓ(a0) = Length(1, 0)

vΓ(a1) = Length(0, 1)

vΓ(a2) = Length(0, 2)

with a0 being mal-formed (because min > max), and a1 and a2 being well-formed.

Now for a more complicated example.

1 public @Length(min="n", max="n") List repeat(int n, Object obj) {
2 // Return a list that contains obj n times.
3 }

The property annotation a in this example is not constant. Therefore, we need a

concrete program state to be able to evaluate it.

Let Γ be the type context for repeat(). Let ς0 be the state in which repeat has

just been called with the actual parameter 0. Let ς1 be the state in which repeat

has just been called with the actual parameter 1. Finally, let ς−1 be the state in

which repeat has just been called with the actual parameter −1.
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Then

vΓ,ς0(a) = Length(0, 0)

vΓ,ς1(a) = Length(1, 1)

vΓ,ς−1(a) = Length(−1,−1)

As we can see, a is well-formed in the states ς0, ς1, and mal-formed in the state

ς−1 (because min < 0).

3.3. Type hierarchies

In this section, we de�ne the concept of a property annotation lattice and combine it

with a hierarchy of unannotated Java types to get a property type hierarchy, or type
hierarchy for short.

These type hierarchies are used later in the de�nition for well-typedness (De�ni-

tion 3.18). Intuitively, a program is well-typed with respect to a type hierarchy if it

respects the sub-type relationships de�ned by that hierarchy.

We �rst de�ne a program pr’s program hierarchy as the partial order whose set

contains all types in pr and whose relation models the sub-class relationships between

these types.

De�nition 3.11 (Program hierarchy). For a given program pr : Normal, pr’s

program hierarchy (J (pr), �J (pr)) is the partial order where

1. a �J (pr) b if and only if

a) a,b : Cl(pr) and a is a sub-class of b, or

b) b = >J , or

c) a = ⊥J , or

d) a = nulltype ∧ b : Cl(pr).

Next, we de�ne property annotation lattices as hierarchies which contain evaluated

property annotations.

In addition, we require that the hierarchy be consistent with the annotations’ prop-

erties. By this we mean that A(p) can only be a sub-annotation of B(q) if PropA(p) →
PropB(q).

Note, however, that from PropA(p) → PropB(q) it does not necessarily follow that

A(p) � B(q)! These hierarchies, and the de�nition of well-typedness later, are only

supposed to give an approximation of program correctness.
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De�nition 3.12 (Property annotation lattice). For a given program pr : Normal

and a set of valid property annotations types PAT ⊆ PAT(pr) which contains

elements Top, Bottom such that

1. WfTop = WfBottom = "true".

2. PropTop = "true", PropBottom = "false".

3. TTop = TBottom = >J .

a property annotation lattice is a bounded lattice (A := v(PAT), �A ) where

1. v(PAT) :=
⋃

A:PAT{A(p)|WfA(p)} is the set of all well-formed evaluated prop-

erty annotations with types from PAT (We de�ne> := v(Top),⊥ := v(Bottom)).

2. for all pairs A(p),B(q) : A such that A(p) �A B(q),

a) TA �J (pr) TB holds.

b) ∀s : TB . PropA(s,p) → PropB(t ,q) holds.

3. ∀A(p) : A . A(p) �A > ∧ ⊥ �A A(p).

Given a program hierarchy and a property annotation lattice, we can combine the

two into a property type hierarchy (type hierarchy for short).

This hierarchy models the sub-type relationships between annotated types that are

used in the de�nition of well-typedness (De�nition 3.18).

De�nition 3.13 (Property type). Given a program pr : Normal, a property type is

a pair (A(p),T ) such that A : PAT(pr) and T : J (pr)

De�nition 3.14 (Property type hierarchy). A property type hierarchy (T , �) is the

direct product of a property annotation lattice (A = v(PAT), �A ) and a program

hierarchy (J (pr), �J (pr)).
For a given program pr : Normal, we de�ne the set H (pr) of that program’s

type hierarchies as the set containing all type hierarchies (A = v(PAT), �A ) ×

(J (p), �J (p)) such that

1. PAT ⊆ PAT(pr), and
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2. every local variable, �eld, parameter, method return type, and constructor

in pr is annotated with exactly one annotation a : A such that A : PAT.

For a given type hierarchy H = (A = v(PAT), �A ) × (J (pr), �J (pr)), we de�ne

PATH := PAT.

We also sometimes write A : H when we mean A : PATH .

Because the type hierarchy is the direct product of a property annotation lattice A
and a program hierarchy J (pr), we have (a : A,T ) � (b : B, S) if and only if

1. a �A b, and

2. T �J (pr) S .

Example 3.4 (Property type hierarchies). For example, let A = PAT be a property

annotation lattice such that PAT contains the Length annotation type from Ex-

ample 3.1, and such that Length(a,b) �A Length(c,d) if and only if the interval

[a,b] is contained in [c,d]. Let J (pr) be a program hierarchy containing two

classes List and SubList such that SubList extends List.

Then, in the type hierarchy A ×J (pr) : H (pr), we get the following sub-type

relationships, among others:

1. (Length(2, 3), List) � (Length(1, 4), List)

2. (Length(2, 3), SubList) � (Length(2, 3), List)

3. (Length(2, 3), SubList) � (Length(1, 4), List)

Lastly, we de�ne the concept of a cover. This is a set of property annotations hierar-

chies such that every property annotation that appears in the program is present in

exactly one lattice in the cover.

De�nition 3.15 (Cover). For a given program pr : Normal, we de�ne the set

C (pr) of covers of pr as the set of all tuples (Hi)[n] of type hierarchies such that

1. ∀i : [n], Hi : H (pr),

2. ∀i, j : [n], i , j → PATHi ∩ PATHj = ∅, and
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3.

⋃
i:[n] PATHi = PAT(pr).

Together with De�nition 3.14, this means that for a set C of type hierarchies to be a

cover for pr, every local variable, �eld, parameter, method return type, and constructor

in pr must be annotated with exactly one annotation from every hierarchy in C .

Using a cover of type hierarchies instead of just a single hierarchy allows us to

annotate a variable with multiple property annotations (as long as each one comes from

a di�erent hierarchy). It also allows us to have each hierarchy only contain related

property annotations instead of having one giant type hierarchy containing every single

property annotation.

3.4. Well-typed & correct programs

We begin this section by de�ning what it means for a program to be correct. Intuitively,

this is the case if every variable always respects the properties it is annotated with.

De�nition 3.16 (Correctness). Let pr : Normal and H : H (pr).
Let Γ be a context.

We write ΓH (id) = (a : A,T ) if, in the context Γ, the identi�er id refers to a

variable of type T that is annotated with a property annotation a : A : H .

We write ΓH (id) = ((a : A,T ), ((ai : Ai ,Ti))[n]) if, in the context Γ, the identi�er

id refers to a method whose return type T is annotated with a : A : H and whose

ith parameter type Ti is annotated with ai : Ai : H . In non-static methods, p1 : T1
is the method receiver this.

Furthermore, we write Γid to refer to the context in which the method or variable

id refers to is de�ned.

We then de�ne the set Correct of correct programs as the set of all programs

such that

1. in every program state ς , every de�ned local variable, �eld, or parameter

var : T which is annotated with an annotation a : A is either uninitialized or

satis�es

T � TA ∧WfA(vΓvar,ς (a)) ∧ PropA(var,vΓvar,ς (a))

2. in every program state ς , every method and constructorm whose return type

T is annotated with a : A and whose formal parameters pi : Ti are annotated

with ai : Ai returns a result r : T such that

T � TA ∧WfA(vΓm ,ς (a)) ∧ PropA(r ,vΓm ,ς (a))
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if it is called with actual parameters pi : Ti that satisfy

Ti � TAi ∧WfAi
(vΓm ,ς (ai)) ∧ PropAi

(pi ,vΓm ,ς (ai))

The type hierarchies introduced in Section 3.3 allow us to develop an approximation

for program correctness in Section 3.4.1: A program is well-typed with respect to a type

hierarchy if it respects the sub-type rules de�ned by that hierarchy.

We also de�ne a translation from property annotations to JML speci�cations in

Section 3.4.2, yielding another approximation for program correctness: A program is

JML-correct if it respects all of its JML speci�cations.

Lastly, we explain in Section 3.4.4 how these two approximations together can form

a better approximation for correctness than using either of them by itself.

3.4.1. Well-typedness

In this section we de�ne typing rules for a Java program pr and a hierarchy H : H (pr).
After that, we give some well-typedness rules to de�ne when pr is well-typed with

respect to H .

De�nition 3.17 (Property typing rules). We now de�ne the following type rules

for a given property type hierarchy H :

First, every expression has a property type of the form (>,T ) for some Java type

T .

Γ |= e : T
type-top

ΓH |= e : (>,T )

If an expression has the type (A(p),T ), it also has every super-type of (A(p),T ).

(A(p),T ) �H (B(q), S)
ΓH |= e : (A(p),T )

type-super

ΓH |= e : (B(q), S)

A constant expression has the type (A(p),T ) if it ful�lls A(p)’s property.

T �J TA ∧WfA(p) ∧ PropA(vΓ(e),p)
A : H

e : ExprcT (Γ)

type-constexpr

ΓH |= e : (A(p),T )
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A variable var has the type (A(p),T ) if it is annotated with a constant annotation

a such that vΓvar(a) = A(p), and it is initialized.

T �J TA ∧WfA(vΓvar(a))
var : Exprinit

T (Γ)

ΓH (var) = (a : Ac(Γ),T )

type-var

ΓH |= var : (vΓvar(a),T )

A method call has the type (A(p),T ) if the method’s result type is annotated

with a constant annotation a such that vΓm (a) = A(p).

T �J TA ∧WfA(vΓm (a))
ΓH (m) = ((a : Ac(Γm),T ), ((ai : A

c
i (Γ

m),Ti))[n])

type-method

ΓH |= m(...) : (vΓm (a),T )

These typing rules are evidently not exhaustive. The checker implements some more

typing rules, which have been left out because they are not germane to this theoretical

treatment.

Also, most of these typing rules are only applicable for constant property annotations.

While non-constant annotations are covered by the translation to JML, they are not

covered by the type system. A variable that is annotated with a non-constant translation

is never well-typed.

With the typing rules out of the way, we can de�ne the well-typedness rules.

De�nition 3.18 (Well-typedness). Let pr : Normal and a H : H (pr).
Then pr is well-typed with respect to H if every program construct in pr is well-

typed with respect to H , as de�ned by the following rules:

2

An assignment is well-typed if the right-hand side and left-hand side have the

same type.

ΓH |= e : (vΓvar(a),T )
ΓH (var) = (a : Ac(Γ)),T )

wt-assignment

ΓH |= var = e; X

A variable declaration is well-typed if the annotation on the declaration is

well-formed and constant.
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T �J TA ∧WfA(vΓ(a))
ΓH (v) = (a : Ac(Γ),T )

wt-declaration

ΓH |= @a v; X

A variable de�nition is well-typed if the corresponding declaration and assign-

ment are well-typed.

ΓvarH |= var = e; X
ΓH |= @a var; X

wt-de�nition

ΓH |= @a var = e; X

A return statement is well-typed if the returned expression has the method’s

return type.

ΓH |= e : (vΓm (a),T )

ΓH (m) = ((a : Ac(Γ),T ), ((ai : A
c
i (Γ),Ti))[n])

wt-return

ΓH |= m(...) { ... return e; ... } X

A method or constructor call is well-typed if all actual parameters have the

required types.

∀i : [n]. ΓH |= pi : (vΓm (ai),Ti)
ΓH (m) = ((a : Ac(Γ),T ), ((ai : A

c
i (Γ),Ti))[n])

wt-method-call

ΓH |=m(p1, . . . ,pn) X

A method signature of a methodm is well-typed if all annotations in the signature

are constant and well-formed. In addition, ifm overrides another methodm′, its

return type must be co-variant with that ofm′, and its parameter types must be

contra-variant with those ofm′ (except, of course, for the receiver parameter this).

∀i : [n]. Ti �J TAi ∧WfAi
(vΓ(ai))

T �J TA ∧WfA(vΓ(a))
ΓH (m) = ((a : Ac(Γ)),T ), ((ai : A

c
i (Γ),Ti))[n])

wt-method-def-1

ΓH |= @a T m(@a1 T1 p1,. . .,@an Tn pn) (X)

m does not override another method

Γ |= @a T m(@a1 T1 p1,. . .,@an Tn pn) (X)

wt-method-def-2

ΓH |= @a T m(@a1 T1 p1,. . .,@an Tn pn) X
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∀i : [n] \ {1}. (vΓ′m′ (bi), Si) �H (vΓm (ai),Ti)
(vΓm (a),T ) �H (vΓ′m′ (b), S)

Γ′H |= @b S m′ (@b1 S1 q1,. . .,@bn Sn qn) X

ΓH (m
′) = ((b : Bc(Γ), S), ((bi : B

c
i (Γ), Si))[n])

m overridesm′
ΓH |= @a T m(@a1 T1 p1,. . .,@an Tn pn) (X)

wt-method-def-3

ΓH |= @a T m(@a1 T1 p1,. . .,@an Tn pn) X

A constructor signature is well-typed if all annotations in the signature are

constant and well-formed, and if there is no non-top annotation on the constructor

itself.

∀i : [n]. Ti �J TAi ∧WfAi
(vΓ(ai))

ΓH (m) = ((a : Ac(Γ),T ), ((ai : A
c
i (Γ),Ti))[n])

wt-constr-def

ΓH |= @> T(@a1 T1 p1,. . .,@an Tn pn) X

Any program construct that is not an assignment, a variable declaration, a

variable de�nition, a return statement, a method/constructor call, or a method/-

constructor de�nition, is always well-typed.

We now de�ne what it means for this type system to be sound. We demand that

every expression that has a certain property type actually respect that type’s property.

