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Abstract

Deductive program veri�cation allows programmers to prove that their program behaves
correctly for every valid input. For this, the programmer usually declares a contract for
every method; this contract speci�es the method’s preconditions, i.e., for which inputs it
will behave correctly, and its postconditions, i.e., what conditions its output must ful�ll.

Functional correctness proofs generated from such speci�cations quickly become very
long and complex as every possible branch in a method’s execution leads to a branch in
the proof. One way of dealing with this complexity is to divide a long method into shorter
sub-methods which are easier to verify. When a method calls another method, we only
prove that the callee’s precondition is valid and then assume its postcondition without
considering the callee’s code. The callee’s correctness is proven separately. However, the
refactoring required by this approach is very time-consuming. The approach is further
diminished by the fact that such a refactored version will in most cases be unsuited for
production as the division of every method into easy to verify sub-methods leads to an
unoptimized and convoluted program.

In this thesis, we introduce a new rule for JavaDL that allows the user to divide a method
into blocks whose correctness may be proven independently of the method’s correctness.
For this, we use block contracts, a concept introduced by [Wac12] that allows the user to
specify a contract for any block inside of a method. Using our new rule, these blocks can
be applied like methods, i.e., we show that a block’s precondition is valid at the point at
which it occurs, and then assume its postcondition without considering the code inside
the block.

As the veri�cation of unbounded loops requires special treatment (because the un-
winding of an unbounded loop does not terminate), we introduce a second rule for the
application of blocks that start with a loop.

Instead of using loop invariants for this, we use the concept of loop speci�cations from
[Tue12]. This allows us to specify loops using a kind of specialized block contract with
pre- and postconditions instead of loop invariants.
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Zusammenfassung

Deduktive Programmveri�kation erlaubt es Programmierern, zu beweisen, dass ihr Pro-
gramm sich für jede gültige Eingabe richtig verhält. Hierfür gibt der Programmierer in
der Regel für jede Methode einen Vertrag an; dieser Vertrag spezi�ziert die Vorbedingun-
gen der Methode, d.h. für welche Eingaben die Methode sich korrekt verhält, sowie ihre
Nachbedingungen, d.h. die Bedingungen, die die Ausgabe der Methode erfüllen muss.

Funktionale Korrektheitsbeweise, die aus solchen Spezi�kationen generiert werden,
werden schnell sehr lang und komplex, da jede mögliche Verzweigung in der Ausführung
der Methode auch zu einer Verzweigung im Beweis führt. Eine Möglichkeit, mit dieser
Komplexität umzugehen, ist, eine lange Methode in kürzere Untermethoden zu teilen,
welche einfacher zu veri�zieren sind. Wenn eine Methode eine andere Methode aufruft,
beweisen wir nur, dass die Vorbedingung der aufgerufenen Methode wahr ist und nehmen
dann ihre Nachbedingung an, ohne den Code der aufgerufenen Methode zu beachten. Die
Korrektheit der aufgerufenen Methode wird separat bewiesen. Allerdings ist die Refaktori-
sierung, die diese Vorgehensweise voraussetzt, sehr zeitaufwändig. Die Vorgehensweise
wird außerdem durch die Tatsache verschlechtert, dass eine solche refaktorisierte Version
in den meisten Fällen nicht für den Einsatz im �nalen Produkt geeignet sein wird, da die
Aufteilung jeder Methode in einfach zu veri�zierende Untermethoden ein unoptimiertes
und kompliziertes Programm zur Folge hat.

In dieser Arbeit stellen wir eine neue Regel für JavaDL vor, die es dem Benutzer erlaubt,
eine Methode in Blöcke zu unterteilen, deren Korrektheit unabhängig von der umgebenden
Methode bewiesen werden kann. Hierfür nutzen wir Blockverträge, ein Konzept, das in
[Wac12] eingeführt wurde und es dem Benutzer erlaubt, für jeden beliebigen Block inner-
halb einer Methode einen Vertrag anzugeben. Mit unserer neuen Regel können diese Blöcke
wie Methoden angewendet werden, d.h. wir zeigen, dass die Vorbedingung des Blocks an
der Stelle, an der dieser auftritt, gültig ist, und nehmen dann seine Nachbedingung an,
ohne den Code im Block zu beachten.

Da die Veri�kation unbeschränkter Schleifen gesondert behandelt werden muss (weil
die Ausrollung einer unbeschränkten Schleife nicht terminiert), stellen wir außerdem eine
zweite Regel zur Anwendung von Blöcken, die mit einer Schleife beginnen, vor.

Statt hierfür Schleifeninvarianten zu nutzen, nutzen wir das Konzept von Schleifen-
spezi�kationen aus [Tue12]. Dies erlaubt es uns, Schleifen mit einer Art spezialisiertem
Blockvertrag mit Vor- und Nachbedingungen statt mit Schleifeninvarianten zu spezi�zie-
ren.
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1. Introduction

As programs become bigger and more complex, being able to verify their reliability becomes
ever more important.

The usual way this is achieved is by testing the program – or, more speci�cally, a single
method within the program – with certain inputs and verifying the outputs. However,
testing cannot show that a method is correct for every possible input.

In safety-critical applications especially, we may want to prove that a method satis�es
certain properties for every input.

Deductive program veri�cation refers to the practice of proving these properties by
applying a logical calculus.

Proofs that involve complex or long methods can easily become quite di�cult to follow, as
every branch in the program’s execution (e.g. if statements, or accesses to nullable object
variables) leads to a branch in the proof.

One way of dealing with this complexity is to divide the method into sub-methods,
turning local variables needed by more than one sub-method into attributes. For example,
this approach was used in [BSSU17] to prove the correctness of a dual-pivot quicksort
algorithm in Java’s standard library.

However, this approach is very time-consuming, as it requires large-scale refactoring.
Furthermore, the refactored version is often not useful for anything other than veri�cation,
as it is unoptimized and the transformation of local variables into attributes makes the
code somewhat convoluted. Furthermore, if these new attributes are not reset to their
original values after every method call (which would make the refactored program not
equivalent to the original one), the program becomes non-reentrant.

In this thesis, we present two new rules for a sequent calculus for JavaDL, a dynamic logic
for Java (a dynamic logic being a modal logic whose formulas may contain, and reason
about, program fragments). The purpose of these two rules is to divide an existing proof
into two sub-proofs which can then be proven independently of each other.

1.1. Tools and Techniques

The program speci�cations considered in this thesis are not written directly in JavaDL, but
in a dialect of JML (JavaModeling Language) [LPC+13], a behavioral interface speci�cation
language for Java.

JML allows Java programmers to use the Design by Contract methodology by providing
behavioral speci�cations of methods, loop, and blocks.
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1. Introduction

The behavior of a method consists of its precondition, which describes the program
states for which the method is de�ned, one postcondition for every possible type of
termination, a diverges condition, which describes the states in which the method may
not terminate at all, and a frame, which describes which heap locations the method may
change [LPC+13, 1.1].

Typically, a method’s behavior is viewed as a contract between itself, the callee, and its
caller: The caller must ensure that the callee’s precondition is valid. In return, the callee
guarantees its postcondition.

For the translation from Java and JML to JavaDL, we will use a program called KeY
[ABB+16], which is is a system for the deductive veri�cation of Java programs.

KeY translates a given program, along with its JML speci�cations, into several proof
obligations. Every proof obligation is a sequent of JavaDL formulas, which is valid if and
only if the program satis�es the speci�ed properties.

When the user has selected a proof obligation, KeY tries to prove its validity by repeatedly
applying rules from the sequent calculus.

1.2. Goals of this Thesis

The goal of this bachelor thesis is to provide a way to divide proofs into smaller, independent
subproofs without having to perform large-scale refactoring. This will be achieved by
using block contracts, a JML extension introduced in [Wac12]. Block contracts allow the
programmer to divide the method to be veri�ed into code blocks and specify a contract
for every block.

[Wac12] uses three premisses to prove the method contract of a method containing a
block:

1. Validity: The block contract is valid.

2. Precondition: Before the block is executed, its precondition is valid.

3. Usage: If the block’s postcondition is valid, then, after the rest of the surrounding
method has been executed, the method’s postcondition is valid.

All three branches, including the validity branch, depend on the context in which the
block occurs.

This has some advantages. First and foremost, it allows block contracts to not be
universally valid. This makes sense intuitively: Unlike a method, which can be called from
any context and thus should have a universally valid contract, a block only occurs once
in the whole program, and thus its contract only needs to be valid in the one context in
which it occurs.

However, instead of dividing the proof into shorter, independent sub-proofs, this rule
only divides it into three branches, all of which are dependent on the original proof.

In chapter 4, we will introduce a modi�ed rule which allows the user to prove the
validity branch separately, outside of the surrounding method’s context.

2



1.2. Goals of this Thesis

Loop invariants are another form of auxiliary speci�cation, allowing us to specify a part
of a larger method, in this case a loop [HAGH16, 9.2].

Currently, KeY uses three premisses to prove the method contract of a method containing
a loop:

1. Invariant initially valid: The loop invariant is valid before the loop is �rst entered.

2. Body preserves invariant: If the invariant is valid, then it will still be valid after the
loop body has been executed.

3. Usage: If the loop invariant is valid and the loop guard is invalid, then, after the rest
of the surrounding method has been executed, the method’s postcondition is valid.

As loops with an unbounded number of iterations cannot be eliminated by symbolic
execution (i.e., the application of rules on program fragments) alone and KeY is not able to
generate these invariants itself, the user is required to specify every loop in their program.

Again, all three branches depend on the context in which the loop occurs.
While it would be possible to separate the Body preserves invariant branch from the

context, we will instead implement an alternative to loop invariants.
[Tue12] introduces a rule for loop speci�cation that requires a pre- and postcondition

instead of a loop invariant. This rule is based on the observation that a loop can be
transformed into a tail-recursive procedure and that �nding a pre- and postcondition for
this procedure is often easier than �nding a loop invariant.

In chapter 5, we will apply this idea in JavaDL, introducing a kind of specialized block
contract for blocks that begin with a loop, as well as a rule for the application of loop
contracts that, like our block contract rule, allows the user to prove the block’s validity
separately.

3





2. Fundamentals

In this chapter, we will give a short introduction to JavaDL and JML.

2.1. Dynamic Logic for Java (JavaDL)

2.1.1. Signatures and Kripke Structures

JavaDL is an instance of dynamic logic which integrates Java programs into JFOL (Java
First-Order Logic) formulas [BKW16, 1].

JFOL is an extension of basic �rst-order logic for Java. It includes a type hierarchy, as
well as axioms for integers, heaps, and heap locations [Sch16].

JavaDL formulas are evaluated in Kripke stuctures. A Kripke structure is a collection of
in�nitely many JFOL structures, which we refer to as program states.

A program state s = (D,δ , I ) consists of an interpretation I and a domain (D,δ ), consist-
ing of a set D with a typing function δ .

De�nition 2.1. [Sch16, 2.1] [BKW16, 2.2] A JavaDL signature with respect to a JavaDL
type hierarchy T for a program Prд is a tuple

Σ = (FSym, PSym,VSym, ProgVSym)

where

1. (FSym, PSym,VSym) is a JFOL signature (consisting of a set of function symbols
FSym, a set of predicate symbols PSym, and a set of variable symbols VSym).

2. ProgVSym is the set which contains all local variables declared in Prд as well as
some special variables like heap (which represents the program’s heap) and self
(which corresponds to the Java variable this). For more details on JavaDL’s heap
semantics, see section 2.1.5.

De�nition 2.2. [BKW16, 3.1] A Kripke structure for a JavaDL signature Σ is a pair K =
(S, ρ) where

1. S is an in�nite set of program states such that any two states s1, s2 ∈ S have the
same domain (D,δ ), and their interpretations only di�er for symbols in ProgVSym.
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2. Fundamentals

2. ρ is a function such that for every legal program fragment (see section 2.1.2) p and
any two states s1, s2, (s1, s2) ∈ ρ(p) if any only if p, when started in s1, terminates in
s2.

De�nition 2.3. [BKW16, 2.1, 2.4]

1. DLFml is the set of all JavaDL formulas over a given signature Σ.

2. DLTrmA is the set of all JavaDL terms of type A ∈ T over a given signature Σ for a
type hierarchy T .

De�nition 2.4. For every JavaDL formula ϕ ∈ DLFml,

1. var(ϕ) ⊆ VSym is the set of all variables in ϕ.

2. pvar(ϕ) ⊆ ProgVSym is the set of all program variables in ϕ.

De�nition 2.5. Let Σ = (FSym, PSym,VSym, ProgVSym) be a JavaDL signature, K =
(S, ρ) a Kripke structure for Σ, s ∈ S a state, β : VSym→ D a variable assignment.

Then val(K ,s,β) is the evaluation function as de�ned in [ABB+16, 3.3].

2.1.2. Program Fragments

De�nition 2.6. [BKW16, 2.3] A legal program fragment p in the context of a JavaDL
signature Σ is a sequence of Java statements such that there exist local variablesv1, . . . ,vn ∈
ProgVSym with types T1, . . . ,Tn such that
c l a s s C {

s t a t i c vo id m(T1 v1 , . . . ,Tn vn ) throws Throwable { p }
}

is a legal program according to the Java Language Speci�cation with some extensions.
The only one of these extensions used in this thesis is the concept of method frames.

De�nition 2.7. [BKW16, 2.3] A method frame is a statement of the form
method-frame (

r e s u l t = r ,
s o u r c e = m (T1 , . . . ,Tn )@T ,
t h i s = t ) : {

body
}

6



2.1. Dynamic Logic for Java (JavaDL)

where r ∈ ProgVSym is a local variable, m is a method in the class T , t is an expression
free of side e�ects or method calls, and body is a legal program fragment.

Inside the method frame, the visibility rules for the method m apply, and a return
statement assigns the return value to r and then exits the method frame.

2.1.3. Modalities

For the purpose of including program fragments in a formula, JavaDL contains two
modalities, the diamond modality 〈〉, and the box modality [], which are de�ned as follows:

De�nition 2.8. [BKW16, 3.2] Let Σ = (FSym, PSym,VSym, ProgVSym) be a JavaDL
signature, K = (S, ρ) a Kripke structure for Σ, s ∈ S a state, β : VSym → D a variable
assignment.

If p is a legal program fragment, and ϕ is a JavaDL formula, then

1. (K , s, β) |= 〈p〉ϕ if and only if ∃s′ ∈ S : (s, s′) ∈ ρ(p) ∧ (K , s′, β) |= ϕ
i.e., if and only if p terminates in a state in which ϕ is true.

2. (K , s, β) |= [p]ϕ if and only if ∃s′ ∈ S : (s, s′) ∈ ρ(p) ∧ (K , s′, β) |= ϕ or @s′ ∈ S :
(s, s′) ∈ ρ(p)
i.e., if and only ifp either terminates in a state in whichϕ is true or does not terminate
at all.

2.1.4. Type Hierarchy

Before we illustrate JavaDL’s heap semantics, we must give a brief overview over JFOL’s
(and, by extension, JavaDL’s) type hierarchy.

A JFOL type hierarchy includes every class type de�ned in the given Java program. It
also includes, among others, the following additional types [Sch16]:

1. Heap, the type of the variable heap ∈ ProgVSym

2. Field , the type of �eld references. This is further explained in 2.1.5.

3. Any, the parent type of the following types:

a) boolean v Any, which corresponds to Java’s boolean type. To distinguish
between boolean program variables and truth values, we will write the former
as TRUE, FALSE and the latter as true, false.

b) int v Any, which subsumes all integer types in Java.

c) Object v Any, which corresponds to Java’s Object class.

d) LocSet v Any, a set of heap locations.

7



2. Fundamentals

2.1.5. Heaps

A variable of type Heap maps a value to every heap location (o, f ) where o is an Object
and f is a Field . Every JFOL signature contains the following function symbols to operate
on heaps [Sch16, 4.1, 4.3]:

1. selectA : Heap ×Object × Field → A for all A v Any
This function returns the value of the speci�ed �eld and is used to translate Java
statements with a �eld access o.f on the right-hand side.

2. store : Heap ×Object × Field ×Any → Heap
This function sets the value of the speci�ed �eld and is used to translate Java
statements with a �eld access o.f on the left-hand side.

3. create : Heap ×Object → Heap
This function creates a new object on the heap. It is further explained below.

4. anon : Heap × LocSet × Heap → Heap
This function anonymizes all heap locations in the speci�ed set. It is further explained
in section 2.1.6.

In 2.1.1, we stated that any two program states in the same Kripke structure have the
same domain. This is called the constant domain assumption. However, in a real Java
program, objects may be created at runtime. To get around this, we assume that the
domain already contains every object that may be created during the program’s runtime
with an additional �eld created that is initially set to FALSE. To “create” an object, we
simply set its created �eld to TRUE [BKW16, 3.1].

2.1.6. Anonymization

The anon function is de�ned by the following rule [BKW16, 4.3]:

then selectA(h′,o, f ) else selectA(h,o, f )
if (ϵ(o, f , s) ∧ f Û,created) ∨ ϵ(o, f ,unusedLocs(h))

selectA(anon(h, s,h′),o, f )

where the predicate ϵ(o, f , s) is true if and only if the heap location (o, f ) is an element
of the LocSet s .

If h′ is an unknown heap, i.e., a heap which does not occur anywhere else in the sequent,
this function returns a heap which assigns unknown values to all locations in the set s
(except for created �elds) and corresponds to h in all other (used) locations.

This function will, for instance, be used for the application of method calls during veri�ca-
tion. After a method call, the values of all heap locations in the method’s frame (the set of
locations whose value the method is allowed to change) are unknown and only restricted
by the called method’s postcondition.

8



2.1. Dynamic Logic for Java (JavaDL)

2.1.7. Updates and Symbolic Execution

As stated in the introduction, KeY applies rules from the sequent calculus to a JavaDL
formula to prove the formula’s validity. The goal is to simplify the sequent until we are
left with one that is trivially true.

De�nition 2.9. [Sch16, 2.2] A sequent is a pair of sets Γ,∆ of formulas usually denoted
in the form

Γ =⇒ ∆

Here, Γ is called the antecedent, and ∆ the succedent. The value of such a sequent is
equal to the value of the formula ∧

γ∈Γ

γ →
∨
δ∈∆

δ

The simpli�cation of program fragments in particular is called symbolic execution. The
rules for symbolic execution always operate on the active statement in a modality.

De�nition 2.10. [BKW16, 5.5] The active statement in a modality is the �rst statement
in that modality. More speci�cally, it is the statement after the non-active pre�x π , which
consists of an arbitrary sequence of opening braces {, and beginnings of try blocks try{
and method frames method-frame(...){. The rest of the program fragment after the
active statement is called the post�x, which we denote by ω.

The simplest example for a symbolic execution rule is the following basic assignment rule
for assignments without side e�ects [BKW16, 6.1]:

Γ =⇒ {loc := value}〈πω〉ϕ,∆
Γ =⇒ 〈π loc = value; ω〉ϕ,∆

Here, {loc := value} is an elementary update which assigns the value of the term value
to the program variable loc .

De�nition 2.11. [BKW16, 4.1] Let Prд be a Java program with a JavaDL type hierarchy
T and a JavaDL signature Σ.

Then the set Upd of updates is inductively de�ned by:

1. {a := t} ∈ Upd for every a : A ∈ ProgVSym, t ∈ DLTrmB with B v A

2. skip ∈ Upd
This is the empty update.

3. u1,u2 ∈ Upd =⇒ {u1 | |u2} ∈ Upd
This parallel update executes u1,u2 in parallel.

9
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4. u1,u2 ∈ Upd =⇒ {{u1}u2} ∈ Upd
This sequential update executes u2 after u1.

Alongside modalities with program fragments, updates are another way to denote state
changes in JavaDL. The di�erence between the two is that updates are much more restricted:
they only consist of assignments without side e�ects, and always terminate [BKW16, 4.1].
The goal of symbolic execution is the simpli�cation of a program fragment to an update.

2.2. Java Modeling Language (JML)

2.2.1. Method Contracts

JML method contracts are a way to specify a method’s behavior.
Let us begin this section with a simple example for a method contract:

/ ∗@ no rma l_ beh av i o r
@ r e q u i r e s a r r != n u l l ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < a r r . l e n g t h ;
@ a r r [ i ] == \ o l d ( a r r [ i ] ) + 1 ) ;
@ a s s i g n a b l e a r r [ ∗ ] ;
@∗ /

p u b l i c s t a t i c vo id mapIncrement ( i n t [ ] a r r ) {
i n t i = 0 ;
wh i l e ( i < a r r . l e n g t h ) {

++ a r r [ i ] ;
++ i ;

}
}

The keyword normal_behavior is short for signals (Exception) false ; [LPC+13, 9.7],
i.e., it guarantees that the method will not throw an exception if the contract’s precondition
is valid. There is also an exceptional_behavior keyword [LPC+13, 9.8], which states that
the method always throws an exception if the contract’s precondition is valid.

The precondition is described by the requires predicate, and the postcondition for
normal termination by the ensures predicate.

One can also specify a diverges predicate to specify under which conditions the method
may not terminate.

The frame, i.e., the set of heap locations whose value the method may change, is
described by the assignable keyword.

The syntax \old ( t ) refers to the value of the term t in the method’s prestate. Local
variables are not a�ected by \old , i.e., for any local variable v , \old (v) == v is true.

10
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Thus, the above contract states that if the parameter arr is not null, mapIncrement in-
crements every element in the array by 1, does not throw any exceptions, and does not
modify the value of any heap location except for the elements of arr .

Here is another example for a method contract:

/ ∗@ e x c e p t i o n a l _ b e h a v i o r
@ r e q u i r e s t r u e ;
@ s i g n a l s ( N u l l P o i n t e r E x c e p t i o n e ) t r u e ;
@ s i g n a l s _ o n l y N u l l P o i n t e r E x c e p t i o n ;
@ a s s i g n a b l e \ n o t h i n g ;
@∗ /

p u b l i c s t a t i c vo id e x c e p t i o n a l M e t h o d ( ) {
throw new N u l l P o i n t e r E x c e p t i o n ( ) ;

}

Here, true is the postcondition if the method throws a NullPointerException . The
signals_only clause states that no other type of exception is thrown.

2.2.2. Block Contracts

As will be discussed in chapter 3, it is sometimes helpful to wrap a part of a method in a
block with its own pre- and postconditions.

Block contracts, introduced by [Wac12], are a way to achieve this, allowing the user to
specify a contract for any code block inside of a method.

Let us begin with the following example, which was adapted from [Wac12]:

/ ∗@ r e q u i r e s numbers != n u l l ;
@ e n s u r e s 0 <= from && from < numbers . l e n g t h
@ && ( \ b e f o r e ( from ) < 0 ==> from == 0 )
@ && ( \ b e f o r e ( from ) >= 0 ==> from == \ b e f o r e ( from ) ) ;
@ r e t u r n s \ r e s u l t == 0
@ && ( \ b e f o r e ( from ) >= numbers . l e n g t h
@ | | numbers . l e n g t h == 0 ) ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@ a s s i g n a b l e \ n o t h i n g ;
@∗ /

{
i f ( from < 0 ) {

from = 0 ;
}

i f ( from >= numbers . l e n g t h ) {
r e t u r n 0 ;

}

11
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}

Note that instead of \old , we use \before to refer to the block’s prestate. \old can be
used in block contracts as well, but it refers to the surrounding method’s prestate. This
is in contrast to [Wac12] and [ABB+16], where \old refers to the block’s prestate and
\before does not exist.

Just as in method contracts, requires describes the precondition.
Since a block has more possible types of termination than a method, we need more

postconditions.
The keyword ensures describes the postcondition if the block terminates normally (a

break statement with a label that belongs to the block also counts as normal termination).
So the contract in our example states that if the precondition is true and the block terminates
normally, then from is set to 0 if it was less than 0 before and is not changed otherwise.

The semantics of signals and signals_only is equivalent to its semantics in method
contracts. Thus, the block in our example must not throw an exception if its precondition
is valid.

The keyword returns describes the postcondition if the block terminates because of
a return statement. Thus, if the block our examples terminates because of the return
statement, the returned result must be 0 and the value of numbers.length before the block
must have been either 0 or less than that of from .

The keywords breaks and continues describe the postcondition if the block terminates
because of a break or continue statement without a label.

The keywords breaks( label ) and continues ( label ) describe the postcondition if the
block terminates because of a break or continue statement with the respective label.

There are also corresponding behavior keywords, namely return_behavior , break_behavior ,
and continue_behavior .
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In this chapter, we will discuss existing approaches to the division of a method into smaller
parts that are easier to verify.