From this, it follows directly that a program pr that is well-typed with respect to

every hierarchy in a cover C : C (pr) is correct.

Theorem 3.1 (Soundness of the type system). Let pr : WT(H ), H : H (pr). Then

for every context Γ and every expression e , it follows from Γ |= e : (A(p),T ) that

∀ς : S(Γ). PropA(vΓ,ς (e),p).

Proof:

This could be proved by rule induction over the rules of an operational semantics.

Since de�ning an operational semantics for a Java-like language is out of the scope

of this thesis, and such a proof would not be very helpful in understanding the

properties of this type system, we will forgo it.

3.4.2. Translating property types to JML

In this section, we de�ne a translation from programs that contain property annotations

to programs that contain JML speci�cations. We then use this translation to de�ne the
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notion of JML-correctness. A program is JML-correct if its translation respects all of its

JML speci�cations.

For now, we ignore any information that could be gleaned from the type rules

presented in Section 3.4.1. We explain in Section 3.4.4 how we can use this information

to make the translated JML speci�cations easier to prove.

But before moving on to the translation itself, we de�ne assert sequences. An assert

sequence for an expression is a sequence of JML assertions which contains one assertion

for every type hierarchy in a cover. We will use this sequences as a part of the translation

to avoid having to write them out every time we use them.

De�nition 3.19 (Assert sequences). Let pr : Normal, C = (Hi)[n] : C (pr). Let

t = ((ai : Ai)[n],T ) such that ∀i : [n].Ai : Hi . Let e be an expression such that

∀i : [n].ΓHi |= e : (ai : Ai ,T ).
We then de�ne the assert sequence Jt , eKassert to be the following program frag-

ment,

1 //@ assert T <: TA1
&& WfA1

(a1) && PropA1

(e,a1);
2

...
3 //@ assert T <: TAn && WfAn (an) && PropAn (e,an);

and the assume sequence Jt , eKassume to be the following program fragment:

1 //@ assume T <: TA1
&& WfA1

(a1) && PropA1

(e,a1);
2

...
3 //@ assume T <: TAn && WfAn (an) && PropAn (e,an);

We also de�ne the requires sequence Jt , eKrequires to be the following program

fragment,

@ requires T <: TA1
&& WfA1

(a1) && PropA1

(e,a1);
...
@ requires T <: TAn && WfAn (an) && PropAn (e,an);

and the requires-free sequence Jt , eKrequires_free to be the following program frag-

ment:

@ requires_free T <: TA1
&& WfA1

(a1) && PropA1

(e,a1);
...
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@ requires_free T <: TAn && WfAn (an) && PropAn (e,an);

Furthermore, we de�ne the ensures sequence Jt , eKensures and the ensures-free
sequence Jt , eKensures_free analogously.

The assertions contained in an assert sequence Jt , eKassert fully characterize the prop-

erty types of the expression e , as illustrated by the following example:

Example 3.5 (Assert sequences). Consider the following variable de�nition from

a program pr : Normal which has a cover C = (H1,H2) : C (pr) such that

1. H1 is a property type hierarchy containing the property annotation types

@Even and @Odd, such that the type @Even int contains all even integers and

the type @Odd int contains all odd integers.

2. H2 is a property type hierarchy containing the property annotation type

@Interval, such that the type @Interval(min="n", max="m") int contains

all integers in the interval [n,m].

1 @Interval(min="1", max="5") @Odd int var = 3;

The assert sequence J(Odd, Interval(1, 5)), varKassert contains the two asser-

tions

1 //@ assert \typeof(var) <: TOdd && WfOdd && PropOdd(var);
2 //@ assert \typeof(var) <: TInterval

3 //@ && WfInterval(1, 5) && PropInterval(var, 1, 5);

which (with the right de�nitions for Odd and Interval) are equivalent to

1 //@ assert \typeof(var) <: int && true && var % 2 != 0;
2 //@ assert \typeof(var) <: int && 5 >= 1 && 1 <= var && var <= 5;

Using these assert sequences, we can now de�ne the translation to JML.
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Algorithm 3.1 (JML translation). Given a program pr : Normal and a cover

C = (Hi)[n] : C (p), we construct the program JML(pr,C) as follows.

For brevity’s sake, we say that a variable has the type ((ai : Ai)[n],T ) if it has the

type T and is annotated with (ai : Ai)[n].

Assignments

Input: An assignment to a local variable, parameter, or �eld of the form v = e;

where v has the type ((ai : Ai)[n],T ).
Output: If the assignment occurs in the scope in which v was de�ned, and v is

not a �eld of another object:

1 T temp = e;
2 J((ai : Ai )[n],T ), tempKassert

3 v = temp;

If this is not the case, some identi�ers in the annotation arguments may refer to

di�erent objects, and the objects they originally referred to may not be accessible.

In this case, we cannot check whether the assignment is correct, so we translate it

to:

1 T temp = e;
2 //@ assert false;
3 v = temp;

The assert false ensures that the correctness check for this program does not

succeed.

De�nitions

Input: A de�nition of a local variable of the form (((ai : Ai )[n],T ) v = e;. Field

de�nitions do not occur in our Java fragment because �elds must not be initialized

outside of constructors.

Output:

1 T temp = e;
2 J((ai : Ai )[n],T ), tempKassert

3 T v = temp;
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Declarations

Input: A declaration of a local variable or �eld of the form (((ai : Ai )[n],T ) v;

Output: T v; for a local variable; /*@nullable@*/ T v; for a �eld.

Return statements in methods

Input: A return statement returning the expression e in a methodm with return

type ((ai : Ai)[n],T ).
Output:

1 T temp = e;
2 J((ai : Ai )[n],T ), tempKassert

3 return temp;

Return statements in constructors

Input: A return statement in a constructor.

Output: The same return statement, unmodi�ed.

For return statements in methods, Section 3.4.4 shows that we can turn some

assertions into assumptions if we know that the return statement is well-typed,

thus making the JML proof obligation easier.

However, since our type system does not support annotations on constructors,

we deal with them completely on the JML side. It is thus easier to write the

constructor’s post-condition once, in an ensures clause, instead of repeating it for

every return statement.

Methods

Input: A method m in a class C with return type ((ai : Ai)[n],T ) and parameter

types ((aji : A
j
i)i:[n],T

j) for parameters (pj)[m].
If m is neither static, a helper method, or a constructor, let (fk)k :[µ] be all non-

static �elds in C , and let ((bki : Bki )i:[n], S
k) be their types. Otherwise, let (fk)k :[µ] be

the empty tuple ().
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Output: We add a JML contract with the properties of the �elds as free pre-

conditions, the properties of the parameters as non-free pre-conditions, and the

properties of the return type as free post-conditions.

The properties of the �elds can be free because they are established whenever a

�eld is assigned. The properties of the return type can be free because they are

established for every return statement, as seen above. We also add a trampoline
method whose purpose becomes clear in Section 3.4.4.

1 /*@ public behavior
2 @ diverges true;
3 J((bki : Bki )i :[n], Sk ), fkKrequires_free for every k : [µ]

4 J((aji : A
j
i )i :[n],Tj ),pjKrequires for every j : [m]

5 J((ai : Ai )[n],T ),\resultKensures_free

6 @*/
7 T m (/*@nullable@*/ T2 p2, . . ., /*@nullable@*/ Tm pm) {
8 // or, if m is static:
9 static T m (/*@nullable@*/ T1 p1, . . ., /*@nullable@*/ Tm pm) {

10 Translation of method body

11 }
12

13 /*@ public behavior
14 @ diverges true;

15 @ requires b ji || (Tj <: TAj
i

&& WfAj
i
(aji ) && PropAj

i
(pj ,a

j
i ));

16 @ for every (i, j) : [n] × [m]

17 @ requires_free !b ji || (Tj <: TAj
i

&& WfAj
i
(aji ) && PropAj

i
(pj ,a

j
i ));

18 @ for every (i, j) : [n] × [m]
19 @ ensures_free T <: TAi && WfAi (ai ) && PropAi (\result,ai);
20 @ for every i : [n]
21 @*/
22 T _m_trampoline(/*@nullable@*/ T2 p2, . . ., /*@nullable@*/ Tm pm,
23 // or, if m is static:
24 static T _m_trampoline(/*@nullable@*/ T1 p1, . . ., /*@nullable@*/ Tm pm,
25 boolean b0

0
, . . ., boolean bmn ) {

26 return m(p1, . . . ,pm);
27 }

Constructors
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Input: A constructor in a class C which is annotated with (ai : Ai)[n] and has

parameter types ((aji : A
j
i)i:[n],T

j) for parameters (pj)[m].
Output:

1 /*@ public behavior
2 @ diverges true;

3 J((aji : A
j
i )i :[n],Tj ),pjKrequires for every j : [m]

4 J((ai : Ai )[n],C),thisKensures

5 @*/
6 static C (/*@nullable@*/ T1 p1, . . ., /*@nullable@*/ Tm pm) {
7 Translation of constructor body

8 }
9

10 /*@ public behavior
11 @ diverges true;

12 @ requires b ji || (Tj <: TAj
i

&& WfAj
i
(aji ) && PropAj

i
(pj ,a

j
i ));

13 @ for every (i, j) : [n] × [m]

14 @ requires_free !b ji || (Tj <: TAj
i

&& WfAj
i
(aji ) && PropAj

i
(pj ,a

j
i ));

15 @ for every (i, j) : [n] × [m]
16 @ ensures C <: TAi && WfAi (ai ) && PropAi (this,ai);
17 @ for every i : [n]
18 @*/
19 static C _C_trampoline(/*@nullable@*/ T1 p1, . . ., /*@nullable@*/ Tm pm,
20 boolean b0

0
, . . ., boolean bmn ) {

21 return new C(p1, . . . ,pm);
22 }

Method calls

Input: A method call tom.

Output: A call to _m_trampoline with the additional boolean parameters all

set to false.

Constructor calls

Input: A constructor call for class C .

Output: A call to _C_trampoline with the additional boolean parameters all

set to false.
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Using this translation, we de�ne a program to be JML-correct if the translated

program respect all of its JML speci�cations.

De�nition 3.20 (JML-correctness). We de�ne the set JMLCorrect of JML-correct
programs as the set of all programs pr such that

1. pr : Normal.

2. for every cover C : C (pr), every method in JML(pr,C) is JML-correct.

A method m is JML-correct if and only if when executing m in any arbitrary

program state ς : S(Γ(m)) such that all of m’s precondition’s evaluate to true,

either

1. all assertions inm succeed,

2. all non-free pre-conditions of methods called bym hold, and

3. ifm terminates, its non-free post-conditions hold

or, if there is a failing assertion, a failing pre-condition of a called method, or a

failing post-condition, there is a failing assumption before it.

One problem with this de�nition is that it seems like we must iterate through every

possible cover C : C (pr) to verify that a program pr is JML-correct. The following

theorem explains why this is not actually case, and why it su�ces to show JML-

correctness using a single cover C : C (pr).
Having proven this, we are justi�ed in using the notation JML(pr) to refer to an

arbitrary translation of the form JML(pr,C).

Theorem 3.2 (Independence of the translation from the cover). Let pr : Normal,

C : C (p).
Then the following are equivalent:

1. there exists aC : C (p) such that in the program JML(pr,C), every method is

correct.

2. for all C : C (p), every method in the program JML(pr,C) is correct.
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Proof:

Observe that with all boolean parameters b ji being false, the de�nition of a

trampoline method is equivalent to (i.e., always leads to the same program state

as) the following:

1 /*@ public behavior
2 @ diverges true;

3 J((aji : A
j
i )i :[n],Tj ),pjKrequires for every j : [m]

4 J((ai : Ai )[n],T ),\resultKensures_free

5 @*/
6 T _m_trampoline(/*@nullable@*/ T2 p2, . . ., /*@nullable@*/ Tm pm,
7 // or, if m is static:
8 static T _m_trampoline(/*@nullable@*/ T1 p1, . . ., /*@nullable@*/ Tm pm,
9 boolean b0

0
, . . ., boolean bmn ) {

10 return m(p1, . . . ,pm);
11 }

We can thus assume that every JML clause (except for the diverges clauses) is

part of a JK sequence.

Per de�nition, every such sequence contains exactly one statement for every

hierarchy in the cover. Also, every local variable, �eld, parameter, method return

type, and constructor must be annotated with exactly one annotation from every

hierarchy in the cover.

This means that – ignoring the order of the sequence – the algorithm’s output

is independent of the chosen cover.

Since JML clauses have no side-e�ects, changing the order within a sequence

does not change the correctness of the program.

Thus, the correctness of the program output by the algorithm is independent of

the chosen cover.

�

Lastly, we prove a soundness property for this translation: Every JML-correct program

is correct according to De�nition 3.16.

Theorem 3.3 (Soundness of the translation). JMLCorrect ⊆ Correct.

Proof

Let a : A be a property annotation.
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Unless PropA = "true", every variable var annotated with a must be immutable.

This means that var can only be modi�ed by assigning it and – if v is a method

parameter – calling the respective method.

Furthermore, the assertions which Algorithm 3.1 adds to all assignments have the

same evaluation in Γ that they do in Γvar – because if Γ and Γvar di�er, Algorithm 3.1

just adds trivially false assertions. JML method pre-conditions are always evaluated

in the context in which the method was de�ned.

This means that the assertions which Algorithm 3.1 adds to all assignments and

the pre-conditions it adds to all methods can only succeed when

T � TA ∧WfA(vΓvar,ς (a)) ∧ PropA(var,vΓvar,ς (a))

holds for all Γ, ς .

For methods, the assertions which Algorithm 3.1 adds to all return statements

similarly ensure that

T � TA ∧WfA(vΓm ,ς (a)) ∧ PropA(r ,vΓm ,ς (a))

always holds.

For constructors, the ensures statements do the same.