For this, we introduce the following notation:

De�nition 3.1. LpM denotes the translation of a JML expression p to JavaDL.

3.1. Method Contracts

The most frequently used way to divide a method into easier-to-verify parts is to divide
it into smaller methods. When a method (which we will refer as the caller) calls another
method (the callee), we can apply the callee’s contract to make the caller’s proof easier.

Consider the following method:
p u b l i c s t a t i c vo id c a l l e r ( ) {

. . .
c a l l e e ( ) ;
. . .

}

When symbolic execution reaches the call to callee , the proof is split into three branches:
One branch proves that callee ’s precondition is true; the other two prove that, if callee ’s
postcondition is true and the rest of caller is executed, caller ’s postcondition will be
true. The validity of callee ’s contract is proved separately.

The simplest version of this rule (which applies to the box modality and thus does not
prove that the caller terminates) is as follows [BKW16, 7.1]:

De�nition 3.2. methodContractPartial:

Γ =⇒ {context}{setParameters}pre,∆

=⇒ {context}{remember}{anonymize}(post→ {lhs = res}[πω]ϕ),∆
Γ, {context}{remember}{anonymize}(exception Û=null)

=⇒ {context}{anonymize}(post→ {lhs = res}[πthrow exception;ω]ϕ),∆
Γ, {context}{remember}{anonymize}(¬exception Û=null)

[π ; lhs = target.callee(args);ω]ϕ,∆
Γ =⇒ {context}
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Here, Γ and ∆ are arbitrary sets of formulas, pre and post are the callee’s pre- and
postcondition, ϕ is the caller’s postcondition, and {context} is the update created by the
symbolic execution.

Some more de�nitions are necessary to understand this rule:

De�nition 3.3. Let assignableLocations be the callee’s assignable expression, and
heapanon a heap that does not appear anywhere else in the sequent. Then we de�ne

{anonymize} := {heap := anon(heap, LassignableLocationsM, heapanon)}

This is a so-called anonymization update. The anonymization heap heapanon does not
occur anywhere else in the formula. In other words, this update assigns unknown values to
all locations in the set LassignableLocationsM. The purpose of this is to ensure that the
values of all heap locations that the callee has changed are only restricted by the callee’s
postcondition.

De�nition 3.4. Let {p1, . . . ,pλ} be the set of the callee’s parameters. Then we de�ne

{remember} := {heappre := heap| |p
pre
1 := p1 | | . . . | |ppre

n := pλ}

This remembrance update remembers the heap and the values of all parameters in the
callee’s prestate. This is necessary to be able to translate \old expressions from the callee’s
postcondition.

Note that the proof for the callee’s contract is not included in methodContractPartial.
As such, methodContractPartial is only sound if the callee’s contract is valid and the
proof for the caller will only be considered closed when the proof for the callee is also
closed.

3.2. Method Contracts for Recursive Methods

The rule described in the previous section is valid for any method call, though if we want
to prove that the method also terminates, we must use a version of the rule that applies to
the diamond modality.

If the method in question is recursive, we also need to add some additional conditions
[GBM+16, 1.4].

A contract for a recursive method may contain a measured_by clause. This clause
contains a termination witness, i.e., an integer term whose value in the method’s prestate
is greater than or equal to 0 and which decreases every time the method calls itself (or
makes any method call that leads to indirect recursion). For example, we can prove that
the recursive algorithm to compute the nth Fibonacci number always terminates with the
following contract:
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/ ∗@ no rma l_ beh av i o r
@ r e q u i r e s n >= 1 ;
@ measured_by n ;
@∗ /

p u b l i c s t a t i c vo id f i b o n a c c i ( i n t n ) {
i f ( n == 1 | | n == 2 ) {

r e t u r n 1 ;
} e l s e {

r e t u r n f i b o n a c c i ( n-1 ) + f i b o n a c c i ( n-2 ) ;
}

}

n is a valid termination witness for this algorithm because

1. Due to the contract’s precondition, the value of n must always be greater than or
equal to 0 in the prestate.

2. We always pass n-1 or n-2 to the recursive calls, which means that the value of n
decreases with every recursive call.

3.3. Loop Invariants

Loop invariants, like block contracts, are a form of auxiliary speci�cation, allowing us to
specify a part of a method, in this case a loop [HAGH16, 9.2].

These speci�cations, as the name implies, do not consist of pre- and postconditions, but
of invariants, i.e., formulas that are valid when the loop is �rst entered, are preserved by
the loop body, and can thus be assumed to still be valid after the loop has terminated.

Aside from these invariants, denoted by the JML keyword loop_invariant , a loop speci-
�cation may also contain an assignable clause and a decreases clause. The semantics of
the decreases clause is very similar to that of the measured_by clause described in section
3.2. It contains a termination witness, whose value is always greater than or equal to 0 and
which decreases every time the loop body is executed. A decreases clauses is necessary
to prove a loop’s termination in KeY.

For example, the speci�cation of the following loop states that before every loop iteration
and after the loop has terminated, the following is true:

1. The loop index i is between 0 and arr . length .

2. All elements whose index is less than i have been incremented.

3. All elements whose index is greater than or equal i have not been changed.
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With this knowledge and the additional knowledge that after the loop has terminated,
the loop condition i < arr . length must be false, we can prove the method’s postcondition,
i.e., that the method increments every element in arr .
/ ∗@ no rma l_ beh av i o r

@ r e q u i r e s a r r != n u l l ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < a r r . l e n g t h ;
@ a r r [ i ] == \ o l d ( a r r [ i ] ) + 1 ) ;
@ a s s i g n a b l e a r r [ ∗ ] ;
@∗ /

p u b l i c s t a t i c vo id mapIncrement ( i n t [ ] a r r ) {
i n t i = 0 ;

/ ∗@ l o o p _ i n v a r i a n t ( 0 <= i && i <= a r r . l e n g t h ) ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; 0 <= j && j < i ;
@ a r r [ j ] == \ o l d ( a r r [ j ] ) + 1 ) ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; i <= j && j < a r r . l e n g t h ;
@ a r r [ j ] == \ o l d ( a r r [ j ] ) ) ;
@ a s s i g n a b l e a r r [ i . . a r r . l e n g t h ] ;
@ d e c r e a s e s a r r . l e n g t h - i ;
@∗ /

wh i l e ( i < a r r . l e n g t h ) {
++ a r r [ i ] ;
++ i ;

}
}

When symbolic execution reaches a loop with a loop invariant, the proof is split into the
following three branches [BKW16, 7.2]:

(invariant_initially_valid)
(body_preserves_invariant)

(usage)
Γ =⇒ {context}[π ; loop;ω]ϕ,∆

The �rst branch proves the validity of the loop invariant before the loop is �rst entered.
The second branch proves that the loop body preserves the invariant. The third branch
proves that, if the loop invariant and the negated loop condition are valid, the method’s
postcondition will be valid after the rest of the method has been executed.

3.4. Block Contracts

Sometimes, dividing a long and complicated method into smaller sub-methods is not
possible or practical, e.g., when the method has many local variables that would need to
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be accessible by multiple sub-methods. In such cases, one can still divide the proof into
sub-proofs by using block contracts.

Block contracts also allow us to wrap if statements in a block to prevent unnecessary
branches (or, more accurately, to deal with the branching if statement in the block’s
validity proof instead of having to split the main proof into two branches).

In this section, we will de�ne (a slightly modi�ed version of) the rule for the application
of block contracts from [Wac12, 3.3].

3.4.1. Normal form

Before applying a block contract, it is necessary to transform it into the normal form
described in [Wac12, 2.4] (The only di�erence between our syntax for block contracts and
the syntax described in [Wac12] is that we allow block contracts to contain a measuredBy
clause. Since measuredBy clauses do not need to be modi�ed during this transformation,
we can use the exact transformation as described in [Wac12, 2.4]).

By doing this, we will end up with one or two contracts of the following form:
r e q u i r e s r e q u i r e s P r e d i c a t e ;

e n s u r e s e n s u r e s P r e d i c a t e ;
r e t u r n s r e t u r n s P r e d i c a t e ;

b r e a k s b r e a k s P r e d i c a t e ;
b r e a k s ( b r e a k L a b e l 1 ) b r e a k s P r e d i c a t e 1 ;
. . .
b r e a k s ( b r e a k L a b e l ξ ) b r e a k s P r e d i c a t e ξ ;

c o n t i n u e s c o n t i n u e s P r e d i c a t e ;
c o n t i n u e s ( c o n t i n u e L a b e l 1 ) c o n t i n u e s P r e d i c a t e 1 ;
. . .
c o n t i n u e s ( c o n t i n u e L a b e l π ) c o n t i n u e s P r e d i c a t e π ;

s i g n a l s ( E x c e p t i o n e ) s i g n a l s P r e d i c a t e ;
d i v e r g e s d i v e r g e s P r e d i c a t e ;

measured_by measuredByTerm ;
a s s i g n a b l e a s s i g n a b l e L o c a t i o n s ;

Contracts in this form contain a postcondition for every possible type of termination.
Furthermore, they do not contain a behavior keyword [Wac12, 2.4].

If the original contract’s diverges predicate is trivial (i.e., true or false), its normal form
consists of one contract. Otherwise, its normal form consists of two contracts, one with
the predicate true, and one with the predicate false and the negation of the original
predicate added to the requires predicate.
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This is because JavaDL only supports trivial diverges predicates (with its two modalities
〈〉 and []).

3.4.2. Translation to JavaDL

In this section, we will summarize the translation of a JML block contract to JavaDL as
well as de�ne all JavaDL constructs that are necessary to de�ne the block contract rule
blockContract.

The general translation of JML expressions to JavaDL is described in [GU16, 1.2].
The translation of block contracts is described in [Wac12, 3.3], though our version

di�ers from [Wac12, 3.3] in a few aspects. Those di�erences are necessary to imple-
ment the semantics of \old and \before as described in section 2.2.2, as well as the rule
blockContractExternalas described in chapter 4.

We �rst introduce the following updates:

De�nition 3.5. Let {v1, . . . ,vν } be the set of all local variables that are changed by the
block. Then we de�ne

{remember} := {heapbefore := heap| |vbefore
1 := v1 | | . . . | |vbefore

n := vν }

This update is used to translate \before expressions.

De�nition 3.6. Let {p1, . . . ,pλ} be the set of the surrounding method’s parameters. Then
we de�ne

{rememberOuter} = {heappre = heap| |p
pre
1 = p1 | | . . . | |p

pre
n = pλ}

This update is used to translate \old expressions.

De�nition 3.7. Let {v1, . . . ,vν } again be the set of all local variables that are changed by
the block. Then we de�ne

{anonOut} = {heap := anon(heap, LassignableLocationsM, heapanon)

| |v1 := vanon
1 | | . . . | |vν := vanon

ν }

De�nition 3.8. The block contract’s precondition pre is de�ned as follows :

pre =LrequiresPredicateM ∧mBy ∧ selfCond

where
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mBy =


measuredBy(L\old(measuredByTerm)M),
if the contract has a measuredBy term

measuredByEmpty, otherwise

selfCond =


self Û,null ∧ self.created Û=TRUE
∧exactInstanceC(self), if the surrounding method is not static

true, otherwise

and C is the type de�ned by the class which contains the block.

mBy and selfCond are not actually necessary for the rule blockContract de�ned in the
following section, as they are always a part of the surrounding method’s precondition and
thus trivially true. They will, however, become necessary for blockContractExternal,
the rule de�ned in chapter 4.

De�nition 3.9. The postcondition post is de�ned as follows:

post =¬abrupt→ LensuresPredicateM
∧ broke Û=TRUE→ LbreaksPredicateM

∧

ξ∧
i=1

brokei Û=TRUE→ LbreaksPredicateiM

∧ continued Û=TRUE→ LcontinuesPredicateM

∧

π∧
i=1

continuedi Û=TRUE→ LcontinuesPredicateiM

∧ returned Û=TRUE→ LreturnsPredicateM
∧ signalsPredicate

where

abrupt =broke Û=TRUE ∨
ξ∨
i=1

brokei Û=TRUE

∨continued Û=TRUE ∨
π∨
i=1

continuedi Û=TRUE

∨returned Û=TRUE ∨ exception Û,null

To be able to use this postcondition, we must ensure that the program variables we test
( broke , continued , etc.) are actually set correctly before we evaluate the postcondition.
Therefore, we transform our original block block into a modi�ed form block′:

19



3. Divide-and-Conquer Strategies

De�nition 3.10. block′ is the following program fragment:
method-frame ( t h i s = s e l f ) : {

boo l ean broke = f a l s e ;
boo l ean broke 1 = f a l s e ;
. . .
boo l ean broke ξ = f a l s e ;

boo l ean c o n t i n u e d = f a l s e ;
boo l ean c o n t i n u e d 1 = f a l s e ;
. . .
boo l ean c o n t i n u e d ξ = f a l s e ;

boo l ean r e t u r n e d = f a l s e ;

Throwable e x c e p t i o n = n u l l ;

breakOut : t r y {
b l o c k almostSaf e

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}

where blockalmostSa f e is a block obtained by replacing all break , continue , and return
statements in the block (except for those that jump to a location inside the block). For
example,

break label i ;

is replaced by

brokei = true ; break breakOut;

Thus, whenever block would have terminated abruptly, block′ instead sets the respective
and then terminates normally.

This transformation allows us to properly evaluate the block’s postcondition. However,
our transformed program is now no longer equivalent to the original program because we
have eliminated every kind of abrupt termination.

To solve this problem, we de�ne another program fragment that checks all termination
�ags and then terminates in the same way block would have terminated:

De�nition 3.11. ifCascade is the following program fragment:
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i f ( broke ) break ;
i f ( broke 1 ) b reak l a b e l 1 ;
. . .
i f ( broke ξ ) b reak l a b e l ξ ;

i f ( c o n t i n u e d ) c o n t i n u e ;
i f ( c o n t i n u e d 1 ) c o n t i n u e l a b e l 1 ;
. . .
i f ( c o n t i n u e d π ) c o n t i n u e l a b e l π ;

i f ( r e t u r n e d ) r e t u r n r e s u l t ;
/ / or , i f the s u r r o u n d i n g method i s vo id :
/ / i f ( r e t u r n e d ) r e t u r n ;

i f ( e x c e p t i o n != n u l l ) throw e x c e p t i o n ;

For the remaining sub-terms and sub-formulas, we do not give exact de�nitions, instead
referring to [Wac12, 3.3].

reachableIn ensures that all free reference variables in the block are reachable, i.e., that
they are either null or a reference to a valid heap location.

reachableOut ensures the same for all reference variables that may be changed by
block′.

frame ensures that no heap locations that are not in the set assignableLocations
have been changed.

atMostOneFlagSet ensures that at most one abrupt termination �ag is set (see abrupt
from De�nition 3.9).

3.4.3. Rule

The complete rule for the application of block contracts is as follows:

De�nition 3.12. blockContract:

→ {remember}Jblock′K(post ∧ frame) (1)
Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn

Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn),∆ (2)

→ Jπ ; ifCascade;ωK′ϕ),∆ (3)
(post ∧wellFormed(heapanon) ∧ reachableOut ∧ atMostOneFlagSet

Γ =⇒ {rememberOuter}{context}{remember}{anonOut}

Γ =⇒ {rememberOuter}{context}Jπ ; block;ωK′ϕ,∆
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where
JK′

{
∈ {〈〉, []} , if JK = 〈〉
= [] , if JK = []

De�nition 3.13. From now on, we will refer to the premisses of the above rule by the
following names:

1. (valid)

2. (pre)

3. (usage)

The �rst premiss (valid) ensures that the block contract is valid in the context of the
surrounding method.

The second premiss (pre) ensures that the block’s precondition is true when the block
is executed.

The third premiss (usage) ensures that, if the block’s postcondition is true, then the
surrounding method’s postcondition will be true after the rest of the method has been
executed.
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Our goal in this chapter is the introduction of an alternative rule blockContractExter-
nal for block contracts, which allows us to prove the validity of a block contract in a
separate proof obligation.

The other two premisses, (pre) and (usage), will remain unchanged from blockCon-
tract.

4.1. Replacing the Context

Let us recall the �rst premiss (valid) from blockContract:

→ {remember}Jblock′K(post ∧ frame)
Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn

The surrounding method’s state when the block is entered is encoded in two parts of this
premiss: �rstly, the update {context}, which is generated from the symbolic execution of
the code before the block, and secondly, the antecedent Γ, which contains the surrounding
method’s precondition as well as several other conditions that arose during symbolic
execution. It is thus those two parts we need to replace.

The update {context} is replaced by the following anonymizing update:

De�nition 4.1. Let {v1, . . . ,vn} be the set of all program variables that occur in the block
or its contract, and allLocs the set of all heap locations. Then we de�ne

{anonIn} := {heap := anon(heap, allLocs, heapanon)| |v1 := vanon
1 | | . . . | |vµ := vanon

µ }

This update sets every variable vi that would have occurred in context to an unknown
value vanon

i . To ensure that the variable self still refers to a valid object in the state after
this update, we must introduce additional preconditions for self, which we did in section
3.4.2.

The antecedent Γ is replaced by the predicate

wellFormed(heap),wellFormed(heapanon)

The predicate wellFormed(heap) contains restrictions to heap that correct some of the
over-generalizations in JavaDL’s heap model [Sch16, 4.3]. These restrictions are necessary
to prove a block contract’s validity.
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Intuitively, the soundness of blockContractExternal immediately follows from the
soundness of blockContract. The validity premiss in blockContract, (valid), states
that the block contract is valid in the surrounding method’s context. By replacing context
with anonIn, we instead state that it is valid in any context.

4.2. Recursion

An issue with this rule occurs if the surrounding method is recursive, and a recursive call
occurs inside of the block.

Consider the following example:
/ ∗@ no rma l_ beh av i o r

@ r e q u i r e s i d x <= a r r . l e n g t h && i d x >= 0 ;
@ e n s u r e s \ r e s u l t == a r r . l e n g t h - i d x ;
@ measured_by a r r . l e n g t h - i d x ;
@∗ /

p u b l i c s t a t i c i n t lengthFrom ( i n t [ ] a r r , i n t i d x ) {
i f ( i d x == a r r . l e n g t h ) {

r e t u r n 0 ;
} e l s e {

++ i d x ;
/ ∗@ r e t u r n _ b e h a v i o r

@ r e q u i r e s a r r != n u l l ;
@ r e q u i r e s i d x <= a r r . l e n g t h && i d x >= 0 ;
@ r e t u r n s \ r e s u l t == a r r . l e n g t h - i d x + 1 ;
@∗ /

{
r e t u r n lengthFrom ( ar r , i d x ) + 1 ;

}
}

}

If we try to prove this block contract’s validity with blockContractExternal, we
have no way of knowing whether the recursive call will terminate. This is because in
replacing Γ, we removed the surrounding method’s measured_by clause.

We cannot simply add this clause back in because the surrounding method may have
multiple contracts with di�erent measured_by clauses.

To solve this problem, we must add a measured_by clause – along with some additional
requires predicates to restrict the value of the measured_by term in the surrounding

method’s prestate – to the block contract.
This is why we added the measured_by predicate to the block’s precondition in sec-

tion 3.4.2: We must ensure that a block contract can only be applied if it has the same
measured_by clause as the method contract we are trying to prove; otherwise, we would
be able to prove the termination of non-terminating methods.

The complete block contract is as follows:
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4.3. Rule

/ ∗@ r e t u r n _ b e h a v i o r
@ r e q u i r e s a r r != n u l l ;
@ r e q u i r e s i d x <= a r r . l e n g t h && i d x >= 0 ;
@ r e q u i r e s \ o l d ( a r r . l e n g t h - ( i d x + 1 ) )
@ == a r r . l e n g t h - i d x ;
@ r e q u i r e s \ o l d ( a r r . l e n g t h - i d x ) > 0 ;
@ r e t u r n s \ r e s u l t == a r r . l e n g t h - i d x + 1 ;
@ measured_by a r r . l e n g t h - i d x ;
@∗ /

{
r e t u r n lengthFrom ( ar r , i d x ) + 1 ;

}

The additional requires predicates we added are necessary to prove termination: As part
of the precondition of the recursive call we must show that the value of its measured_by
term is nonnegative and less than the value in the surrounding method’s prestate [GBM+16,
1.4].

4.3. Rule

The changes described above yield the following new rule:
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4. A New Block Contract Rule

De�nition 4.2. blockContractExternal:

→ {remember}Jblock′K(post ∧ frame) (1)
=⇒ {rememberOuter}{anonIn}(pre ∧wellFormed(heap) ∧ reachableIn

wellFormed(heap),wellFormed(heapanon)

Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn),∆ (2)

→ Jπ ; ifCascade;ωK′ϕ),∆ (3)
(post ∧wellFormed(heapanon) ∧ reachableOut ∧ atMostOneFlagSet

Γ =⇒ {rememberOuter}{context}{remember}{anonOut}

Γ =⇒ {rememberOuter}{context}Jπ ; block;ωK′ϕ,∆

De�nition 4.3. The �rst premiss of the above rule is called (valid∗).

The second and third premiss, (pre) and (usage), are the same as those in blockContract.

4.4. Proof of Soundness

Since blockContract is sound [Wac12, 3.4] and we have only modi�ed the premiss
(valid), it su�ces to reduce our modi�ed premiss (valid∗) to (valid).

We �rst establish the following theorem, which essentially states that the validity of
a sequent Ψ =⇒ {context}ϕ follows from the validity of Ψ =⇒ {anonymize}ϕ, with
Ψ,ϕ{context}, {anonymize} as de�ned below.

Theorem (Context Replacement):

Let Σ = (FSym, PSym,VSym, ProgVSym) be a JavaDL signature.
Let Ψ be a set of JavaDL ground formulas for Σ, ϕ a JavaDL formula for Σ, anonymize :=
{v1 := vanon

1 | | . . . | |vn := vanon
n } where

{v1, . . . ,vn} ⊆ pvar(ϕ), (4.1)
{vanon

1 , . . . ,vanon
n } ⊆ FSym (4.2)

vanon
1 , . . . ,vanon

n appear neither in Ψ nor in ϕ (4.3)

such that |= Ψ =⇒ {anonymize}ϕ holds.

Let context := {v1 := t1 | | . . . | |vm := tm} where
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4.4. Proof of Soundness

{t1, . . . , tm} ⊆ DLTrmAny (4.4)
m ≥ n (4.5)

{v1, . . . ,vm} ∩ pvar(ϕ) = {v1, . . . ,vn} (4.6)

Then |= Ψ =⇒ {context}ϕ holds.

Proof:

Let Kc = (Sc , ρc) be a Kripke structure for Σ, s1c ∈ Sc a state, β : VSym→ D a variable
assignment, and s2c := val(Kc ,s

1
c ,β)
(context)(s1c ).

LetKa = (Sa, ρa) be another Kripke structure for Σ, s1a ∈ Sa , s2a := val(Ka ,s
1
a ,β)
(anonymize)(s1a),

such that

∀i ∈ {1, . . . ,n} : val(Ka ,s
1
a ,β)
(vanon

i ) = val(Kc ,s
1
c ,β)
(ti)

(4.7)
∀σ ∈ FSym ∪ PSym ∪ VSym ∪ ProgVSym \ {vanon

1 , . . . ,vanon
n } : val(Ka ,s

1
a ,β)
(σ ) = val(Kc ,s

1
c ,β)
(σ )

(4.8)

Since |= Ψ =⇒ {anonymize}ϕ holds, (Ka, s
1
a , β) |= Ψ =⇒ {anonymize}ϕ holds too.

If (Ka, s
1
a , β) |= ¬Ψ holds, then – due to 4.3 and 4.8 – (Kc , s

1
c , β) |= ¬Ψ holds too.

We know that (Ka, s
1
a , β) |= {anonymize}ϕ holds if and only if (Ka, s

2
a , β) |= ϕ holds.

From 4.7, we get

∀i ∈ {1, . . . ,n} : val(Ka ,s
2
a ,β)
(vi) = val(Kc ,s

2
c ,β)
(vi) (4.9)

Due to 4.3 and 4.8, we know that val(Ka ,s
1
a ,β)
(σ ) = val(Kc ,s

1
c ,β)
(σ ) for every σ that appears

in ϕ. Due to 4.6 and 4.9, we also know that val(Ka ,s
2
a ,β)
(σ ) = val(Kc ,s

2
c ,β)
(σ ) for every σ that

appears in ϕ.
Thus, val(K ,s2c ,β)(ϕ) = val(K ,s2a ,β)(ϕ), i.e., (K , s2c , β) |= ϕ holds if and only if (K , s2a , β) |= ϕ

holds. Therefore (K , s1c , β) |= {context}ϕ holds if and only if (K , s1a , β) |= {anonymize}ϕ
holds.