�

3.4.3. Examples

In this interlude sub-section, we take a look at some examples to clarify the di�erence

between JML-correct and well-typed programs.

1 public @NonNull Object neverReturnsNull(@Nullable Object x) {
2 boolean b = x == null;
3 if (!b) {
4 return x;
5 } else {
6 return new Object();
7 }
8 }

Listing 3.1: Not well-typed but JML-correct

Firstly, it is not surprising that some JML-correct programs are not well-typed. That

is, after all, the whole reason why we want to combine our type checker with a JML

veri�cation tool like KeY.
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1 /*@ public behavior
2 @ diverges true;
3 @ ensures_free typeof(\result) <: Object
4 @ && true && \result != null;
5 @*/
6 public Object neverReturnsNull(/*@nullable@*/ Object x) {
7 boolean b = x == null;
8 if (!b) {
9 Object temp0 = x;

10 //@ assert \typeof(temp0) <: Object
11 //@ && true && temp0 != null;
12 return temp0;
13 } else {
14 Object temp1 = new Object;
15 //@ assert \typeof(temp1) <: Object
16 //@ && true && temp1 != null;
17 return temp1;
18 }
19 }

Listing 3.2: Not well-typed but JML-correct, translation

Listing 3.1 repeats an example from Section 2.2.2. The function neverReturnsNull()

does indeed never return null, but it is not well-typed.

However, if we take a look at its JML translation, seen in Listing 3.2, we can easily

see that it is JML-correct, since both of the assertions always hold.

What is not so easily seen is that there are well-typed programs that are not JML-

correct.

The program in Listing 3.3 is evidently well-typed. However, looking at the transla-

tion of foo() in Listing 3.4, we see that the assertion cannot be proven because there is

no pre-condition that states that c.field != null.

Theoretically, we could add pre-conditions or assumptions for all properties of all

visible variables whenever they are necessary, but in a real program that would be

completely impractical.

To make this program JML-correct, we could either choose to access c.field via a

getter of type @NonNull Object – in that case, the getter’s post-condition would contain

the property c.field != null – or we could manually add a clause requires c.field

!= null to foo’s contract.

In Section 4.4, we present a way to enrich the JML speci�cations generated by the

translation algorithm with our own speci�cations.
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1 public class C {
2 public @NonNull Object field;
3 public C() { field = new Object(); }
4 }
5

6 public class D {
7 public void foo(@NonNull C c) {
8 @NonNull Object x = c.field;
9 }

10 }

Listing 3.3: Well-typed but not JML-correct

1 /*@ public behavior
2 @ diverges true;
3 @ requires typeof(c) <: Object
4 @ && true && c != null;
5 @*/
6 public void foo(C c) {
7 Object x;
8 Object temp0 = c.field;
9 //@ assert typeof(temp0) <: Object

10 //@ && true && temp0 != null;
11 x = temp;
12 }

Listing 3.4: Well-typed but not JML-correct, translation

3.4.4. Combining well-typedness and JML-correctness

The goal of this thesis is to combine a type checker with a JML veri�cation tool, but

so far we have only de�ned two ways to check a program’s correctness – one using a

type checker, and one using a JML veri�cation tool – without any connection between

the two.

In this section, we de�ne a modi�ed JML translation algorithm which uses knowledge

gained from a well-typedness check to simplify the JML speci�cation.

Algorithm 3.2 (Modi�ed JML translation). Input: A program pr : Normal and a

cover C = (Hi)[n] : C (pr).
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Output: A valid JML-annotated Java program JML∗(pr) without any property

annotations.

Algorithm:
Run Algorithm 3.1 with the following modi�cations:

1. When translating a variable assignment or de�nition that is well-typed for

Hi in the context in which it appears, replace the ith assert in the sequence

by assume, unless the ith assert clause is assert false, in which case leave

it as is.

2. When translating a method return statement that is well-typed for Hi in

the context in which it appears, replace the ith assert in the sequence by

assume.

3. When translating a method or constructor call, for every actual parameter pj
that forHi has the same property type as the corresponding formal parameter,

make bij be true instead of false.

How this modi�ed algorithm works is made clearer by two examples.

Example 3.6 (Translation of an assignment). Consider the following program

fragment:

1 public static void foo(
2 @Length(min="2", max="2") List arg0) {
3 @Length(min="1", max="3") List l0 = arg0;
4 }

If we assume that Length(a,b) � Length(c,d) if and only if the interval [a,b]
is contained in the interval [c,d], then the de�nition of l0 is well-typed because

[2, 2] is contained in [1, 3].
Algorithm 3.1 would translate this de�nition as follows:

1 List temp = arg0;
2 //@ assert List <: List && 0 <= 1 && 1 <= 3
3 //@ && 1 <= temp.size() && temp.size() <= 3;
4 List l0 = temp;
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However, Algorithm 3.2, knowing that the de�nition is well-typed, would trans-

late it as follows instead:

1 List temp = arg0;
2 //@ assume List <: List && 0 <= 1 && 1 <= 3
3 //@ && 1 <= temp.size() && temp.size() <= 3;
4 List l0 = temp;

This reduces the size of the proofs KeY has to �nd, and also allows KeY to use

knowledge gained by the type checker in its proof.

Example 3.7 (Translation of a method call). Consider also the following program

fragment:

1 public static void foo(
2 @Length(min="1", max="3") List arg0) { }
3

4 public static void bar(
5 @Length(min="2", max="2") List arg0) {
6 foo(arg0);
7 }

If we again assume that Length(a,b) � Length(c,d) if and only if the interval

[a,b] is contained in the interval [c,d], the call to bar is well-typed.

Algorithm 3.1 would translate this method call as follows:

1 _foo_trampoline(arg0, false);

with _foo_trampoline de�ned like this

1 /*@ public behavior
2 @ diverges true;
3 @ requires arg0WellTyped || List <: List && 0 <= 1 && 1 <= 3 && 1 <=

temp.size() && temp.size() <= 3;
4 @ requires_free !arg0WellTyped || List <: List && 0 <= 1 && 1 <= 3 &&

1 <= temp.size() && temp.size() <= 3;
5 @*/
6 public static void _foo_trampoline(List arg0, boolean arg0WellTyped) {
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7 return foo(arg0);
8 }

Thus, with arg0WellTyped set to false, we would need to prove that List <:

List && 0 <= 1 && 1 <= 3 && 1 <= temp.size() && temp.size() <= 3 holds

in bar when foo is being called.

Algorithm 3.2, knowing that the actual parameter has the correct type, would

translate the method call as follows:

1 _foo_trampoline(arg0, true);

Now, with arg0WellTyped set to true, the requires clause in the trampoline’s

contract becomes trivially true.

Since the requires_free clause now ensures that foo’s pre-condition holds, the

call to foo in _foo_trampoline is still legal, meaning that the correctness of the

JML speci�cation has not been compromised, but we no longer need to prove foo’s

pre-condition in bar.

Last but not least, we take a look at an example that demonstrates how non-constant

property annotations are translated to JML.

Example 3.8 (Translation of non-constant annotations). Non-constant property

annotations are translated just like constant property annotations. The only di�er-

ence is that – because they are not supported by the type system – their properties

can never appear in assumptions (or free pre-/post-conditions), but only in asser-

tions (or non-free pre-/post-conditions).

Furthermore, if a �eld annotation appears in a context other than the one they

were de�ned in, the assertion is turned to assert false to ensure that no expres-

sion is evaluated in the wrong context. For annotations on method parameters or

method return types, this is not necessary, since JML method contracts are always

evaluated in the context of the method.

1 public @Length(min="a+c", max="b+d") List
2 concat(int a, int b, int c, int d,
3 @Length(min="a", max="b") List l1,
4 @Length(min="c", max="d") List l2) {
5 ...
6 return result;
7 }
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8

9 public void foo(
10 @Length(min="1", max="1") List l1,
11 @Length(min="2", max="2") List l2) {
12 @Length(min="3", max="3") List l3 = concat(l0, l1);
13 }

Listing 3.5: Untranslated non-constant annotation

To illustrate this, we use the program shown in Listing 3.5, which contains a

function concat that concatenates two lists of any length. We assume that the

parameters a, b, c, d are implicitly annotated with the top annotation.

In the Checker Framework, one would usually avoid using parameter names

in annotations and instead identify a parameter by its number. For example, #1
would refer to a. This is because, in a compiled program, there is no way to know

which name refers to which parameter. Since we need to have access to the source

code of the program we want to check to be able to use JML and KeY, we assume

that we do. So, we always use parameter names instead of the numerical identi�ers

that would be preferred by the Checker Framework.

1 /*@ public behavior
2 @ diverges true;
3 @ requires typeof(l1) <: List
4 @ && 0 <= a && a <= b
5 @ && a <= l1.size() && l1.size() <= b;
6 @ requires typeof(l2) <: List
7 @ && 0 <= c && c <= d
8 @ && c <= l2.size() && l2.size() <= d;
9 @ ensures_free typeof(\result) <: List

10 @ && 0 <= a + c && a + c <= b + d
11 @ && a + c <= \result.size() && \result.size() <= b + d;
12 @*/
13 public List concat(
14 int a, int b, int c, int d,
15 /*@nullable@*/ List l1, /*@nullable@*/ List l2) {
16 ...
17 List temp = result;
18 //@ assert typeof(temp) <: List
19 //@ && 0 <= a + c && a + c <= b + d
20 //@ && a + c <= temp.size() && temp.size() <= b + d;
21 return temp;
22 }
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Listing 3.6: Translated non-constant annotation, I

The function concat is translated as expected (see Listing 3.6) with one requires

clause for every parameter, one ensures_free clause for the result, and one assert

clause before the return statement.

1 /*@ public behavior
2 @ diverges true;
3 @ requires l1WellTyped || (typeof(l1) <: List
4 @ && 0 <= a && a <= b
5 @ && a <= l1.size() && l1.size() <= b);
6 @ requires_free !l1WellTyped || (typeof(l1) <: List
7 @ && 0 <= a && a <= b
8 @ && a <= l1.size() && l1.size() <= b);
9 @ requires l2WellTyped || (typeof(l2) <: List

10 @ && 0 <= c && c <= d
11 @ && c <= l2.size() && l2.size() <= d);
12 @ requires_free !l2WellTyped || (typeof(l2) <: List
13 @ && 0 <= c && c <= d
14 @ && c <= l2.size() && l2.size() <= d);
15 @ ensures_free typeof(\result) <: List
16 @ && 0 <= a + c && a + c <= b + d
17 @ && a + c <= \result.size() && \result.size() <= b + d;
18 @*/
19 public List _concat_trampoline(
20 int a, int b, int c, int d,
21 /*@nullable@*/ List l1, /*@nullable@*/ List l2,
22 boolean l1WellTyped, boolean l2WellTyped) {
23 return concat(a, b, c, d, l1, l2);
24 }

Listing 3.7: Translated non-constant annotation, II

The trampoline _concat_trampoline is shown in Listing 3.7. Theoretically, this

trampoline would also need parameters aWellTyped, bWellTyped, etc., and appro-

priate pre-conditions, but as the parameters a, b, c, d are implicitly annotated

with the top annotation, all of the pre-conditions would be trivial, and we thus

leave them out.

1 /*@ public behavior
2 @ diverges true;
3 @ requires typeof(l1) <: List
4 @ && 0 <= 1 && 1 <= 1
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5 @ && 1 <= l1.size() && l1.size() <= 1;
6 @ requires typeof(l2) <: List
7 @ && 0 <= 2 && 2 <= 2
8 @ && 2 <= l2.size() && l2.size() <= 2;
9 @*/

10 public void foo(/*@nullable@*/ List l1, /*@nullable@*/ List l2) {
11 List temp = _concat_trampoline(
12 1, 1, 2, 2,
13 l0, l1,
14 false, false);
15 //@ assert typeof(temp) <: List
16 //@ && 0 <= 3 && 3 <= 3
17 //@ && 3 <= temp.size() && temp.size() <= 3;
18 List l3 = temp;
19 }

Listing 3.8: Translated non-constant annotation, III

The function foo which calls concat is shown in Listing 3.8 and again looks as

expected. An assertion is added for the assignment because the type system does

not know that concat’s return type @List(min="a+c", max="b+d") List and the

type @List(min="3", max="3") List are equivalent.

Using this modi�ed translation, we de�ne the notion of JML*-correctness.

De�nition 3.21 (JML*-correctness). We de�ne the set JMLCorrect∗ of JML*-
correct programs as the set of all programs pr such that

1. pr : Normal.

2. for every cover C : C (pr), every method in JML∗(pr,C) is JML-correct.

We now state our �nal theorem from which it follows that JMLCorrect∗ ⊆ Correct.

This means that if a program’s translation according to Algorithm 3.2 respects all of its

JML speci�cations, then that program is correct.

This is the central theorem of this thesis, because it tells us that combining a type

checker with a JML veri�cation tools – as Algorithm 3.2 does – never leads to an

incorrect program being accepted.

Theorem3.4 (Soundness of the modi�ed translation). JMLCorrect∗ ⊆ JMLCorrect.
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Proof

Firstly, we must show that Algorithm 3.2 only replaces assertions by assumptions

(or requires clauses by requires_free clauses) if they always hold.

When a variable assignment or de�nition is well-typed for a hierarchy H in the

context Γ in which it appears, then ΓH |= e : (vΓvar(a),T ), where e is the expression

being assigned and a : A : H is the annotation the variable var is annotated with.

Because the type system is sound, this means that

T � TA ∧WfA(vΓvar(a)) ∧ PropA(vΓ,ς (e),vΓvar(a))

holds for all ς : S(Γ).
It makes no di�erence whether we evaluate a in Γvar or Γ. If it did, Algorithm 3.1

would have turned the assertion into assert false, and Algorithm 3.2 would not

have replaced it. Thus

T � TA ∧WfA(vΓ(a)) ∧ PropA(vΓ,ς (e),vΓ(a))

holds, from which it follows that the assertion in question always holds.

This can be proven in the same way for method return statements.

Secondly, we must show Algorithm 3.2 only makes a boolean trampoline pa-

rameter bij true if the associated condition

Tj <: TAj
i
∧WfAj

i
(aji ) ∧ PropAj

i
(pj ,a

j
i )

always holds.

This can be shown analogously to two case above: If ΓH |= p : (vΓm (a),T ) for an

actual parameter p : T whose corresponding formal parameter is annotated with

a : A : H , it follows from the soundness of the type system that

T � TA ∧WfA(vΓm (a)) ∧ PropA(vΓ,ς (p),vΓm (a))

�
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In this chapter, we describe a pipeline consisting of a type checker developed using

the Checker Framework, which checks whether a Java program is well-typed, and KeY,

which is used to check if a program is JML*-correct.

Section 4.1 gives an overview over the pipeline, while the sections after it go into

more detail about speci�c components.

4.1. The pipeline

The activity diagram in Figure 4.1 visualizes the pipeline’s mode of operation.

In the following paragraphs, we brie�y describe every part of this diagram before

going into more detail about individual parts in the later sections.

Input: The user writes a program which is annotated with property annotations.

These annotations form one or multiple property annotation lattices, which are

de�ned in lattice �les. The syntax and semantics of these lattice �les is explained

in Section 4.2. Furthermore, the program may contain some JML speci�cations in

addition to the property annotations.

Prove lattice properties: This component proves that the partial orders de�ned by

the user in the markup language described in Section 4.2 actually form bounded lattices.

The proof is described in Section 4.2.2. The component also proves that all property

annotation types that appear in the lattices are valid and that they form a cover for the

program.

Prove program normality: This component proves that the program is normal, i.e.,

that it is well-typed in the immutability and the initialization type systems, and that

every property annotation in the program is valid.

Type checker: This component proves that the program is well-typed. The well-

typedness information is given to the translator, along with any existing JML speci-

�cations. We saw a theoretical overview over the type system in Section 3.4.1. The

implementation of the type checker is explained in Section 4.3.
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4. The type-checking pipeline

Property-annotation-to-JML translator: This component translates all property an-

notations to JML clauses, as described in Algorithm 3.2, keeping any JML speci�cations

that were already in the program. This is described in more detail in Section 4.4.

KeY: KeY proves the correctness of all JML speci�cations. This includes the speci�ca-

tions output by the translator, as well as those that were in the program to begin with.

We already saw an overview over KeY in Section 2.3. Section 4.5 explains how KeY is

used as a part of this pipeline.

61



4. The type-checking pipeline

F
i
g
u

r
e

4
.1

.:
T

y
p

e
-
c
h

e
c
k

i
n

g
p

i
p

e
l
i
n

e

62
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4.2. A language for property annotation lattices

In this section, we de�ne a language that allows programmers to, �rstly, de�ne the

property annotation types in their program, and secondly, de�ne a property annotation

lattice using these types.

4.2.1. Syntax and semantics

The syntax of this language is de�ned by the grammar in Listing 4.1. In addition to this

grammar, any line starting with a # is a comment, and is ignored.

The parts between question marks are informal speci�cations. For example,

? Java identifier ? is a non-terminal symbol that can be evaluated to any valid

Java identi�er.

For Java expressions, we require identi�ers to be delimited by § to make it easier for

the checker to substitute expressions for these identi�ers without having to parse them.

The statement ident latticeident de�nes latticeident as the unique identi�er

of this lattice. This identi�er is used in error messages by the Checker Framework

and in variable names and comments in the JML translation (see Algorithm 3.1) to

distinguish between multiple lattices.

An annotation type A is de�ned by the following line:

annotation A(Tp1p1, . . . ,Tpnpn) TA :<==> PropA for WfA;

The most general subject type >J can be referred to by the key-word any.

The relation � belonging to the lattice is de�ned by lines like this:

relation A(p1, . . . ,pn) <: B(q1, . . . ,qm) :<==> SA,B(p,q);

This states that for two evaluated property annotations A(p), B(q), A(p) � B(q) holds

if and only if the relation condition SA,B(p,q) holds.

For any two evaluated property annotations A(p), B(q), SA,B : String
p
boolean(p,q)

must hold, i.e., the value of the relation condition must only depend on the actual

parameters of the two annotations.

There must be exactly one relation statement for each pair of property annotation

types A,B.

De�nition 4.1 (<?). We write A(p) <? B(q) if there exists a relation statement for

the types A,B or if A(p) = B(q).
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1 <lattice> ::= <lattice_ident><annotations> <relations> <bounds>
2 <lattice_ident> ::= "ident" ? Java identifier ? ;
3

4 <annotations> ::= <annotation> | <annotation> <annotations>
5 <annotation> ::= "annotation" <ident> "(" (<params> | "") ")"
6 (<qualified_ident> | "any")
7 ":<==>" <expression> "for" <expression> ";"
8

9 <relations> ::= <relation> | <relation> <relations>
10 <relation> ::= <annotation_inst> "<:" <annotation_inst>
11 ":<==>" <expression> ";"
12

13 <bounds> ::= <bound> | <bound> <bounds>
14 <bound> ::= ( "join" | "meet" ) <annotation_inst> "," <annotation_inst>
15 ":=" <annotation_expr_inst> [ "for" <expression> ] ";"
16

17 <annotation_inst> ::= <ident> "(" (<idents> | "") ")"
18 <annotation_expr_inst> ::= <ident> "(" (<expressions> | "") ")"
19

20 <params> ::= <param> | <param> "," <params>
21 <param> ::= <qualified_ident> <ident>
22

23 <expressions> ::= <expression> | <expression> "," <expressions>
24 <idents> ::= <ident> | <ident> "," <idents>
25

26 <expression> ::= ’"’ ? Java expression with identifiers delimited by § ? ’"’
27 <qualified_ident> ::= ? qualified Java identifier ?
28 <ident> ::= ? unqualified Java identifier ?

Listing 4.1: Language for lattices

Theoretically, the annotations and relations su�ce to de�ne a property annotation

lattice. However, to avoid having to compute all possible joins and meets programati-

cally, we force the user to give the joins and meets for each pair of property annotations

that are not in a sub-annotation relationship (if a � b, then obviously a ∨ b = b and

a ∧ b = a).

join A(p1, . . . ,pn) , B(q1, . . . ,qm) := Cj(c
j
1
, . . . , c jm) for J jA,B,Cj

(p,q);

Here, the c ji are not identi�ers, but expressions in Stringp(p,q).
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There can be multiple join and meet statements for each pair of property annotation

types A,B.

The join/meet of two evaluated property annotationsA(p),B(q) is decided by iterating

through all join/meet statements for A,B in the order they appear and taking theCj(c)

of the �rst statement where the join/meet condition J jA,B,Cj
(p,q) holds to be the join/meet.

This means that the overall join/meet condition for a statement is stronger than

J jA,B,Cj
(p,q) because it also includes the negated conditions for all previous statements.

De�nition 4.2 (Overall join condition). We de�ne the overall join condition for

the above join statement as

J j∗A,B,C(p,q) := J
j
A,B,Cj
(p,q) ∧

j−1∧
i=0

¬J iA,B,Ci
(p,q)

For any two evaluated property annotations A(p),B(q), the join/meet condition

J jA,B,Cj
: Stringsboolean(p,q) must hold.

4.2.2. Proving the lattice properties

Here, we give an overview over how it can be proven that a partial order R given by a

description as de�ned in the previous section is actually a property annotation lattice.

The pipeline component that does this proof has not been implemented, so for now,

it must be done manually.

1. All property annotation types appearing in R are valid. For this, it must be proven

that all well-formedness conditions are constant expressions, that all properties

are pure expressions, and that all subject types are immutable.

2. R is a lattice.

a) R is re�exive: For every pair A(p) <? A(q):

WfA(p) → SA,A(p,p)

b) R is transitive: For all triples A(p) <? B(q) <? C(r ):

WfA(p) ∧WfB(q) ∧WfC(r ) ∧ SA,B(p,q) ∧ SB,C(q, r )
→ SA,C(p, r )

65



4. The type-checking pipeline

c) R is anti-symmetric: For all pairs A(p) <? B(q), B(q) <? A(p) where A(p) ,
B(q):

WfA(p) ∧WfB(q)
→ (SA,B(p,q) → ¬SB,A(q,p))

∧ (SB,A(q,p) → ¬SA,B(p,q))

d) The joins given in the description are correct: For all join statements with

overall join condition J ∗A,B,C(p,q) and all D(u) such that A(p) <? D(u) and

B(q) <? D(u):

WfA(p) ∧WfB(q) ∧WfD(u) ∧ J
∗
A,B,C(p,q) ∧ SA,D(p,u) ∧ SB,D(q,u)

→ WfC(r ) ∧ SC,D(r ,u)

e) The meets given in the description are correct: This can be proven in the

same way as the correctness of the joins.

3. There is a top and a bottom, i.e., annotation types Top and Bottom such that

a) WfTop = WfBottom = "true".

b) PropTop = "true", PropBottom = "false".

c) TTop = TBottom = >J .

d) ∀A(p) : A , A(p) �A > ∧ ⊥ �A A(p) where > = v(Top),⊥ = v(Bottom).

4. R conforms to the property annotations’ properties: For all pairs A(p) <? B(q):

TA � TB ∧ ∀s : TB,WfA(p) ∧WfB(q) ∧ SA,B(p,q)
→ (PropA(s,a) → PropB(s,b))

If all of these conditions hold, the partial order R de�ned by such a description is

a property annotation lattice. We can then get a corresponding type hierarchy H by

taking the direct product of R and a program pr’s program hierarchy.

Then we can use the de�nitions in Section 3.4 to check if pr is well-typed with respect

to H .

4.2.3. An example lattice

In this section, we explain the partial order shown in Listing 4.2, and prove that it is a

property annotation lattice.

66



4. The type-checking pipeline

Listing 4.2 de�nes a partial order containing the annotations UnknownLength,

BottomLength and Length(min,max) for allmin,max : ZJava wheremin ≥ 0,min ≤
max .

UnknownLength() is a super-annotation of every other annotation, while

BottomLength() is a sub-annotation of every other annotation.

The last relation line de�nes that

Length(a0,b0) � Length(a1,b1) ⇐⇒ a0 ≥ a1 ∧ b0 ≤ b1

i.e., if and only if the interval [a0,b0] is a sub-interval of [a1,b1].
For example, Length(2, 3) is a sub-annotation of Length(1, 4).
The lines starting with join and meet give the joins and meets, which are explained

in more detail below.

2

We now prove that this partial order R is a property type lattice:

1. All property annotation types appearing in R are valid. The only non-trivial

annotation type in R is Length, and we have already seen in Example 3.1 that it is

valid – assuming that List is immutable and List.size() is pure and terminates

normally.

2. R is re�exive. The re�exivity of a0 >= a1 && b0 <= b1 follows directly from the

re�exivity of ≤ and ≥.

3. R is anti-symmetric. This follows directly from the anti-symmetry of ≤ and ≥.

4. R is transitive. Again, this follows directly from the transitivity of ≤ and ≥.

5. The joins given in R’s description are correct. Let A0 := Length(a0,b0) and

A1 := Length(a1,b1) be two well-formed evaluated property annotations. Let

A∗ := Length(α , β) be another well-formed evaluated property annotation such

that A0 �R A∗ and A1 �R A∗.

Then a0 ≥ α ∧ b0 ≤ β and a1 ≥ α ∧ b1 ≤ β must hold.

This implies that min(a0,a1) ≥ α ∧max(b0,b1) ≤ β and thus

Length(min(a0,a1),max(b0,b1)) �R Length(α , β)

The well-de�nedness of Â := Length(min(a0,a1),max(b0,b1)) follows directly

from the well-de�nedness of A0 and A1:

(∀i : [1, 2], ai ≥ 0 ∧ ai ≤ bi) → min(a0,a1) ≥ 0 ∧min(a0,a1) ≤ max(b0,b1)
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We have proven that every super-annotation ofA0 andA1 is also a super-annotation

of Â and that Â is well-de�ned, which means that

A0 ∨A1 = Length(max(a0,a1),min(b0,b1))

i.e., the de�nition of the join was correct.

6. The meets given in R’s description are correct. Let A0 := Length(a0,b0) and

A1 := Length(a1,b1) be two well-formed evaluated property annotations. Let

A∗ := Length(α , β) be another well-formed evaluated property annotation such

that A∗ �R A0 and A∗ �R A1.

Then α ≥ max(a0,a1) ∧ β ≤ min(b0,b1) must hold.

In the case where [a0,b0] and [a1,b1] overlap, we can continue the proof in the

same way as the proof for the joins.

For the case where they do not overlap, i.e., b0 < a1 ∧ b1 < a0, it follows that

min(b0,b1) < max(a0,a1), and thus A∗ is not well-formed.

This means that the only well-formed lower bound for A0 and A1 is ⊥.

7. There is a top and a bottom. UnknownLength and BottomLength obviously

conform to the requirements for top and bottom, respectively.