Altogether, we have proven that (Kc , s
1
c , β) |= Ψ =⇒ {context}ϕ holds. Because (Kc , s

1
c , β)

was chosen arbitrarily, this implies that |= Ψ =⇒ {context}ϕ holds.

�

This theorem assumes that all anonymization functions vanon
i are nullary, i.e., constants.

However, anonIn also uses the trinary function anon(h1, l ,h2).
Thus, instead of applying the theorem directly, we apply the following corollary:
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4. A New Block Contract Rule

Corollary:

Let

anonIn = {heap := anon(heap, allLocs, heapanon)| |anonymize}

and anonymize, context, Ψ, ϕ as above, such that heapanon does not appear in Ψ, context,
ϕ.

Then we can deduce

|= Ψ,wellFormed(heapanon) =⇒ {anonIn}ϕ

=⇒ {anonymize}{heap := anon(heap, allLocs, heapanon)}ϕ
|= Ψ,wellFormed(heapanon), heapanon = heap

Theorem

=⇒ {context}{heap := anon(heap, allLocs, heapanon)}ϕ
|= Ψ,wellFormed(heapanon), heapanon = heap

heapanon = heap
|= Ψ =⇒ {context}ϕ

Using this corollary, and the fact that no remembrance variables occur in the antecedents
wellFormed(heap) ∧wellFormed(heapanon) and Γ, we can now prove that for any Kripke
structure K = (S, ρ) and variable assignment β with s1 ∈ S and
s2 := val(K ,s,β)(rememberOuter)(s1):

→ {remember}Jblock′K(post ∧ frame)
=⇒ {rememberOuter}{anonIn}(pre ∧wellFormed(heap) ∧ reachableIn

(K , s1, β) |= wellFormed(heap),wellFormed(heapanon)

→ {remember}Jblock′K(post ∧ frame)
=⇒ {anonIn}(pre ∧wellFormed(heap) ∧ reachableIn

(K , s2, β) |= wellFormed(heap),wellFormed(heapanon)

Corollary

→ {remember}Jblock′K(post ∧ frame)
=⇒ {context}(pre ∧wellFormed(heap) ∧ reachableIn

(K , s2, β) |= wellFormed(heap)

wellFormed(heap) ∈ Γ

→ {remember}Jblock′K(post ∧ frame)
=⇒ {context}(pre ∧wellFormed(heap) ∧ reachableIn

(K , s2, β) |= Γ

→ {remember}Jblock′K(post ∧ frame)
=⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn

(K , s1, β) |= Γ

�
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5. Loop Contracts

Our goal in this chapter is to provide an alternative to loop invariants based on block
contracts.

As stated in the introduction, [Tue12] introduces an alternative rule for loops that
requires a pre- and postcondition instead of a loop invariant. This rule is based on the
observation that a loop can be transformed into a tail-recursive procedure and that in
some cases �nding a contract for this procedure is easier than �nding an invariant for a
loop. We will con�rm this observation in chapter 7.

For instance, a block:
{

wh i l e ( l o o p C o n d i t i o n ) {
body ;

}
t a i l ;

}

is equivalent to the following tail-recursive procedure:
p r o c e d u r e ( a r g s ) {

i f ( l o o p C o n d i t i o n ) {
body ;
p r o c e d u r e ( a r g s ) ;

} e l s e {
t a i l ;

}
}

[Tue12]’s rule is for separation logic, but we can apply the same idea in JavaDL.
Before we do so however, we will de�ne the JML syntax and semantics for our loop

contracts.

5.1. Syntax

A loop contract is a contract for a block with structure
{

wh i l e ( l o o p C o n d i t i o n ) {
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5. Loop Contracts

body
}
t a i l

}

where body and tail are arbitrary sequences of of Java statements and loopCondition
is an expression of type boolean .

The syntax for a loop contract is the same as for a block contract, except for the following
di�erences:

• Every loop contract must start with the keyword loop_contract .

• decreases clauses are permitted (and necessary to prove termination!)

5.2. Semantics

The semantics for loop contracts di�ers in the following ways from block contracts:
In a block contract, the precondition must only hold when the block is �rst entered. In

a loop contract, the precondition must hold every time the loop is repeated.
In a block contract, the assignable set must contain all variables that may be changed

during the block’s execution. In a loop contract, the assignable set may exclude variables
that were changed during previous loop iterations. Similarly, \before ( t ) refers to the
value of t before the current loop iteration.

All of this becomes more clear with an example:
/ ∗@ l o o p _ c o n t r a c t no rma l_ beh av io r

@ r e q u i r e s a r r != n u l l && 0 <= i && i <= a r r . l e n g t h ;
@ e n s u r e s ( \ f o r a l l i n t j ; \ b e f o r e ( i ) <= j && j < a r r . l e n g t h ;
@ a r r [ j ] == \ b e f o r e ( a r r [ j ] ) + 1 ) ;
@ a s s i g n a b l e a r r [ i . . a r r . l e n g t h ] ;
@ d e c r e a s e s a r r . l e n g t h - i ;
@∗ /

{
wh i l e ( i < a r r . l e n g t h ) {

++ a r r [ i ] ;
++ i ;

}
}

This contract states that before every loop iteration arr != null && 0 <= i && i <= arr . length
holds and that when the loop has terminated, every array element whose index is greater
than or equal to i will be incremented.
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5.3. Normal Form

The assignable clause states that no heap locations except for those array elements are
modi�ed.

As with loop invariants (see section 3.3), the decreases clause serves as a termination
witness.

5.3. Normal Form

Before we translate JML loop contract to JavaDL, we transform it to its normal form.
This transformation is equivalent to the one described in section 3.4.1. decreases clauses

are not changed during this transformation.
As in section 3.4.1, we end up with one (if the diverges predicate was trivial) or two

(otherwise) loop contracts.

5.4. Translation to JavaDL

As in section 3.4.2, it is necessary to transform body and tail into the modi�ed forms
bodyalmostSa f e , tailalmostSa f e by replacing all return s as well as break s and continue s with-
out labels or with labels that do not occur inside of the block.

In addition, we replace any statements of the form break label ; where label belongs
to the loop, as well as regular break; statements, inside of the loop body with

brokeLoop = true ; break breakLoop;

Any statements of the form continue label ; where label belongs to the loop, as well
as regular continue ; statements, inside of the loop body are replaced by

break breakLoop;

De�nition 5.1. body′ is the following program fragment:
method-frame ( t h i s = s e l f ) : {

boo l ean brokeLoop = f a l s e ;

boo l ean broke 1 = f a l s e ;
...

boo lean broke ξ = f a l s e ;

boo l ean c o n t i n u e d 1 = f a l s e ;
...

boo lean c o n t i n u e d ξ = f a l s e ;

boo l ean r e t u r n e d = f a l s e ;
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5. Loop Contracts

Throwable e x c e p t i o n = n u l l ;

breakOut : breakLoop : t r y {
bodyalmostSaf e

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}

De�nition 5.2. tail′ is the following program fragment:
method-frame ( t h i s = s e l f ) : {

boo l ean broke = f a l s e ;
boo l ean broke 1 = f a l s e ;
...

boo lean broke ξ = f a l s e ;

boo l ean c o n t i n u e d 1 = f a l s e ;
...

boo lean c o n t i n u e d ξ = f a l s e ;

boo l ean r e t u r n e d = f a l s e ;

Throwable e x c e p t i o n = n u l l ;

breakOut : t r y {
t a i l almostSaf e

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}

De�nition 5.3. unfold′ is the following program fragment:
method-frame ( t h i s = s e l f ) : {

t r y {
cond = l o o p C o d i t i o n ;

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}
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5.5. A Simpli�ed Rule

where cond : boolean ∈ ProgVSym.

De�nition 5.4. A loop contract’s precondition pre is de�ned in the same way as a block
contract’s precondition in 3.4.2. In addition, if the loop contract has a decreases term, the
predicate LdecreasesTermM ≥ 0 is added to the precondition.

De�nition 5.5. If the contract has a decreases term, decreasesCheck is the predicate
LdecreasesTermM < L\before(decreasesTerm)M; otherwise decreasesCheck = true.

De�nition 5.6. The modality JK is de�ned as follows:

JK =
{
〈〉 , if a decreases term is speci�ed and the diverges predicate is false
[] , otherwise

5.5. A Simplified Rule

We have already mentioned that loop contracts are based on the observation that a block
than starts with a loop can be transformed into a recursive method. This means that we
need an equivalent to the recursive method call, i.e., a way of applying the loop contract
for the subsequent loop iteration.

In a recursive method, we assume that the recursive call’s postcondition is true and
prove that this implies our postcondition.

Similarly, in a loop contract, we need to assume that the next iteration’s postcondition
is true and prove that this implies the current iteration’s postcondition.

For this, we de�ne two remembrance updates:
De�nition 5.7.

remembercurrent = remember = {heapbefore = heap| |vbefore
1 = v1 | | . . . | |v

before
n = vn}

remembernext = {heap
beforeN = heap| |vbeforeN

1 = v1 | | . . . | |v
beforeN
n = vn}

We also have two postconditions postcurrent, postnext. Both are translated from the JML
contract like in 3.4.2, but they di�er in the way \before expressions are translated: In
postcurrent, \before expressions refer to the state remembered by remembercurrent, and in
postnext, they refer to the state remembered by remembernext.

The same is true for the two framing conditions framecurrent, framenext.

We also de�ne the following anonymization update:
De�nition 5.8. Let {v1, . . . ,vn} be the set of all local variables that are modi�ed in
unfold′ or in body′. Then

anonOutloop := {heap := anon(heap, LassignableLocationsM, heapanon)

| |v1 := vanon
1 | | . . . | |vn := vanon

n }
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5. Loop Contracts

With these de�nitions out of the way, we can specify a simpli�ed version of our loop
contract rule. This rule is equivalent to the �nal rule presented in section 5.6, except for
the fact that, for simplicity’s sake, it does not handle abrupt termination.

Before we specify the rule, let us think about what it needs to do. The rule must cover the
following two cases:

1. If the loop condition is false, the tail must be executed and then the postcondition
must hold.

2. If the loop condition is true, the body must be executed. After the body has termi-
nated, the decreases check and the precondition must hold. Then the contract of
the next loop iteration must be applied.

Thus, we end up with the following rule:

)

)

)

(postnext ∧ framenext → postcurrent ∧ framecurrent)
∧{remembernext}{anonOutloop}Jtail′K
∧wellFormed(heappre) ∧wellFormed(heapanon)

∧(cond Û=TRUE→ Jbody′K(decreasesCheck ∧ pre
cond Û=FALSE→ Jtail′K(postcurrent ∧ framecurrent)

→ {remembercurrent}Junfold′K(
pre ∧wellFormed(heap) ∧ reachableIn

wellFormed(heap),wellFormed(heapanon) =⇒ {rememberOuter}{anonIn}(

Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn),∆

→ JnonActivePrefix; ifCascade; afterBlockK′methodPost),∆
(post ∧wellFormed(heapanon) ∧ reachableOut ∧ atMostOneFlagSet

Γ =⇒ {rememberOuter}{context}{remember}{anonOutall}

Γ =⇒ {rememberOuter}{context}Jπ ; block;ωK′ϕ,∆

The second and third premiss, (pre) and (usage), remain unchanged from blockCon-
tract.

5.6. Rule

To make sure our rule can also handle abrupt termination, we add some more case distinc-
tions. The �nal rule must cover all of the following cases:
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5.6. Rule

1. If an uncaught exception is thrown during the evaluation of the loop condition,
the block terminates. Thus, the postcondition must hold immediately after the
evaluation.

2. If the loop condition evaluates to false, the loop body is skipped and the tail is
executed. Then, the postcondition must hold.

3. If the loop condition evaluates to true, the loop body is executed.
a) If the loop body terminates due to a break statement, and this break statement

only jumps out of the body (and not out of the entire block), the tail is executed,
and then the postcondition must hold.

b) If the execution of the loop body leads to an abrupt termination of the block
(e.g., if the loop body throws an uncaught exception, or contains a break
statement that leads to a label outside the block), the postcondition must hold
after the body has terminated.

c) If the loop body terminates normally, the decreases check and the precondition
must hold. Then, the contract of the next loop iteration must be applied.

i. If the subsequent loop iterations terminate abruptly, the postcondition
must hold after they have terminated.

ii. Otherwise, the tail is executed, and then the postcondition must hold.