8. R conforms to the property annotations’ properties. Observe that

Length(a0,b0) �R Length(a1,b1)

if and only if the interval [a0,b0] is contained in [a1,b1]. Thus, any List length

which is in the interval [a0,b0] must also be in the interval [a1,b1].
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1 ident length;
2

3 annotation UnknownLength() any :<==> "true" for "true";
4 annotation BottomLength() any :<==> "false" for "true";
5

6 annotation Length(int min, int max) List
7 :<==> "§subject§.size >= §min§ && §subject§.size <= §max§"
8 for "§min§ >= 0 && §min§ <= §max§";
9

10 relation Length(a0, b0) <: Length(a1, b1)
11 :<==> "§a0§ >= §a1§ && §b0§ <= §b1§";
12

13 relation Length(a,b) <: UnknownLength() :<==> "true";
14 relation BottomLength() <: Length(a,b) :<==> "true";
15 relation BottomLength() <: UnknownLength() :<==> "true";
16

17 join Length(a0, b0), Length(a1, b1)
18 := Length("java.lang.Math.min(§a0§, §a1§)",
19 "java.lang.Math.max(§b0§, §b1§)");
20

21 # overlapping
22 meet Length(a0, b0), Length(a1, b1)
23 := Length("java.lang.Math.max(§a0§, §a1§)",
24 "java.lang.Math.min(§b0§, §b1§)")
25 for "§b0§ >= §a1§ || §b1§ >= §a0§";
26

27 # non-overlapping
28 meet Length(a0, b0), Length(a1, b1) := BottomLength();
29 # "!(b0 >= a1 || b1 >= a0)" is implicit!

Listing 4.2: Example lattice
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4.3. The type checker

The type checker is implemented in the Checker Framework and can be used much

like any other checker. [Che20, 2.2] describes how to use a checker.

The property type checker di�ers in that it requires some additional arguments to

specify the lattices to use (which must be written in the language de�ned in Section 4.2),

the package containing the annotation type de�nitions, and the root directory of the

program to be checked.

One unfortunate restriction of the current implementation is that the Java package

containing the annotation types must be part of the property type checker itself, and

annotation types cannot be loaded from an external source.

Once the Checker Framework and the property type checker have been installed,

the property type checker can be run using the command shown in Listing 4.3.

1 javac -processor property \
2 -APropertyChecker_lattices=path/to/lattice/one;path/to/lattice/two \
3 -APropertyChecker_classes path/to/project/root \
4 -APropertyChecker_qual=annotation.type.package \
5 FileToCheck.java

Listing 4.3: Type checker usage

The type checker implementation instantiates a so-called lattice checker for every

lattice �le. A lattice checker is responsible for checking whether the program is well-

typed with respect to its lattice. All of these lattice checkers run independently of each

other.

Lattice checkers override the default quali�er hierarchy – this is what the Checker

Framework calls the annotation hierarchy – with a custom implementation that gets

its sub-typing information from a parsed lattice �le.

For example, to see if two Length annotations Length(a0,b0) and Lenдth(a1,b1) are

in a sub-type relationship, it looks for the appropriate relation line from the lattice

�le:

relation Length(a0, b0) <: Length(a1, b1)
:<==> "§a0§ >= §a1§ && §b0§ <= §b1§";

Then the parameters of the two annotations are plugged into the condition §a0§ >=

§a1§ && §b0§ <= §b1§ and the resulting expression is evaluated.

Finding the join or meet of two annotations works the same way.
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Every lattice checker collects all mal-typed assignments, de�nitions, etc. After every

lattice checker has been run, the parent checker collates all of these results and gives

them to the JML translator.

2

As explained in the previous sections, property annotation lattices are de�ned in lattice

�les. However, because Java annotations are just a special kinds of interface, they must

still be de�ned in Java �les.

As this is unintuitive, we explain it using the following example.

1 @SubtypeOf({UnknownLength.class})
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ElementType.TYPE_USE})
4 public @interface Length {
5 String min() default "0";
6 String max() default "2147483647";
7 }

Listing 4.4: Length.java

Let us use the example lattice from Listing 4.2 again. The annotation type Length is

de�ned by the �le shown in Listing 4.4 in addition to the information found in the lattice

�le. This additional de�nition is necessary because the checker cannot dynamically

create new Java types at run-time. Also, most of the meta-annotations de�ned by the

Java API and the Checker Framework are not supported by the lattice language.

It would obviously be both useful and not very di�cult to add support for these meta-

annotations to our lattice language and to generate the Java �les for the annotation

types programatically.

We now give an overview over some of the most important meta-annotations and

how they should be used with property types.

1. @SubtypeOf. These annotations de�ne an approximation of the property an-

notation lattice. Since Length is annotated with @SubtypeOf({UnknownLength.

class}), every instance of Length must be a sub-annotation of every instance of

UnknownLength.

2. @Retention(RetentionPolicy.RUNTIME) speci�es that wherever a Length anno-

tation is used, it is compiled into the class �le and retained at run-time, so that it

can be accessed using re�ection. @Retention(RetentionPolicy.CLASS) – which

would compile the annotations but not retain them at run-time – is su�cient for

type-checking, but run-time retention has negligible costs and allows for future

development of run-time tools. [Che20, 37.7.3]
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3. @Target({ElementType.TYPE_USE}) speci�es that this annotation may appear

on any type use [Che20, 34.5.1]. As mentioned before, this is further constrained

by the property checker, which only supports annotations on variable de�nitions,

method return types, and constructors.

4. @RelevantJavaTypes({List.class}) [Che20, 34.5.5]. This meta-annotation does

not appear because it is redundant with the de�nition of the subject type in the

lattice �le. Specifying it anyway does not lead to an error, as long as the subject

type is the only parameter.

5. @DefaultQualifierForHierarchy, @DefaultQualifierFor(List.class). None

of these annotations appear here, but they could be used to make Length the de-

fault quali�er. @DefaultQualifierFor(List.class) would mean that any List

variable which the user does not give an explicit annotation for would be an-

notated with @Length(min="0", max="2147483647") (using the default values

for the parameters). @DefaultQualifierForHierarchy would mean that any

variable at all which the user does not give an explicit annotation for would

be annotated with @Length(min="0", max="2147483647"); this would of course

lead to a type error, since only lists may be annotated with Length. [Che20, 29.5]

4.4. The property-annotation-to-JML translator

The translator is implemented as a part of the type checker. After the type checker

has checked the well-typedness of the program separately for every lattice, the well-

typedness results for every lattice are given to the translator.

As mentioned in Section 3.4.3 and Section 4.1, the user may specify some JML clauses

for their program, which in this stage of the pipeline have to be combined with the JML

clauses that arise from the translation of the property annotations.

Look at the example in Listing 4.5, which models part of a web shop.

The translation to JML is shown in Listing 4.6. For the assumption before the

assignment to customers, we assume that the default constructor List() returns a

result of type @Length(min="0", max="0") List; otherwise the assignment would not

be well-typed and we would have an assertion instead of an assumption.

The assumption before the assignment to order is missing because orders is im-

plicitly annotated with the top annotation UnknownLength whose property and well-

formedness condition are both equal to "true" and whose subject type is >J , making

the assumption trivial and unnecessary.

We also see that the JML clauses which the user has speci�ed for the constructor

have been integrated into the contract. The ensures clause speci�es that the reference

returned by the constructor and all �elds are fresh and do not refer to variables that

already existed before the constructor was invoked. The assignable clause speci�es
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1 public class Shop {
2

3 private List orders;
4 private @Length(min="0", max="2147483647") List customers;
5

6 @JMLClause(values={
7 "ensures \fresh(this) && \fresh(this.*)",
8 "assignable \nothing",
9 })

10 public Shop() {
11 orders = new List();
12 customers = new List();
13 }
14 }

Listing 4.5: Untranslated example

that the constructor does not modify any heap locations – except for the two �elds of

the object it is creating.

To make the implementation of the parser easier, we specify JML clauses using the

@JMLClause annotation instead of using a JML comment as in Listing 4.6. This keeps

us from having to parse JML comments.

As shown in Section 3.4.3, such JML clauses may be necessary to be able to show the

JML-correctness of a program.
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1 public class Shop {
2

3 private /*@nullable@*/ List orders;
4

5 private /*@nullable@*/ List customers;
6

7 /*@ public behavior
8 @ diverges true;
9 @ ensures \fresh(this) && \fresh(this.*);

10 @ assignable \nothing;
11 @*/
12 public Shop() {
13 super();
14

15 List temp0 = new List();
16 orders = temp0;
17

18 List temp1 = new List();
19 //@ assume typeof(temp1) <: List
20 //@ && 0 >= 0 && 0 <= 2147483647
21 //@ && 0 <= temp1.size() && temp1.size() <= 2147483647;
22 customers = temp1;
23 }
24 }

Listing 4.6: Translated example

4.5. KeY

Section 2.3, Section 3.4.2, and Section 4.4 already went into much detail about JML, so

in this section all that is left is to give an overview over the proof settings used by KeY

in this pipeline.

In the program output by the translator, there is one proof obligation for every

method.

Since assertions and assumptions are syntactic sugar for block contracts, there is

a separate proof obligation for every one of these as well, but since the correctness

of most assertions depends on the context of the surrounding method, assertions and

assumptions are evaluated during the proof for the surrounding method.

There is also a proof obligation for every trampoline, but since all trampoline post-

conditions are either free (i.e., come from ensures_free clauses) or copied from the

contract of the trampoline’s target method, a trampoline’s contract is valid by construc-

tion and need not be proven.
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For now the user must manually load the program output by the translator into KeY

and prove all remaining proof obligations manually. In the future, it would obviously be

nice to have a fully automatic pipeline that calls the type checker and KeY sequentially

and presents the result in a dedicated interface.
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5. Case Study

In this chapter, we present a small program that was annotated with property annota-

tions and then validated using the pipeline described in Chapter 4.

Section 5.1 o�ers a description and explanation of the most interesting parts of this

program.

Section 5.2 evaluates the case study with regard to the goals stated in the introduction:

allowing the user to de�ne property types with as little speci�cation and veri�cation

overhead as possible, combining some of the strengths of type checkers and formal

veri�cation tools.

The complete source code for this case study is printed in Appendix A.
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5.1. Description

The class diagram in Figure 5.1 shows the classes in the case study and their most

important �elds and methods.

The Main class is not shown, as it contains only a main() method which calls some

methods from the other classes for demonstration purposes.

The case study implements part of a web shop. The Shop class contains a FIFO queue

of Orders, which are pairs consisting of a Customer and a Product. Here, we see the

�rst property we want to prove: that no customer can order a product that is not

approved for their age.

The method Customer.order() instantiates a new order, and then calls

Shop.addOrder() to add the order to the shop’s order queue. Here, we see the second

property we want to prove: the queue containing the order should satisfy the Okasaki
invariant.

Okasaki queues, as we will call them, are a kind of FIFO queue �rst introduced by

Chris Okasaki in [Oka95]. Our implementation is based on that in [JSV17, 8].

An Okasaki queue is made up of two lists, called front and back, such that front is

never shorter than back. To insert an item into the queue, we add it to back. To remove

an item, we remove it from front.
Thus, for the queue containing the items (a,b, c,d), we might have front =
(a,b), back = (d, c), or front = (a,b, c), back = (d), but not front = (a), back = (d, c,b)
since then front would be shorter than back.

Re-establishing the Okasaki invariant after every insertion and removal guarantees

that those two operations can be done in amortized constant time [Oka95, 4]. This does

however assume that we are using lazy lists, which we do not do in this case study for

simplicity’s sake.

In the rest of this section, we show how property types can be used to verify that the

two aforementioned properties are respected.

We also show some other, less interesting properties, e.g., that all attributes that

correspond to associations with multiplicity 1 in Figure 5.1 are non-null.

5.1.1. Products and orders

We start with the Product class, which is one of the simpler classes in this program.

As we can see in Listing 5.1, every product has a title, a price, which must be a

non-negative number, and an age restriction, which must be a number between 0 and

18.

In addition, the title is implicitly annotated with the default annotation @NonNull,

meaning that is must not be equal to null.
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1 public class Product {
2 public String title;
3 public @Interval(min="0", max="2147483647") int price;
4 public @Interval(min="0", max="18") int ageRestriction;
5

6 @JMLClause(values={
7 "assignable this.*",
8 "ensures \fresh(this) && \fresh(this.*)",
9 "ensures this.title == title"

10 + " && this.price == price"
11 + " && this.ageRestriction == ageRestriction"})
12 public @AllowedFor(age="ageRestriction") Product(
13 String title,
14 @Interval(min="0", max="2147483647") int price,
15 @Interval(min="0", max="18") int ageRestriction) {
16 this.title = title;
17 this.price = price;
18 this.ageRestriction = ageRestriction;
19 }
20

21 @JMLClause(values={"assignable \nothing"})
22 public String getTitle() { return title; }
23

24 @JMLClause(values={"assignable \nothing"})
25 public @Interval(min="0", max="2147483647") int getPrice() {
26 return price;
27 }
28

29 @JMLClause(values={"assignable \nothing"})
30 public @Interval(min="0", max="18") int getAgeRestriction() {
31 return ageRestriction;
32 }
33 }

Listing 5.1: Product.java
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1 ident allowedfor;
2

3 annotation AllowedForEveryone() any :<==> "true" for "true";
4 annotation AllowedForNoone() any :<==> "false" for "true";
5

6 annotation AllowedFor(int age) case_study.Product
7 :<==> "§subject§ != null && §subject§.ageRestriction <= §age§"
8 for "§age§ >= 0";
9

10 relation AllowedForNoone() <: AllowedFor(y) :<==> "true";
11 relation AllowedFor(x) <: AllowedForEveryone() :<==> "true";
12 relation AllowedFor(x) <: AllowedFor(y) :<==> "§x§ < §y§";

Listing 5.2: lattice_allowedfor

The additional @JMLClauses are necessary to prove the correctness of other classes

that use the Product class. We already saw an explanation for something similar to

this in Section 3.4.3.

The restrictions of the values of price and ageRestriction are enforced using a

property annotation of type @Interval. The hierarchy of @Interval annotations is

de�ned in the most obvious way, with [a,b] being a sub-annotation of [c,d] if [a,b] is

contained in [c,d].
In addition, we de�ne a property annotation type @AllowedFor, which allows us to

type products according to their age restriction: a product has the type @AllowedFor

(age="n") Product if customers aged n years are allowed to buy it. The hierarchy of

these annotations is also obvious, with AllowedFor(a) � AllowedFor(b) if a ≥ b.