We end up with the following rule:
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5. Loop Contracts

De�nition 5.9. loopContract:

) (1)
)

)

)

)

)

)

(postnext ∧ framenext → postcurrent ∧ framecurrent)
∧(¬abrupt→ Jtail′K
(abrupt→ (postnext ∧ framenext → postcurrent ∧ framecurrent)

∧{remembernext}{anonOutloop}(
∧wellFormed(heappre) ∧wellFormed(heapanon)

∧(brokeLoop Û=FALSE ∧ ¬abrupt→ pre ∧ decreasesCheck
∧(abrupt→ postcurrent ∧ framecurrent)
(brokeLoop Û=TRUE→ Jtail′K(postcurrent ∧ framecurrent))

→ Jbody′K(
∧(exception Û=null ∧ cond Û=TRUE
∧(exception Û=null ∧ cond Û=FALSE→ Jtail′K(postcurrent ∧ frame))
(exception Û,null→ (postcurrent ∧ framecurrent))

→ {remembercurrent}Junfold′K(
pre ∧wellFormed(heap) ∧ reachableIn

wellFormed(heap),wellFormed(heapanon) =⇒ {rememberOuter}{anonIn}(

Γ =⇒ {rememberOuter}{context}(pre ∧wellFormed(heap) ∧ reachableIn),∆ (2)

→ JnonActivePrefix; ifCascade; afterBlockK′methodPost),∆ (3)
(post ∧wellFormed(heapanon) ∧ reachableOut ∧ atMostOneFlagSet

Γ =⇒ {rememberOuter}{context}{remember}{anonOutall}

Jπ ; block;ωK′ϕ,∆
Γ =⇒ {rememberOuter}{context}

De�nition 5.10. The �rst premiss of the above rule is called (valid_loop).

The second and third premiss, (pre) and (usage), are the same as those in blockContract.

5.7. Soundness Proof Sketch

Theorem (Soundness):

loopContract is sound.
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5.7. Soundness Proof Sketch

Proof sketch:

Instead of the full proof, we present a short proof sketch. The full proof can be found in
appendix A.

Recall the case distinction at the beginning of the section 5.6.
One can quickly see that (valid_loop) covers all of the simple cases, i.e., all cases that

do not involve the application of the contract for the next iteration.
It remains to be shown that the loop contract for the next iteration is applied cor-

rectly. For this we observe the following: If (valid_loop) is universally valid, then after
every loop iteration either the block has terminated or the decreases check and the pre-
conditions are preserved. Furthermore, every loop iteration’s postcondition implies the
previous iteration’s postcondition. Thus, we can show by induction that the �rst iteration’s
postcondition is true.

�
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6. Implementation

Before we move on to the examples and evaluate the rules introduced in the preceding
chapters, we will discuss how they were implemented into the KeY system and its UI.

6.1. Implementation into KeY

While KeY provides a language for taclets – a formalization of JavaDL rules which can be
loaded at runtime – [RU16], these taclets are not powerful enough to express the rules
introduced in this thesis due to the translation from JML to JavaDL and the complex
program transformations (see section 3.4.2) involved.

Instead, blockContractExternal and loopContract were implemented in Java di-
rectly in KeY. Their implementation extends the existing implementation of blockCon-
tract. The user may choose whether they want to apply blockContract (which is called
“Internal Block Contract” in KeY), blockContractExternal (which is called “External
Block Contract”), or neither of those rules (in which case the block contract is ignored and
the block is simply expanded) when a block is encountered.

As discussed in chapters 7 and 8, blockContract is more powerful, since it proves a
weaker premiss than blockContractExternal, while using blockContractExternal
leads to shorter proofs.

There is no corresponding internal version for loopContract1. Instead, we provide
two di�erent implementations of this same rule. If “External Block Contract” is selected,
only (pre) and (usage) are proven in the proof for the surrounding method; if “Internal
Block Contract” is selected, the (valid_loop) branch is also proven in the proof for the
surrounding method.

Even though both of these implementations are based on the same rule, and thus equally
powerful, using the “internal” version can be a useful time-saving measure if the proof for
the (valid_loop) branch is not too long.

Loop contracts can also be applied to blocks than start with for-loops. This necessitated
the implementation of another rule to transform such a block into one that starts with a
while loop. During this transformation, the initializers in the for-loop are moved outside
the block, which means that they are not covered by the loop contract. This is slightly
unintuitive but necessary as the loop contract rule requires the �rst element in the block to
be the actual loop. It is also consistent with KeY’s treatment of loop invariants on for-loops.

1More speci�cally, it is not possible to replace the {anonIn} update with {context}. Such a rule would not
be sound because instead of showing that the loop body always preserves the precondition, it would
only show that the very �rst execution of the loop body preserves the precondition.
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6.2. Integration into KeY’s UI

When symbolic execution reaches a block with a contract in the interactive mode, the
user may select that block in the sequent and then choose between the two rules in the
context menu which opens (see �gure 6.2). If the block has multiple contracts, the user
may choose which one(s) to apply. By default, all contracts are combined2 and applied.

The same is true for loop contracts.

Figure 6.1.: KeY’s context menu for rule application

In the automatic mode, KeY always applies the rule the user has selected in the Proof Search
Strategy tab. There is also an option to ignore all block contracts and expand every block
into its surrounding method (�gure 6.2).

When a block contract is applied, the proof is split into two or three branches, depending
on the rule chosen. Figure 6.3 shows a proof tree in KeY: Every node is labeled with the
rule that used to obtain that node. The last node, labeled Block Contract (Internal), splits
the proof into three branches.

Figure 6.2.: Proof Search Strategy settings

Figure 6.3.: A proof split into three branches
2with the combined precondition being the disjunction of all preconditions and the combined postcondition

taking the form
∧

i (prei → posti )
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6.2. Integration into KeY’s UI

The proof for a method is only considered closed if all block contracts used in it have been
proven valid as well (�gure 6.4).

Until this is the case, the proof for the method is only considered partially closed (�gure
6.5).

If a block contract is proven with the internal rule, or the block is expanded, the proof
obligation for that contract becomes unnecessary and is grayed out in the selection window
(�gure 6.4). The grayed out proof obligation may still be selected and proved. This is
because even if the user has proved the block contract using the internal rule, they may
still want to prove the stronger proposition (valid∗) (see section 4.1 for the di�erences
between (valid∗) and (valid)).

Figure 6.4.: A closed proof in the proof selection window

Figure 6.5.: A partially closed proof
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In this chapter, we will evaluate the rules introduced in chapters 4 and 5.
In the introduction (section 1.2), we stated that our goal was to introduce a way to

divide proofs into smaller, independent subproofs without having to refactor the program.
We will test whether blockContractExternal accomplishes this, and compare the size
a proof for a method divided into blocks to a proof of the same method divided into
sub-methods.

We will also test in which cases substituting blockContract for blockContractEx-
ternal o�ers a performance bene�t.

Last but not least, we will evaluate loopContract and compare loop contracts to loop
invariants.

7.1. Block Contracts

7.1.1. Introductory Example

Let us again consider our introductory block contract example from section 2.2.2:
/ ∗@ . . . @∗ /
p u b l i c i n t sum ( i n t [ ] numbers , i n t from ) {

/ ∗@ r e q u i r e s numbers != n u l l ;
@ e n s u r e s 0 <= from && from < numbers . l e n g t h
@ && ( \ o l d ( from ) < 0 ==> from == 0 )
@ && ( \ o l d ( from ) >= 0 ==> from == \ o l d ( from ) ) ;
@ r e t u r n s \ r e s u l t == 0
@ && ( \ o l d ( from ) >= numbers . l e n g t h
@ | | numbers . l e n g t h == 0 ) ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@ a s s i g n a b l e \ n o t h i n g ;
@∗ /

{
i f ( from < 0 ) {

from = 0 ;
}

i f ( from >= numbers . l e n g t h ) {
r e t u r n 0 ;

}
}
/ / . . .
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7. Evaluation

}

Since numbers is a non-nullable argument, the block’s precondition
requires numbers != null ; is only necessary when using the rule blockContractExter-
nal instead of blockContract.

To compare the performance of the two rules, we �rst let KeY prove the method contract
with the rule blockContract and without any preconditions on the block contract.

Then we add the precondition to the block contract, and run the proof again, still using
blockContract.

Then, we prove the method contract using blockContractExternal, which requires
two proofs, one to prove the block’s validity (i.e., the premiss (valid∗)) and one for to
prove the method’s validity (the branches (pre) and (usage)).

We obtain the following results1:

Used Rule Proof Steps Runtime
Internal (without
preconditions)

950 808 ms

Internal (with pre-
conditions)

950 606 ms

External (sur-
rounding
method)

734 477 ms

External (block) 250 171 ms
External (total) 984 648 ms

As we can see, blockContractExternal does not o�er any advantage for such a small
example, as total number of proof steps, as well as the total runtime, is larger than when
using blockContract.

7.1.2. Divide and Conquer with Block Contracts

In this example from [BSSU17], we will show how block contracts can serve as an alterna-
tive to splitting a method into sub-methods for easier veri�cation.

To facilitate the proof performed in [BSSU17], many large methods were split into
multiple sub-methods. The local variables needed by more than one sub-method were
made into attributes. For instance, the method prepare_indices shown below was split
into two sub-methods calcE and eInsertionSort:
/ ∗@ < p r e p a r e _ i n d i c e s c o n t r a c t > @∗ /
s t a t i c vo id p r e p a r e _ i n d i c e s ( i n t [ ] a , i n t l e f t , i n t r i g h t ) {

c a l c E ( l e f t , r i g h t ) ;
e I n s e r t i o n S o r t ( a , l e f t , r i g h t , e1 , e2 , e3 , e4 , e5 ) ;

}

1on a machine with an Intel Core i7-4720HQ (2 × 2.60GHz) and 16 GB of RAM running Windows 8.1
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/ ∗@ < c a l c E c o n t r a c t > @∗ /
s t a t i c vo id c a l c E ( i n t l e f t , i n t r i g h t ) { / ∗ < c a l c E body > ∗ / }

/ ∗@ < e I n s e r t i o n S o r t c o n t r a c t > @∗ /
s t a t i c vo id e I n s e r t i o n S o r t (

i n t [ ] a , i n t l e f t , i n t r i g h t ,
i n t e1 , i n t e2 , i n t e3 , i n t e4 , i n t e5 )

{ / ∗ < e I n s e r t i o n S o r t body > ∗ / }

blockContractExternal allows us to inline the sub-methods while still being able to
divide the proof for prepare_indices into two sub-proofs2:

/ ∗@ < p r e p a r e _ i n d i c e s c o n t r a c t > @∗ /
s t a t i c vo id p r e p a r e _ i n d i c e s ( i n t [ ] a , i n t l e f t , i n t r i g h t ) {

/ ∗@ < c a l c E c o n t r a c t > @∗ /
{ / ∗ < c a l c E body > ∗ / }

/ ∗@ < e I n s e r t i o n S o r t c o n t r a c t > @∗ /
{ / ∗ < e I n s e r t i o n S o r t body > ∗ / }

}

When proving the validity of prepare_indices with the two versions, we get the following
results:

prepareIndices calcE eInsertionSort
(or corresponding
block)

(or corresponding
block)

Sub- 2358 steps 24533 steps 162348 steps
Methods 2522 ms 52962 ms 434111 ms
Blocks 3628 steps 4861 steps 136956 steps

3805 ms 5205 ms 327844 ms

The di�erences in performance seem to be mostly due to KeY’s automatic proof search.
For instance, the method calcE and its corresponding block contain the exact same code
and have the same contract, so there must exist a proof for calcE whose size is much
closer to 4861 steps. In fact, with some interaction, we can �nd a proof with only 5086
steps and a runtime (in the automatic mode) of 5527 ms3.

2The full source code for all examples in this chapter can be found in the appendix. Additionally, all
examples presented here are included in version 2.7 of KeY under the directory Dynamic Frames/Block &
Loop Contracts.

3This proof, as well as all other non-trivial proofs from this chapter, is also included in version 2.7 of KeY.
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Nevertheless, we have shown that using block contracts instead of sub-methods does
not impact KeY’s performance negatively, while lessening the speci�cation e�ort. We
could go even further and do this for the whole algorithm veri�ed in [BSSU17], which
would also allow us to avoid turning any local variables into attributes, thus keeping the
veri�ed code reentrant. This is, however, out of the scope of this thesis.

7.1.3. Comparison Between the Block Contract Rules

The purpose of this example, also from [BSSU17], is to illustrate the di�erence in speci�-
cation e�ort necessary to use blockContract and blockContractExternal.

Consider the method eInsertionSort from the previous example. This method is split
into 4 blocks, and the validity of its contract can only be proven using blockContract
because the block contracts contain no preconditions.

In order to be able to use blockContractExternal instead of blockContract, we
need to add additional preconditions to every block.

For the sake of readability, we will introduce some abbreviations. Note that these are
not a part of JML’s syntax!

LR1 : = 0 <= l e f t && l e f t < e1
&& e5 < r i g h t && r i g h t < a . l e n g t h ;

LR2 : = l e f t < e1 && e1 < e2 && e2 < e3
&& e3 < e4 && e4 < e5 && e5 < r i g h t ;

SORT1 : = ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;

a [ i ] <= a [ j ] ) ) ;
SORT2 : = ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;

( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
a [ i ] <= a [ j ] ) ) ;

With these abbreviations, the fully speci�ed method reads as follows. This speci�cation
is equivalent to that in [BSSU17] except for the requires clauses on the block contracts.

/ ∗@ norma l_behav iour
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s LR1 && LR2 && SORT1 && SORT2 ;
@ e n s u r e s SORT1 && SORT2 ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ;
@ e n s u r e s a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ a s s i g n a b l e a [ l e f t . . r i g h t ] ;
@∗ /

s t a t i c vo id e I n s e r t i o n S o r t (
i n t [ ] a , i n t l e f t , i n t r i g h t ,
i n t e1 , i n t e2 , i n t e3 , i n t e4 , i n t e5 ) {

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s LR1 && LR2 && SORT1 && SORT2 ;
@ e n s u r e s SORT1 && SORT2 ;
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@ e n s u r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{ / ∗ . . . ∗ / }

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s LR1 && LR2 && SORT1 && SORT2 ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ e n s u r e s SORT1 && SORT2 ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{ / ∗ . . . ∗ / }

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s LR1 && LR2 && SORT1 && SORT2 ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
@ e n s u r e s SORT1 && SORT2 ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{ / ∗ . . . ∗ / }

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s LR1 && LR2 && SORT1 && SORT2 ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] ) ;
@ e n s u r e s SORT1 && SORT2 ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] , a [ e5 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{ / ∗ . . . ∗ / }
}

As we can see, using blockContractExternal instead of blockContract requires a
larger speci�cation e�ort. It does, however, improve performance.

Once again, we let KeY prove the method contract using the rule blockContract, with
and without any preconditions on the block contracts. Then, we prove the method contract
using blockContractExternal.
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Used Rule Proof Steps Runtime
Internal (without
preconditions)

162348 434111 ms

Internal (with pre-
conditions)

153037 348061 ms

External (sur-
rounding
method)

31559 74942 ms

External (blocks) 4540 + 12246 +
29026 + 55724

(2585 + 8322 +
25158+61764)ms

External (total) 133095 172771 ms

As we can see, the additional preconditions already slightly improve KeY’s performance
even without blockContractExternal. Using blockContractExternal improves the
performance even further.

7.2. Loop Contracts

The purpose of the following two examples is to show how loopContract can be used
to divide a proof into two sub-proofs. We also compare the size of these divided proofs
with that of equivalent proofs which use KeY’s loop invariant rule instead.

7.2.1. Array Increment

Consider the following example, adapted from [Tue12].
/ ∗@ no rma l_ beh av i o r

@ r e q u i r e s a r r != n u l l ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < a r r . l e n g t h ;
@ a r r [ i ] == \ o l d ( a r r [ i ] ) + 1 ) ;
@ a s s i g n a b l e a r r [ ∗ ] ;
@∗ /

p u b l i c s t a t i c vo id mapIncrement ( i n t [ ] a r r ) {
i n t i = 0 ;
wh i l e ( i < a r r . l e n g t h ) {

++ a r r [ i ] ;
++ i ;

}
}

We can specify the loop in this method with a loop contract:
/ ∗@ l o o p _ c o n t r a c t no rma l_ beh av io r

@ r e q u i r e s a r r != n u l l && 0 <= i && i <= a r r . l e n g t h ;
@ e n s u r e s ( \ f o r a l l i n t j ;
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@ \ b e f o r e ( i ) <= j && j < a r r . l e n g t h ;
@ a r r [ j ] == \ b e f o r e ( a r r [ j ] ) + 1 ) ;
@ a s s i g n a b l e a r r [ i . . a r r . l e n g t h ] ;
@ d e c r e a s e s a r r . l e n g t h - i ;
@∗ /

or with a loop invariant:
/ ∗@ l o o p _ i n v a r i a n t ( 0 <= i && i <= a r r . l e n g t h ) ;

@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; 0 <= j && j < i ;
@ a r r [ j ] == \ o l d ( a r r [ j ] ) + 1 ) ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; i <= j && j < a r r . l e n g t h ;
@ a r r [ j ] == \ o l d ( a r r [ j ] ) ) ;
@ a s s i g n a b l e a r r [ i . . a r r . l e n g t h ] ;
@ d e c r e a s e s a r r . l e n g t h - i ;
@∗ /

Before we continue with the performance comparison, let us note the di�erences
between the loop contract and the equivalent loop invariant: The loop invariant states
which array elements have already been incremented and which have not. The loop
contract is more intuitive, stating instead which elements are still going to be incremented
and which are not. Which elements will not be incremented is stated via an assignable
clause instead of a universal quanti�er, making the loop contract slightly easier to read.
In fact, the assignable clause on the invariant is super�uous and only stated here for
completeness’ sake.

We let KeY prove both versions of the method. The version with a loop contract requires
two proofs whose number of steps and runtime we add.

Proof Proof Steps Runtime
Loop Contract
(surrounding
method)

154 108 ms

Loop Contract
(loop)

1432 2109 ms

Loop Contract
(total)

1586 2217 ms

Loop Invariant 1087 705 ms

As we can see, the two versions have comparable performance, with the invariant one
being slightly better.

7.2.2. List Increment

We will now convert the above example to linked lists.
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For this, we will use a JML feature called ghost variables. A ghost variable is a variable
that can not be accessed by the Java code, but only by the JML speci�cation. We introduce
two ghost attributes of type \seq to our linked list class, \seq being a JML and JavaDL
type for �nite sequences [SB16, 2]. The �rst ghost attribute seq is the sequence of all
dates in our list, while the second attribute nodeseq is the sequence of all nodes.

Our linked list also has a class invariant. A class invariant is a formula that is auto-
matically added to the pre- and postcondition of every method in the class [HAGH16,
4.1].

The class invariants are taken on an existing KeY example written by Mattias Ulbrich4.
p u b l i c f i n a l c l a s s IntNode {

p u b l i c / ∗@ n u l l a b l e @∗ / IntNode nex t ;
p u b l i c i n t d a t a ;

}

p u b l i c i n t e r f a c e I n t L i s t {
/ ∗@ p u b l i c gh os t \ s e q seq ; ∗ /
/ ∗@ i n v a r i a n t . . . ; ∗ /
/ / . . .

}

p u b l i c f i n a l c l a s s I n t L i n k e d L i s t implements I n t L i s t {

/ ∗@ n u l l a b l e @∗ / IntNode f i r s t ;
/ ∗@ n u l l a b l e @∗ / IntNode l a s t ;
i n t s i z e ;

/ ∗@ gh os t \ s e q nodeseq ; ∗ /

/ ∗@ no rma l_ beh av i o r
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < s i z e ;
@ ( ( i n t ) seq [ i ] ) == \ o l d ( ( i n t ) seq [ i ] ) + 1 ) ;
@ e n s u r e s s i z e == \ o l d ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; 0 <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@∗ /

p u b l i c vo id mapIncrement ( ) {
In tNode c u r r e n t = f i r s t ;
i n t i = 0 ;
wh i l e ( c u r r e n t != n u l l ) {

++ c u r r e n t . d a t a ;

4This example can be accessed under the directory Dynamic Frames/List with Sequences
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/ / The f o l l o w i n g s t a t e m e n t i n s e r t s the
/ / inc remented v a l u e i n t o seq .
/ ∗@ s e t seq =

@ \ s e q _ c o n c a t ( \ s e q _ s u b ( seq , 0 , i ) ,
@ \ s e q _ c o n c a t (
@ \ s e q _ s i n g l e t o n ( c u r r e n t . d a t a ) ,
@ \ s e q _ s u b ( seq , i +1 , s i z e ) ) ) ;
@∗ /

c u r r e n t = c u r r e n t . nex t ;
++ i ;

}
}

}

The method’s assignable clause makes use of some JML set operations; it states that
the method may modify the ghost variable seq as well as the data attribute of every node
contained in nodeseq .

Again, we can specify the loop in this method using a loop contract:
/ ∗@ l o o p _ c o n t r a c t no rm a l_ beh av io r

@ r e q u i r e s \ i n v a r i a n t _ f o r ( t h i s ) ;
@ r e q u i r e s 0 <= i && i <= s i z e ;
@ r e q u i r e s i < s i z e
@ ==> c u r r e n t == ( IntNode ) nodeseq [ i ] ;
@ r e q u i r e s i == s i z e ==> c u r r e n t == n u l l ;
@ e n s u r e s \ i n v a r i a n t _ f o r ( t h i s ) ;
@ e n s u r e s ( \ f o r a l l i n t j ; \ b e f o r e ( i ) <= j && j < s i z e ;
@ ( i n t ) seq [ j ] == \ b e f o r e ( ( i n t ) seq [ j ] ) + 1 ) ;
@ e n s u r e s s i z e == \ b e f o r e ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; i <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@ d e c r e a s e s nodeseq . l e n g t h - i ;
@∗ /

or a loop invariant:
/ ∗@ l o o p _ i n v a r i a n t \ i n v a r i a n t _ f o r ( t h i s ) ;

@ l o o p _ i n v a r i a n t 0 <= i && i <= s i z e ;
@ l o o p _ i n v a r i a n t i < s i z e
@ ==> c u r r e n t == ( IntNode ) nodeseq [ i ] ;
@ l o o p _ i n v a r i a n t i == s i z e ==> c u r r e n t == n u l l ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; 0 <= j && j < i ;
@ ( i n t ) seq [ j ] == \ o l d ( ( i n t ) seq [ j ] ) + 1 ) ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; i <= j && j < s i z e ;
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@ ( i n t ) seq [ j ] == \ o l d ( ( i n t ) seq [ j ] ) ) ;
@ l o o p _ i n v a r i a n t s i z e == \ o l d ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; i <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@ d e c r e a s e s nodeseq . l e n g t h - i ;
@∗ /

Note the same di�erences between the loop contract and the loop invariant as before:
The loop invariant states which array elements have already been incremented and which
have not. The loop contract states which elements are still going to be incremented and
which are not. Which elements will not be incremented is again stated via an assignable
clause instead of a universal quanti�er, and again, the assignable clause on the invariant
is super�uous and only stated for completeness’ sake.

The performance di�erence is as follows:

Proof Automatic Proof
Steps

Interactive Proof
Steps

Runtime in Auto-
matic Mode

Loop Contract
(surrounding
method)

21521 0 29107 ms

Loop Contract
(loop)

56560 70 623884 ms

Loop Contract
(total)

78081 70 652991 ms

Loop Invariant 79389 63 842628 ms

The number of interactive proof steps in the above table is somewhat misleading, as the
proof for the loop contract only requires user interaction in one branch, while the proof
for the loop invariant requires user interaction in two branches.

Speci�cally, in both cases proving

(\forall int j; ...; (int) seq[j] == \old((int) seq[j]) + 1)

or

(\forall int j; ...; (int) seq[j] == \before((int) seq[j]) + 1)

respectively requires interaction: After the proof is manually split into the two cases
j == i and j != i, the branch for j != i closes automatically, while the branch for
j == i requires further interaction (where i is the current value of the index variable).