The full lattice �le can be seen in Listing 5.2.

The @Interval annotations shown here, as well as the implicit @NonNull annotations,

are all constant, so the checker can verify that the assignments in the constructor and

the return statements in the getter methods are all well-typed.

The annotation @AllowedFor(age="ageRestriction") on the constructor has the

non-constant parameter price. Also, constructors that are annotated with anything

other than> cannot be well-typed anyway. This means that the fact that the constructor

returns an object of type @AllowedFor(age="ageRestriction") Product has to be

proven in KeY.

Listing 5.3 shows how the constructor is translated to JML. Since all assignments

inside the constructor are well-typed, the only thing left to be proven are the post-

conditions, those being the post-conditions speci�ed via @JMLClause, and the post-

condition belonging to @AllowedFor(age="price").

Because we have chosen @NonNull as the implicit default annotation for all objects,

we get the additional post-condition this != null. The fact that a constructor returns
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1 /*@ public behavior
2 @ diverges true;
3 @ requires \typeof(price) <: int
4 @ && (0 >= 0 && 0 <= 2147483647)
5 @ && (price >= 0 && price <= 2147483647);
6 @ requires \typeof(ageRestriction) <: int
7 @ && (0 >= 0 && 0 <= 18)
8 @ && (ageRestriction >= 0 && ageRestriction <= 18);
9 @ requires \typeof(title) <: java.lang.Object

10 @ && (true) && (title != null);
11 @ assignable this.*;
12 @ ensures \fresh(this) && \fresh(this.*);
13 @ ensures this.title == title && this.price == price
14 @ && this.ageRestriction == ageRestriction;
15 @ ensures \typeof(this) <: case_study.Product
16 @ && (ageRestriction >= 0)
17 @ && (this != null && this.ageRestriction <= ageRestriction);
18 @ ensures \typeof(this) <: java.lang.Object && (true) && (this != null);
19 @*/
20 public Product(
21 /*@nullable@*/ java.lang.String title,
22 int price, int ageRestriction) {
23 super();
24

25 java.lang.String temp0 = title;
26 //@ assume \typeof(temp0) <: java.lang.Object
27 //@ && (true) && (temp0 != null);
28 this.title = temp0;
29 int temp1 = price;
30 //@ assume \typeof(temp1) <: int
31 //@ && (0 >= 0 && 0 <= 2147483647)
32 //@ && (temp1 >= 0 && temp1 <= 2147483647);
33 this.price = temp1;
34 int temp2 = ageRestriction;
35 //@ assume \typeof(temp2) <: int
36 //@ && (0 >= 0 && 0 <= 18)
37 //@ && (temp2 >= 0 && temp2 <= 18);
38 this.ageRestriction = temp2;
39 }

Listing 5.3: Product constructor in JML
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1 public class Order {
2 public Customer customer;
3 public @AllowedFor(age="customer.age") Product product;
4

5 @JMLClause(values={
6 "assignable this.*",
7 "ensures \fresh(this) && \fresh(this.*)",
8 "ensures this.customer == customer && this.product == product"})
9 public Order(Customer customer, @AllowedFor(age="customer.age") Product

product) {
10 this.customer = customer;
11 this.product = product;
12 }
13

14 @JMLClause(values={"assignable \nothing"})
15 public Customer getCustomer() {
16 return customer;
17 }
18

19 @JMLClause(values={"assignable \nothing"})
20 public @AllowedFor(age="this.customer.age") Product getProduct() {
21 return product;
22 }
23 }

Listing 5.4: Order.java

a non-null object is obvious, but the system cannot reason about the property in this

way. In the future, it would be nice to be able to specify and use lattice-speci�c rules

like “a constructor’s result is always @NonNull” without having to resort to KeY.

2

Listing 5.4 shows the Order class.

An order consists of a customer and a product, with the product’s type @AllowedFor

(age="customer.age") Product depending on the customer’s age. Since this annota-

tion’s parameter is evidently not a constant, anything to do with the product’s type

must be veri�ed in KeY. KeY rejects as invalid the creation of any order where the

product’s type indicates that the customer is too young to buy it.

2

How can we now use these types? Let us �rst de�ne two products:
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1 @AllowedFor(age="18") Product product18
2 = new Product("Louisiana Buzzsaw Carnage", 10, 18);
3 @AllowedFor(age="6") Product product6
4 = new Product("Tim & Jeffrey, All Episodes", 10, 6);

These two assignments are valid, but not well-typed. In the future, it would be

nice to include a variable substitution mechanism in the checker, but for now an

assignment from the type @AllowedFor(age="this.age") Product to @AllowedFor(

age="18") Product is not well-typed even if this.age == 18.

This restriction could be worked around by including a method like the following:

1 @AllowedFor(age="18") static Product product18(
2 String title,
3 @Interval(min="0", max="2147483647") int price) {
4 return new Product(title, price, 18);
5 }

Of course, this method itself is not well-typed, but any client code that uses it instead

of calling the Product constructor directly is, so we would only have to verify this

single method in KeY instead of every single method that creates a new Product.

Next, we de�ne three customers:

1 Customer customer18 = new Customer("Alice", 18);
2 Customer customer14 = new Customer("Bob", 14);
3 Customer customer6 = new Customer("Charlie", 6);

The �rst two lines are well-typed. The third line is neither well-typed nor valid

because a customer’s age has the type @Interval(min="14", max="150") int to rep-

resent the fact that only people aged 14 or older are allowed to register an account with

our web shop.

Now, let us try to order some products for the two valid customers:

1 customer18.order(product18);
2 customer18.order(product6);
3 customer14.order(product18);
4 customer14.order(product6);

The signature of Customer.order is void order(@AllowedFor(age="this.age")

Product product).
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Because it includes a non-constant annotation, none of these lines are well-typed.

They are translated to JML as follows:

1 customer18.__order_trampoline(product18, false);
2 customer18.__order_trampoline(product6, false);
3 customer14.__order_trampoline(product18, false);
4 customer14.__order_trampoline(product6, false);

with Customer.order(...) and its trampoline method de�ned as follows (for sim-

plicity’s sake, we only include the properties for annotations in the @AllowedFor lattice):

1 /*@ public behavior
2 @ diverges true;
3 @ requires \typeof(product) <: case_study.Product
4 @ && (this.age >= 0)
5 @ && (product != null && product.ageRestriction <= this.age);
6 @ assignable Shop.instance.orders;
7 @*/
8 public /*@helper@*/ void order(/*@nullable@*/ case_study.Product product) {
9 Shop.__getInstance_trampoline().__addOrder_trampoline(

10 Order.__INIT_trampoline(this, product));
11 }
12

13 /*@ public behavior
14 @ diverges true;
15 @ requires product_allowedfor || (...);
16 @ requires_free !product_allowedfor || (...);
17 @ assignable Shop.instance.orders;
18 @*/
19 public /*@helper@*/ void __order_trampoline(
20 /*@nullable@*/ case_study.Product product,
21 boolean product_allowedfor) {
22 order(product);
23 }

This works like all the previous trampoline examples we have seen.

Because the parameter product_allowedfor is false for all calls to

__order_trampoline(), the right-hand part of the requires clause must be

proven. This proof succeeds if and only if the customer’s age is high enough to buy the

product.
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5.1.2. Lists and queues

In this sub-section, we present parts of the List and Queue classes.

2

Listing 5.5 shows part of List.

As we can see, a list consists of a head of type Object (for simplicity’s sake, we

assume without proof that all objects that are put into a list are immutable), and a

nullable tail of type List. Empty lists are represented by null.

The annotation @Positive on the list’s size, as well as the implicit annotation

@NonNull on the head pose no problem to the type checker.

In addition to these, we have some @Length annotations that tell us that a list’s tail

is one shorter than the list itself. This has to be veri�ed in KeY.

Strictly speaking, the constructor shown in Listing 5.5 is incorrect because the size

�eld may over�ow. When proving the correctness of this program in KeY, we used

the semantics of the mathematical integers instead of the modulo semantics of Java

integers. When using real Java semantics, an additional pre-condition must be added to

the constructor to ensure that the tail argument has a length no greater than 2
31 − 2.

2

Listing 5.6 shows part of Queue.

As explained above, a queue consists of two lists front and back.

The remove() method requires that front not be empty. This property is encoded in

the annotation @FrontNonEmpty.

The toOkasaki() method re-instantes the Okasaki invariant by calling rotate() to

move all elements in back into front in the correct order.

The Shop class, shown in Listing 5.7, demonstrates how such a queue can be used.

The type system ensures that every time the orders queue is modi�ed, the Okasaki in-

variant remains valid. It is easy to see that this is the case, since after every modi�cation

Queue.toOkasaki() is called.

Furthermore, the system ensures that Queue.remove() is only called on queues of

type @FrontNonEmpty. The call to orders.remove() is the only part of the Shop class

that is not well-typed, since @Okasaki Queue is not a sub-type of @FrontNonEmpty

Queue (as an empty queue also satis�es the Okasaki invariant).

We must thus use KeY to try and show that inside the branch

if (orders.size() > 0), the queue’s front cannot be empty. This can in fact

be shown because we know that inside the branch orders.size() > 0 holds, which

is equivalent to orders.front.size() + orders.back.size() > 0. Since orders

has the type @Okasaki Queue, we know that orders.front.size() >= orders.back.

size(). Thus, it follows that orders.front.size() > 0.
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1 public class List {
2 public Object head;
3

4 public @Nullable
5 @Length(min="this.size - 1", max="this.size - 1")
6 List tail;
7

8 public @Positive int size;
9

10 public
11 @Length(min="tail.size + 1", max="tail.size + 1")
12 List(Object head, List tail) {
13 this.size = tail.size() + 1;
14 this.head = head;
15 this.tail = tail;
16 }
17

18 public Object head() { return head; }
19

20 public
21 @Nullable
22 @Length(min="this.size - 1", max="this.size - 1")
23 List tail() { return tail; }
24

25 public @Positive int size() { return size; }
26 }

Listing 5.5: List.java
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1 public class Queue {
2 public @Nullable List front;
3 public @Nullable List back;
4

5 public Queue(@Nullable List front, @Nullable List back) { ... }
6

7 private static @Nullable List rotate(
8 @Nullable List front, @Nullable List back, @Nullable List acc) {
9 if (front == null && back == null) {

10 return acc;
11 } else if (front == null) {
12 return rotate(null, back.tail(), List.cons(back.head(), acc));
13 } else if (back == null) {
14 return List.cons(front.head(), rotate(front.tail(), null, acc));
15 } else {
16 return List.cons(front.head(), rotate(front.tail(), back.tail(),

List.cons(back.head(), acc)));
17 }
18 }
19

20 @JMLClause(values={
21 "ensures front == null && back == null ==> \result == 0",
22 "ensures front == null && back != null ==> \result == back.size",
23 "ensures front != null && back == null ==> \result == front.size",
24 "ensures front != null && back != null"
25 + " ==> \result == front.size + back.size",
26 })
27 public int size() { return List.size(front) + List.size(back); }
28

29 public @Okasaki Queue toOkasaki() {
30 if (back == null || (front != null && front.size() >= back.size())) {
31 return this;
32 } else {
33 Queue result = new Queue(rotate(front, back, null), null);
34 return result;
35 }
36 }
37

38 public Queue remove(@FrontNonEmpty Queue this) {
39 return new Queue(front.tail(), back);
40 }
41 }

Listing 5.6: Queue.java
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1 public class Shop {
2 private @Okasaki Queue orders = new Queue(null, null).toOkasaki();
3

4 public void addOrder(Order order) {
5 orders = orders.insert(order).toOkasaki();
6 }
7

8 public boolean processNextOrder() {
9 if (orders.size() > 0) {

10 orders = orders.remove().toOkasaki();
11 return true;
12 } else {
13 return false;
14 }
15 }
16 }

Listing 5.7: Shop.java

5.2. Evaluation

To evaluate this case study, we �rst give a rough overview over what properties we

were able to show in Table 5.2.

As we can see, we were a able to show quite a few things with a relatively small

speci�cation overhead.

Obviously, having to specify the lattice �les adds an overhead that would not be

there if we had just used KeY, but this should be weighted against the fact that property

types allow us to delegate the creation of these lattice �les to one or a few members

of a team, while the other programmers can simply use the annotations in a relatively

intuitive way.

Another thing that adds unnecessary overhead is the fact that for some of the parts

which required KeY, we had to add additional JML clauses to some methods. Some

of this can be mitigated by encapsulating veri�cation-heavy code. For some other

parts, like the assignable clauses, it may be possible to infer the needed speci�cations

programatically.

Nevertheless, using property types in a way that relies heavily on KeY does add

a substantial speci�cation overhead, though the overall size of the speci�cations (in-

cluding JML clauses and property annotations) is still quite small. As evidenced by

the property-type-to-JML translations, it is certainly smaller than if we had used JML

exclusively.
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Property Use of KeY necessary for
@Interval nothing.

@Positive nothing.

@Length showing that a list’s tail is always one shorter than the list

itself.

@NonNull showing that the results of constructors are not null; re-

�ning nullable variables to non-null, e.g., in branches

if (x != null).

@Okasaki;

@FrontNonEmpty

establishing the Okasaki invariant in Queue.toOkasaki();

re�ning @Okasaki to @OkasakiNonEmpty in Shop.

processNextOrder().

@AllowedFor establishing and using the invariant of the Order class.

Table 5.2.: Shown properties

As for the veri�cation overhead, Table 5.3 shows the time it took to verify the

correctness of each class in KeY. The times for the individual methods in each class

were added up. The contracts for trampoline methods were not proven, as they are

correct by construction.

All proofs for this case study could be found by KeY’s automatic mode, i.e., no manual

intervention was necessary.

To �nd these proofs, KeY was executed on a computer with an Intel Core i7-4720HQ

(2x2.60GHz) processor and 16 GB of RAM.

Class Time for proof
Customer 3.8s

List 11.0s
Main 33.5s
Order 2.4s

Product 2.7s
Queue 239.4s
Shop 10.9s

total 303.6s

Table 5.3.: Proof times

This shows that at around �ve minutes, the veri�cation overhead for this case study

was very small. The class with the biggest overhead was Queue, of which the method

Queue.rotate() took the longest time to prove.
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The class with the second-biggest overhead was Main, which creates and uses objects

of all of the other classes. This is mostly due to the fact that, as explained above – the

type system does not support any form of variable substitution.

The correctness proofs for the other classes, which constitute the business logic of

this program, all could be found in under �fteen seconds.
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6.1. Conclusion

In the preceding chapters, we introduced and formalized a way to use Java annotations

to encode some of the desired properties of a variable into that variable’s type.

We introduced a general way to combine multiple such property types into a type

hierarchy, and saw how we could use multiple such hierarchies in one program.

We also saw how property types can be translated to JML [Lea+13], and how this

allows us to build a veri�cation pipeline that is easier to use than a traditional formal

veri�cation tool while also not being as over-approximative as a traditional type system.

Instead of relying on incomplete type re�nement rules that are speci�c to one type

system, the power of formal veri�cation allows us to attempt to re�ne a variable’s type

whenever we want while still being able to verify that the re�nement is correct.

Translating property types to JML also allows us to support dependent types without

having to support these types in the type system itself.

While there exist pluggable type systems for Java, like those included in the Checker

Framework [Che20], and also run-time validation frameworks like BeanValidation

[Mor19], the framework presented in this thesis allows users to de�ne their own

pluggable type systems without very much programming work. Furthermore, it demon-

strates that type systems that include re�nement types or general dependent types –

which are of course well-known to be well-suited to functional programming languages

– can also be applied to imperative languages.

6.2. Outlook

First, this thesis focused on just proving or disproving the correctness of an exist-

ing program speci�cation. It could be very helpful to programmers if – given an

incorrect program – the veri�cation pipeline were able to apply some kind of weakest-

precondition calculus and insert additional assertions or checks into the program to

make it correct. This could be combined with type inference on the side of the Checker

Framework – as seen for example in [XLD20] – which checks if there exists some valid

typing for a given program.

It would also be interesting to see if and how the property type system could be

extended to allow for properties of mutable objects to be veri�ed. One would probably
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have to include an ownership system – like the one presented in [Die09] – to deal

with the problems presented by reference aliasing. One would also have to investigate

whether it would generally be more useful for an object to always have to belong to

the type under which it was created, or for an object to be allowed to change its type

under some circumstances.

Support for Java generics would also be very useful. While the Checker Framework

does support generics, KeY does not. One would have to introduce a way to allow a

method’s JML contract depend on the instantiation of the type variables.

Furthermore, it would also be interesting to leverage the Checker Framework’s

support for dependent types in the property type system instead of delegating all of

that to KeY.

Creating some means for the user to de�ne lattice-speci�c type rules and to verify the

correctness of those rules in KeY would greatly cut down on the veri�cation overhead,

especially for properties of primitive types. It would also put the property type checker

closer to other type checkers developed in the Checker Framework, almost all of which

implement some re�nement rules. As it is, the type checker does not know anything

about the type of the expression a + b even if it knows the most speci�c types of a and

b.

Last but not least, the implementation of the type-checking pipeline could still be

improved. Firstly, forcing the user to put the annotation types in the checker’s class

path is obviously not ideal for practical use. Supporting all meta-annotations in the

Java library and the Checker Framework in the lattice language and using that to

generate Java �les for the annotation types programatically would make the type

checker much easier to use. Secondly, some parts of the pipeline implementation are

still missing. One could quite easily generate KeY-readable proof obligations to prove

the lattice properties of the annotation hierarchy. One could also integrate the Checker

Framework’s initialization checker as well as the Glacier immutability checker into the

property checker.
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A. Source code for the case study

A.1. Lattice files

1 ident allowedfor;
2

3 annotation AllowedForEveryone() any :<==> "true" for "true";
4 annotation AllowedForNoone() any :<==> "false" for "true";
5

6 annotation AllowedFor(int age) case_study.Product
7 :<==> "§subject§ != null && §subject§.ageRestriction <= §age§"
8 for "§age§ >= 0";
9

10 relation AllowedForNoone() <: AllowedFor(y) :<==> "true";
11 relation AllowedFor(x) <: AllowedForEveryone() :<==> "true";
12 relation AllowedFor(x) <: AllowedFor(y) :<==> "§x§ < §y§";

Listing A.1: lattice_allowedfor

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @Retention(RetentionPolicy.RUNTIME)
11 @Target({ElementType.TYPE_USE})
12 @DefaultQualifierInHierarchy
13 @SubtypeOf({})
14 public @interface AllowedForEveryone {}

Listing A.2: AllowedForEveryone.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2
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3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({AllowedForEveryone.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface AllowedFor {
14

15 String age();
16 }

Listing A.3: AllowedFor.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9 import org.checkerframework.framework.qual.TargetLocations;

10 import org.checkerframework.framework.qual.TypeUseLocation;
11

12 @SubtypeOf({AllowedFor.class})
13 @Retention(RetentionPolicy.RUNTIME)
14 @Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
15 @TargetLocations({TypeUseLocation.EXPLICIT_LOWER_BOUND, TypeUseLocation.

EXPLICIT_UPPER_BOUND})
16 public @interface AllowedForNoone {}

Listing A.4: AllowedForNoone.java

1 ident interval;
2

3 annotation IntervalTop() any :<==> "true" for "true";
4 annotation IntervalBottom() any :<==> "false" for "true";
5

6 annotation Interval(int min, int max) int
7 :<==> "§subject§ >= §min§ && §subject§ <= §max§"
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8 for "§min§ >= 0 && §min§ <= §max§";
9

10 relation Interval(a,b) <: IntervalTop() :<==> "true";
11 relation IntervalBottom() <: Interval(a,b) :<==> "true";
12

13 relation Interval(a0, b0) <: Interval(a1, b1) :<==> "§a0§ >= §a1§ && §b0§ <=
§b1§";

14

15 join Interval(a0, b0), Interval(a1, b1) := Interval("java.lang.Math.min(§a0§,
§a1§)", "java.lang.Math.max(§b0§, §b1§)");

16

17 # overlapping
18 meet Interval(a0, b0), Interval(a1, b1)
19 := Interval("java.lang.Math.max(§a0§, §a1§)", "java.lang.Math.min(§b0§, §

b1§)")
20 for "§b0§ >= §a1§ || §b1§ >= §a0§";
21

22 # non-overlapping
23 meet Interval(a0, b0), Interval(a1, b1) := IntervalBottom(); # "!(b0 >= a1 ||

b1 >= a0)" is implicit!

Listing A.5: lattice_interval

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @Retention(RetentionPolicy.RUNTIME)
11 @Target({ElementType.TYPE_USE})
12 @DefaultQualifierInHierarchy
13 @SubtypeOf({})
14 public @interface IntervalTop {}

Listing A.6: IntervalTop.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
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5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({IntervalTop.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Interval {
14

15 String min();
16 String max();
17 }

Listing A.7: Interval.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10

11 @SubtypeOf({Interval.class})
12 @Retention(RetentionPolicy.RUNTIME)
13 @Target({ElementType.TYPE_USE})
14 public @interface IntervalBottom {}

Listing A.8: IntervalBottom.java

1 ident length;
2

3 annotation UnknownLength() any :<==> "true" for "true";
4 annotation BottomLength() any :<==> "false" for "true";
5

6 annotation Length(int min, int max) case_study.List
7 :<==> "(§subject§ == null && §min§ <= 0 && §max§ >= 0) || (§subject§.size

>= §min§ && §subject§.size <= §max§)"
8 for "§min§ >= 0 && §min§ <= §max§";
9

10 relation Length(a0, b0) <: Length(a1, b1) :<==> "§a0§ >= §a1§ && §b0§ <= §b1§
";
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11

12 relation Length(a,b) <: UnknownLength() :<==> "true";
13 relation BottomLength() <: Length(a,b) :<==> "true";
14 relation BottomLength() <: UnknownLength() :<==> "true";
15

16 join Length(a0, b0), Length(a1, b1) := Length("java.lang.Math.min(§a0§, §a1§)
", "java.lang.Math.max(§b0§, §b1§)");

17

18 # overlapping
19 meet Length(a0, b0), Length(a1, b1)
20 := Length("java.lang.Math.max(§a0§, §a1§)", "java.lang.Math.min(§b0§, §b1

§)")
21 for "§b0§ >= §a1§ || §b1§ >= §a0§";
22

23 # non-overlapping
24 meet Length(a0, b0), Length(a1, b1) := BottomLength(); # "!(b0 >= a1 || b1 >=

a0)" is implicit!

Listing A.9: lattice_length

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @Retention(RetentionPolicy.RUNTIME)
11 @Target({ElementType.TYPE_USE})
12 @DefaultQualifierInHierarchy
13 @SubtypeOf({})
14 public @interface UnknownLength {}

Listing A.10: UnknownLength.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7
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8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({UnknownLength.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Length {
14

15 String min() default "0";
16 String max() default "2147483647";
17 }

Listing A.11: Length.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({Length.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface BottomLength {}

Listing A.12: BottomLength.java

1 ident nullness;
2

3 annotation NullTop() any :<==> "true" for "true";
4 annotation NullBottom() any :<==> "false" for "true";
5

6 annotation Nullable() java.lang.Object :<==> "true" for "true";
7 annotation NonNull() java.lang.Object :<==> "§subject§ != null" for "true";
8

9 relation NullBottom() <: NullTop() :<==> "true";
10 relation NullBottom() <: Nullable() :<==> "true";
11 relation NullBottom() <: NonNull() :<==> "true";
12

13 relation NonNull() <: NullTop() :<==> "true";
14 relation NonNull() <: Nullable() :<==> "true";
15
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16 relation Nullable() <: NullTop() :<==> "true";

Listing A.13: lattice_nullness

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.DefaultFor;
9 import org.checkerframework.framework.qual.SubtypeOf;

10 import org.checkerframework.framework.qual.TypeKind;
11

12 @DefaultFor(
13 typeKinds = {TypeKind.BOOLEAN, TypeKind.BYTE, TypeKind.CHAR, TypeKind

.DOUBLE, TypeKind.FLOAT, TypeKind.INT, TypeKind.LONG})
14 @SubtypeOf({})
15 @Retention(RetentionPolicy.RUNTIME)
16 @Target({ElementType.TYPE_USE})
17 public @interface NullTop {}

Listing A.14: NullTop.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.RelevantJavaTypes;
9 import org.checkerframework.framework.qual.SubtypeOf;

10

11 @RelevantJavaTypes({Object.class})
12 @SubtypeOf({NullTop.class})
13 @Retention(RetentionPolicy.RUNTIME)
14 @Target({ElementType.TYPE_USE})
15 public @interface Nullable {}

Listing A.15: Nullable.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
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2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
9 import org.checkerframework.framework.qual.RelevantJavaTypes;

10 import org.checkerframework.framework.qual.SubtypeOf;
11

12 @DefaultQualifierInHierarchy
13 @RelevantJavaTypes({Object.class})
14 @SubtypeOf({Nullable.class})
15 @Retention(RetentionPolicy.RUNTIME)
16 @Target({ElementType.TYPE_USE})
17 public @interface NonNull {
18

19 }

Listing A.16: NonNull.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({NonNull.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface NullBottom {}

Listing A.17: NullBottom.java

1 ident okasaki;
2

3 annotation TopOkasaki() any :<==> "true" for "true";
4 annotation BottomOkasaki() any :<==> "false" for "true";
5

6 annotation Okasaki() case_study.Queue
7 :<==> "§subject§ != null && (§subject§.back == null || (§subject§.front

!= null && §subject§.front.size >= §subject§.back.size))"
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8 for "true";
9

10 annotation FrontNonEmpty() case_study.Queue
11 :<==> "§subject§ != null && §subject§.front != null && §subject§.front.

size > 0"
12 for "true";
13

14 annotation OkasakiNonEmpty() case_study.Queue
15 :<==> "§subject§ != null && §subject§.front != null && §subject§.front.

size > 0 && (§subject§.back == null || (§subject§.front != null && §
subject§.front.size >= §subject§.back.size))"

16 for "true";
17

18 relation FrontNonEmpty() <: TopOkasaki() :<==> "true";
19 relation Okasaki() <: TopOkasaki() :<==> "true";
20

21 relation OkasakiNonEmpty() <: TopOkasaki() :<==> "true";
22 relation OkasakiNonEmpty() <: Okasaki() :<==> "true";
23 relation OkasakiNonEmpty() <: FrontNonEmpty() :<==> "true";
24

25 relation BottomOkasaki() <: TopOkasaki() :<==> "true";
26 relation BottomOkasaki() <: Okasaki() :<==> "true";
27 relation BottomOkasaki() <: OkasakiNonEmpty() :<==> "true";
28 relation BottomOkasaki() <: FrontNonEmpty() :<==> "true";

Listing A.18: lattice_okasaki

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @Retention(RetentionPolicy.RUNTIME)
11 @Target({ElementType.TYPE_USE})
12 @DefaultQualifierInHierarchy
13 @SubtypeOf({})
14 public @interface TopOkasaki {}

Listing A.19: TopOkasaki.java
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1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({Okasaki.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface OkasakiNonEmpty {
14

15 }

Listing A.20: OkasakiNonEmpty.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({TopOkasaki.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Okasaki {
14

15 }

Listing A.21: Okasaki.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

104



A. Source code for the case study

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({TopOkasaki.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface FrontNonEmpty {
14

15 }

Listing A.22: FrontNonEmpty.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({OkasakiNonEmpty.class, FrontNonEmpty.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface BottomOkasaki {}

Listing A.23: BottomOkasaki.java

1 ident sign;
2

3 annotation TopSign() any :<==> "true" for "true";
4 annotation BottomSign() any :<==> "false" for "true";
5

6 annotation NonNegative() int :<==> "§subject§ >= 0" for "true";
7 annotation NonPositive() int :<==> "§subject§ <= 0" for "true";
8 annotation Negative() int :<==> "§subject§ < 0" for "true";
9 annotation Positive() int :<==> "§subject§ > 0" for "true";

10 annotation Zero() int :<==> "§subject§ == 0" for "true";
11

12 relation NonNegative() <: TopSign() :<==> "true";
13 relation NonPositive() <: TopSign() :<==> "true";
14

15 relation Positive() <: TopSign() :<==> "true";
16 relation Positive() <: NonNegative() :<==> "true";
17
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18 relation Negative() <: TopSign() :<==> "true";
19 relation Negative() <: NonPositive() :<==> "true";
20

21 relation Zero() <: TopSign() :<==> "true";
22 relation Zero() <: NonNegative() :<==> "true";
23 relation Zero() <: NonPositive() :<==> "true";
24

25 relation BottomSign() <: TopSign() :<==> "true";
26 relation BottomSign() <: NonNegative() :<==> "true";
27 relation BottomSign() <: NonPositive() :<==> "true";
28 relation BottomSign() <: Negative() :<==> "true";
29 relation BottomSign() <: Positive() :<==> "true";
30 relation BottomSign() <: Zero() :<==> "true";

Listing A.24: lattice_sign

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7 import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @Retention(RetentionPolicy.RUNTIME)
11 @Target({ElementType.TYPE_USE})
12 @DefaultQualifierInHierarchy
13 @SubtypeOf({})
14 public @interface TopSign {}

Listing A.25: TopSign.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({TopSign.class})
11 @Retention(RetentionPolicy.RUNTIME)
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12 @Target({ElementType.TYPE_USE})
13 public @interface NonNegative {
14 }

Listing A.26: NonNegative.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({TopSign.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface NonPositive {
14 }

Listing A.27: NonPositive.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({NonPositive.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Negative {
14 }

Listing A.28: Negative.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
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5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({NonNegative.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Positive {
14 }

Listing A.29: Positive.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({NonNegative.class, NonPositive.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface Zero {
14 }

Listing A.30: Zero.java

1 package edu.kit.iti.checker.property.subchecker.lattice.case_study_qual;
2

3 import java.lang.annotation.ElementType;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7

8 import org.checkerframework.framework.qual.SubtypeOf;
9

10 @SubtypeOf({Positive.class, Negative.class, Zero.class})
11 @Retention(RetentionPolicy.RUNTIME)
12 @Target({ElementType.TYPE_USE})
13 public @interface BottomSign {
14 }
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Listing A.31: BottomSign.java

A.2. Program files

1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Customer {
7

8 public String name;
9 public @Interval(min="14", max="150") int age;

10

11 @JMLClause(values={
12 "assignable this.*",
13 "ensures \fresh(this) && \fresh(this.*)",
14 "ensures this.name == name && this.age == age"})
15 // :: error: inconsistent.constructor.type
16 public Customer(String name, @Interval(min="14", max="150") int age) {
17 this.name = name;
18 this.age = age;
19 }
20

21 @JMLClause(values={"assignable \nothing"})
22 public String getName() {
23 return name;
24 }
25

26 @JMLClause(values={"assignable \nothing"})
27 public @Interval(min="14", max="150") int getAge() {
28 return age;
29 }
30

31 @JMLClause(values={"assignable Shop.instance.orders"})
32 public void order(@AllowedFor(age="this.age") Product product) {
33 // :: error: argument.type.incompatible
34 Shop.getInstance().addOrder(new Order(this, product));
35 }
36 }
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Listing A.32: Customer.java

1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class List {
7

8 private Object head;
9

10 private @Nullable
11 @Length(min="this.size - 1", max="this.size - 1")
12 List tail;
13

14 public @Positive int size;
15

16 @JMLClause(values={
17 "assignable this.*",
18 "ensures \fresh(this) && \fresh(this.*)"})
19 public
20 @Length(min="tail.size + 1", max="tail.size + 1")
21 // :: error: inconsistent.constructor.type
22 List(Object head, List tail) {
23 // :: error: assignment.type.incompatible
24 this.size = tail.size() + 1;
25 this.head = head;
26 // :: error: assignment.type.incompatible
27 this.tail = tail;
28 }
29

30 @JMLClause(values={
31 "assignable this.*",
32 "ensures \fresh(this) && \fresh(this.*)"})
33 public
34 @Length(min="1", max="1")
35 // :: error: inconsistent.constructor.type
36 List(Object head) {
37 this.size = 1;
38 this.head = head;
39 // :: error: assignment.type.incompatible
40 this.tail = tail;
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41 }
42

43 @JMLClause(values={
44 "assignable \nothing",
45 "ensures \fresh(\result) && \fresh(\result.*)"})
46 public static List cons(Object head, @Nullable List tail) {
47 if (tail == null) {
48 return new List(head, tail);
49 } else {
50 return new List(head);
51 }
52 }
53

54 @JMLClause(values={"assignable \nothing"})
55 public Object head() {
56 return head;
57 }
58

59 @JMLClause(values={"assignable \nothing"})
60 public
61 @Nullable
62 @Length(min="this.size - 1", max="this.size - 1")
63 List tail() {
64 // :: error: return.type.incompatible
65 return tail;
66 }
67

68 @JMLClause(values={
69 "assignable \nothing",
70 "ensures \result == this.size"
71 })
72 public @Positive int size() {
73 return size;
74 }
75

76 @JMLClause(values={
77 "assignable \nothing",
78 "ensures l != null ==> \result == l.size",
79 "ensures l == null ==> \result == 0"
80 })
81 public static @NonNegative int size(@Nullable List l) {
82 if (l == null) {
83 return 0;
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84 } else {
85 // :: error: method.invocation.invalid
86 return l.size();
87 }
88 }
89 }

Listing A.33: List.java

1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Main {
7

8 // :: error: inconsistent.constructor.type
9 private Main() { }

10

11 public static void main(String[] args) {
12 // :: error: assignment.type.incompatible
13 @AllowedFor(age="18") Product product18 = new Product("Louisiana

Buzzsaw Carnage", 10, 18);
14 // :: error: assignment.type.incompatible
15 @AllowedFor(age="6") Product product6 = new Product("Tim & Jeffrey,

All Episodes", 10, 6);
16

17 Customer customer18 = new Customer("Alice", 18);
18 Customer customer14 = new Customer("Bob", 14);
19

20 //Customer customer6 = new Customer("Charlie", 6);
21

22 // :: error: argument.type.incompatible
23 customer18.order(product18);
24 // :: error: argument.type.incompatible
25 customer18.order(product6);
26

27 //customer14.order(product18);
28

29 // :: error: argument.type.incompatible
30 customer14.order(product6);
31

32 Shop.getInstance().processNextOrder();
33 Shop.getInstance().processNextOrder();

112



A. Source code for the case study

34 Shop.getInstance().processNextOrder();
35

36 Shop.getInstance().processNextOrder();
37 }
38 }

Listing A.34: Main.java

1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Order {
7

8 public Customer customer;
9 public @AllowedFor(age="this.customer.age") Product product;

10

11 @JMLClause(values={
12 "assignable this.*",
13 "ensures \fresh(this) && \fresh(this.*)",
14 "ensures this.customer == customer && this.product == product"})
15 // :: error: inconsistent.constructor.type
16 public Order(Customer customer, @AllowedFor(age="customer.age") Product

product) {
17 this.customer = customer;
18 // :: error: assignment.type.incompatible
19 this.product = product;
20 }
21

22 @JMLClause(values={"assignable \nothing"})
23 public Customer getCustomer() {
24 return customer;
25 }
26

27 @JMLClause(values={"assignable \nothing"})
28 public @AllowedFor(age="this.customer.age") Product getProduct() {
29 // :: error: return.type.incompatible
30 return product;
31 }
32 }

Listing A.35: Order.java
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1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Product {
7

8 public String title;
9 public @Interval(min="0", max="2147483647") int price;

10 public @Interval(min="0", max="18") int ageRestriction;
11

12 @JMLClause(values={
13 "assignable this.*",
14 "ensures \fresh(this) && \fresh(this.*)",
15 "ensures this.title == title && this.price == price && this.

ageRestriction == ageRestriction"})
16 // :: error: inconsistent.constructor.type
17 public @AllowedFor(age="ageRestriction") Product(
18 String title,
19 @Interval(min="0", max="2147483647") int price,
20 @Interval(min="0", max="18") int ageRestriction) {
21 this.title = title;
22 this.price = price;
23 this.ageRestriction = ageRestriction;
24 }
25

26 @JMLClause(values={"assignable \nothing"})
27 public String getTitle() {
28 return title;
29 }
30

31 @JMLClause(values={"assignable \nothing"})
32 public @Interval(min="0", max="2147483647") int getPrice() {
33 return price;
34 }
35

36 @JMLClause(values={"assignable \nothing"})
37 public @Interval(min="0", max="18") int getAgeRestriction() {
38 return ageRestriction;
39 }
40 }

Listing A.36: Product.java
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1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Queue {
7

8 public @Nullable List front;
9 public @Nullable List back;

10

11 @JMLClause(values={
12 "assignable this.*",
13 "ensures \fresh(this) && \fresh(this.*)",
14 "ensures this.front == front && this.back == back"})
15 // :: error: inconsistent.constructor.type
16 public Queue(@Nullable List front, @Nullable List back) {
17 this.front = front;
18 this.back = back;
19 }
20

21 @JMLClause(values={"assignable \nothing"})
22 private static @Nullable List rotate(@Nullable List front, @Nullable List

back, @Nullable List acc) {
23 if (front == null && back == null) {
24 return acc;
25 } else if (front == null) {
26 // :: error: method.invocation.invalid
27 return rotate(null, back.tail(), List.cons(back.head(), acc));
28 } else if (back == null) {
29 return List.cons(
30 // :: error: method.invocation.invalid
31 front.head(),
32 // :: error: method.invocation.invalid
33 rotate(front.tail(), null, acc));
34 } else {
35 return List.cons(
36 // :: error: method.invocation.invalid
37 front.head(),
38 // :: error: method.invocation.invalid
39 rotate(front.tail(), back.tail(), List.cons(back.head(),

acc)));
40 }
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41 }
42

43 @JMLClause(values={"assignable \nothing"})
44 public @Okasaki Queue toOkasaki() {
45 // :: error: method.invocation.invalid
46 if (back == null || (front != null && front.size() >= back.size())) {
47 // :: error: return.type.incompatible
48 return this;
49 } else {
50 Queue result = new Queue(rotate(front, back, null), null);
51 // :: error: return.type.incompatible
52 return result;
53 }
54 }
55

56 @JMLClause(values={"assignable \nothing"})
57 public @Nullable List front() {
58 return front;
59 }
60

61 @JMLClause(values={"assignable \nothing"})
62 public @Nullable List back() {
63 return back;
64 }
65

66 @JMLClause(values={
67 "assignable \nothing",
68 "ensures front == null && back == null ==> \result == 0",
69 "ensures front == null && back != null ==> \result == back.size",
70 "ensures front != null && back == null ==> \result == front.size",
71 "ensures front != null && back != null ==> \result == front.size +

back.size"
72 })
73 public int size() {
74 return List.size(front) + List.size(back);
75 }
76

77 @JMLClause(values={"assignable \nothing"})
78 public Object peek(@FrontNonEmpty Queue this) {
79 // :: error: method.invocation.invalid
80 return front.head();
81 }
82
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83 @JMLClause(values={"assignable \nothing"})
84 public Queue remove(@FrontNonEmpty Queue this) {
85 // :: error: method.invocation.invalid
86 return new Queue(front.tail(), back);
87 }
88

89 @JMLClause(values={"assignable \nothing"})
90 public Queue insert(Object o) {
91 return new Queue(front, List.cons(o, back));
92 }
93

94 @JMLClause(values={"assignable \nothing"})
95 public @Okasaki Queue removeSafe(@FrontNonEmpty Queue this) {
96 return remove().toOkasaki();
97 }
98

99 @JMLClause(values={"assignable \nothing"})
100 public @Okasaki Queue insertSafe(Object o) {
101 return insert(o).toOkasaki();
102 }
103 }

Listing A.37: Queue.java

1 package case_study;
2

3 import edu.kit.iti.checker.property.subchecker.lattice.case_study_qual.*;
4 import edu.kit.iti.checker.property.checker.qual.*;
5

6 public class Shop {
7

8 public static Shop instance = new Shop();
9

10 @JMLClause(values={
11 "assignable \nothing",
12 "ensures \result == instance"
13 })
14 public static Shop getInstance() {
15 return instance;
16 }
17

18 // :: error: assignment.type.incompatible
19 private @Okasaki Queue orders = new Queue(null, null);
20
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21 @JMLClause(values={
22 "assignable this.*",
23 "ensures \fresh(this) && \fresh(this.*)"})
24 // :: error: inconsistent.constructor.type
25 private Shop() { }
26

27 @JMLClause(values={"assignable \nothing"})
28 @Okasaki Queue getOrders() {
29 return orders;
30 }
31

32 @JMLClause(values={"assignable orders"})
33 public void addOrder(Order order) {
34 orders = orders.insertSafe(order);
35 }
36

37 @JMLClause(values={"assignable orders"})
38 public boolean processNextOrder() {
39 if (orders.size() > 0) {
40 // :: error: method.invocation.invalid
41 orders = orders.removeSafe();
42 return true;
43 } else {
44 return false;
45 }
46 }
47 }

Listing A.38: Shop.java
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