The loop invariant also requires interaction to show a part of the class invariant, namely
nodesec[i].data = sec[i].
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As we can see, loopContract has the same advantages as blockContractExternal
in that it allows us to divide a proof into two sub-proofs without increasing the divided
proof’s size and thus reducing KeY’s performance.

Furthermore, we have shown that there are cases in which a loop contract is easier to
specify and prove than a loop invariant.
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8. Conclusions

In the preceding chapters, we introduced two new rules, blockContractExternal and
loopContract, for the application of block and loop contracts in the sequent calculus for
JavaDL.

These rules allow us to prove a block’s correctness in a separate proof obligation, thus
allowing us to divide a proof over a complex method into sub-proofs without having to
actually divide the method into multiple sub-methods.

8.1. Results

When comparing the size of two proofs for the same method, one where the method was
divided into two blocks and one where it was divided into two sub-methods, we found that
dividing the method into blocks instead of sub-methods lowers the speci�cation e�ort (as
we have to perform less refactoring) without increasing the proof’s size or KeY’s runtime.

When comparing blockContractExternal to blockContract, we found that using
blockContractExternal requires a larger speci�cation e�ort because the separation of
the block validity proof necessitates that the block contract be universally valid (instead of
only valid in the context in which it occurs). However, we found that for complex enough
methods, this speci�cation e�ort leads to a smaller overall proof size regardless of which
block contract rule we use; though using blockContractExternal leads to the smallest
proof.

We also compared loop contracts to loop invariants and found that loop contracts
require a similar speci�cation e�ort to loop invariants, actually being more readable in
certain situations while o�ering approximately the same performance with the additional
advantage that loopContract allows us to divide a proof.

8.2. Outlook

The rules introduced in this thesis have been implemented into KeY. Some aspects of this
implementation could still be improved. Firstly, we introduced loop contracts as special
block contracts for blocks that start with a loop. However, none of the examples we looked
at had any code after the loop. For this reason, allowing the user to put a loop contract
directly on a loop instead of a surrounding block might be a useful addition. Secondly,
well-de�nedness checks for loop contracts have not been implemented, which means that
ill-de�ned loop contracts cannot be detected by KeY.

Instead of using the concept of loop contracts, we could also have implemented an
alternative rule for loop invariants in which the Body preserves invariant branch is a
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separate proof obligation. While we have demonstrated that loop contracts are easier to
specify and read in some situations, there may be situations in which one would rather
use a loop invariant while still being able to divide the resulting proof.

Lastly, this thesis considered only proofs for functional correctness in Java. Obviously,
this divide-and-conquer strategy is applicable to other languages as well. Furthermore, one
could investigate whether a similar strategy can be applied to information �ow proofs.
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A. Soundness Proof for the Loop Contract
Rule

This appendix contains the full soundness proof for the rule loopContract de�ned in
section 5.6. A proof sketch can be found in section 5.7.

Let block′ be the transformed form of

{while(loopCond){body}tail}

as described in 3.4.2, i.e., the program fragment
method-frame ( t h i s = s e l f ) : {

boo l ean broke = f a l s e ;
boo l ean broke 1 = f a l s e ;
...

boo lean broke ξ = f a l s e ;

boo l ean c o n t i n u e d = f a l s e ;
boo l ean c o n t i n u e d 1 = f a l s e ;
...

boo lean c o n t i n u e d ξ = f a l s e ;

boo l ean r e t u r n e d = f a l s e ;

Throwable e x c e p t i o n = n u l l ;

breakOut : t r y {
breakLoop : whi l e ( l o o p C o n d i t i o n ) { bodyalmostSaf e }
t a i l almostSaf e

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}

and loop the following:
method-frame ( t h i s = s e l f ) : {

boo l ean broke = f a l s e ;
boo l ean brokeLoop = f a l s e ;
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boo lean broke 1 = f a l s e ;
...

boo lean broke ξ = f a l s e ;

boo l ean c o n t i n u e d 1 = f a l s e ;
...

boo lean c o n t i n u e d ξ = f a l s e ;

boo l ean r e t u r n e d = f a l s e ;

Throwable e x c e p t i o n = n u l l ;

breakOut : t r y {
breakLoop : whi l e ( l o o p C o n d i t i o n ) { bodyalmostSaf e }

} c a t c h ( Throwable e ) {
e x c e p t i o n = e ;

}
}

We will now prove that the validity of (valid_loop) implies the validity of (valid∗), i.e.,

(valid_loop)

→ {remember}Jblock′K(post ∧ frame)
=⇒ {rememberOuter}{anonIn}(pre ∧wellFormed(heap) ∧ reachableIn

wellFormed(heap),wellFormed(heapanon)

Let Σ = (FSym, PSym,VSym, ProgVSym) be a JavaDL signature.
If 6 |= valid_loop, we are done.
If |= valid_loop, we need to prove that |= valid∗.
Let K = (S, ρ) be a Kripke structure for Σ, s ∈ S a state, β : VSym → D a variable

assignment, and sa = val(K ,s,β)({{rememberOuter}anonIn})(s)

Case 1: (K , s, β) 6|= wellFormed(heap) ∧wellFormed(heapanon)

∧{rememberOuter}{anonIn}(pre ∧wellFormed(heap) ∧ reachableIn)
Trivial.

Case 2: (K , sa, β) |= {remembercurrent}Junfold′Kexception Û,null

Case 3: (K , sa, β) |= {remembercurrent}Junfold′K(exception Û=null ∧ cond Û=FALSE)
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Case 4:

(K , sa, β) |={remembercurrent}Junfold′K(
exception Û=null ∧ cond Û=TRUE ∧ Jbody′KbrokeLoop Û=TRUE)

Case 5:

(K , sa, β) |={remembercurrent}Junfold′K(
exception Û=null ∧ cond Û=TRUE ∧ Jbody′Kabrupt)

In the cases 2 to 5, we can conclude from the de�nitions of our program fragments that
(K , sa, β) |= {remembercurrent}Jblock′K(postcurrent ∧ framecurrent), and thus (K , s, β) |=
valid∗.

Case 6:

(K , sa, β) |={remembercurrent}Junfold′K(
exception Û=null ∧ cond Û=TRUE ∧ Jbody′K(

brokeLoop Û=FALSE ∧ ¬abrupt))

Case 6.1: If (K , sa, β) |= valid_loop because one of the program fragments does not
terminate (and JK = []), block′ does not terminate either, and we are done (If JK = 〈〉, then
|= valid_loop implies that the program fragments always terminate).

Case 6.2: If unfold′, body′ and tail′ terminate, block′ also terminates because of the
decreasesCheck.

We now de�ne the following abbreviations:

assumptions =wellFormed(heappre) ∧wellFormed(heapanon)

∧ pre ∧ decreasesCheck
conditionssubscr =postsubscr ∧ framesubscr

for subscr ∈ {current, next}

We know that

(K , sa, β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}{anonOutloop}
(abrupt→ (conditionsnext → conditionscurrent)

∧ (¬abrupt→ Jtail′K(conditionsnext → conditionscurrent))))
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Now let val(K ,s,β)(vanon
i ) be the value of vi after the execution of Junfold′K, Jbody′K,

and JloopK. Then

(K , sa, β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}JloopK
(abrupt→ (conditionsnext → conditionscurrent)

∧ (¬abrupt→ Jtail′K(conditionsnext → conditionscurrent))))

Case 6.2.1: After the the last loop iteration, brokeLoop Û=TRUE ∨ abrupt.
In this case, we know that there exists a n ∈ N so that the above is equivalent to

(K , sa, β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext} Junfold′KJbody′K . . . Junfold′KJbody′K︸                                                ︷︷                                                ︸

(n−1) times

(abrupt→ (conditionsnext → conditionscurrent)

∧ (¬abrupt→ Jtail′K(conditionsnext → conditionscurrent))))

Because |= valid_loop, we know that the assumptions are preserved between all n
iterations.

Now let sn be the state before the last iteration and sn−1 the state before the second-to-last
iteration.

In other words, si results from s by executing Junfold′KJbody′K (i − 1) times.
Then (K , sn, β) conforms to Case 4 or Case 5, and thus

(K , sna , β) |={remembercurrent}Junfold′KJbody′Kconditionscurrent

which is equivalent to

(K , sna , β) |={remembernext}Junfold′KJbody′Kconditionsnext

This means that
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(K , sn−1a , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}Junfold′KJbody′K
(abrupt→ conditionsnext

∧ (¬abrupt→ Jtail′Kconditionsnext)))

and thus

(K , sn−1a , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}Junfold′KJbody′K
(abrupt→ conditionscurrent

∧ (¬abrupt→ Jtail′Kconditionscurrent)))

Now let si , si−1 be the states before the ith and (i−1)th iteration respectively. We assume
that (K , sia, β) |= {remembercurrent}Jblock′Kpostcurrent.

Because there are n ≥ i iterations, we know that

(K , si−1a , β) |={remembercurrent}Junfold′K(exception Û=null ∧ cond Û=TRUE

∧ Jbody′K(brokeLoop Û=FALSE ∧ ¬abrupt))

and thus

(K , si−1a , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext} Junfold′KJbody′K . . . Junfold′KJbody′K︸                                                ︷︷                                                ︸

(n−i+1) times

(abrupt→ (conditionsnext → conditionscurrent)

∧ (¬abrupt→ Jtail′K(conditionsnext → conditionscurrent))))

From our induction hypothesis, we can conclude

(K , si−1a , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext} Junfold′KJbody′K . . . Junfold′KJbody′K︸                                                ︷︷                                                ︸

(n−i+1) times

(abrupt→ conditionsnext

∧ (¬abrupt→ Jtail′Kconditionsnext)))
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which implies

(K , si−1a , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext} Junfold′KJbody′K . . . Junfold′KJbody′K︸                                                ︷︷                                                ︸

(n−i+1) times

(abrupt→ conditionscurrent

∧ (¬abrupt→ Jtail′Kconditionscurrent)))

Altogether, we now know that

(K , sa, β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}Jloop′K
(abrupt→ conditionscurrent

∧ (¬abrupt→ Jtail′Kconditionscurrent)))

which directly implies (K , s1a = sa, β) |= {remembercurrent}Jblock′Kconditionscurrent.
Thus, (K , s, β) |= valid∗. Because the only thing we have restricted about (K , s, β) is

the interpretation of the anonymization constants vanon
i , which do not occur in valid∗,

this implies |= valid∗.

Case 6.2.2: After the the last loop iteration, brokeLoop Û=FALSE ∧ ¬abrupt
In this case, we know that there exists a n ∈ N so that the above is equivalent to

(K , sa, β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext} Junfold′KJbody′K . . . Junfold′KJbody′K︸                                                ︷︷                                                ︸

(n−1) times

Junfold′K

(abrupt→ (conditionsnext → conditionscurrent)

∧ (¬abrupt→ Jtail′K(conditionsnext → conditionscurrent))))

Because |= valid_loop, we know that the assumptions are preserved between all n
iterations.

Now let sn+1 be the state after the last loop iteration.
Then (K , sn+1, β) conforms to Case 1 or Case 2, and thus
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(K , sn+1a , β) |={remembercurrent}Junfold′Kconditionscurrent

This means that

(K , sna , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}Junfold′K
(abrupt→ conditionsnext

∧ (¬abrupt→ Jtail′Kconditionsnext)))

and thus

(K , sna , β) |={remembercurrent}Junfold′KJbody′K(assumptions
∧ {remembernext}Junfold′K
(abrupt→ conditionscurrent

∧ (¬abrupt→ Jtail′Kconditionscurrent)))

By proceeding as in Case 6.2.1, we can show that

(K , s1a = sa, β) |={remembercurrent}Jblock′Kconditionscurrent

�
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B. Source Code for the Examples

This appendix contains the full source code for the examples from chapter 7. Those
examples whose full source is already included in chapter 7 are not repeated here. All
examples are also included in version 2.7 of KeY.

B.1. Block Contracts

B.1.1. Divide and Conquer

See 7.1.2.

p u b l i c c l a s s D u a l P i v o t Q u i c k s o r t _ s o r t _ m e t h o d s {

s t a t i c i n t l e s s , g r e a t ;
s t a t i c i n t e1 , e2 , e3 , e4 , e5 ;

/ ∗@ norma l_behav iour
@ r e q u i r e s 0 <= l e f t && l e f t < r i g h t
@ && r i g h t - l e f t >= 46 && r i g h t < a . l e n g t h ;
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ e n s u r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e e1 , e2 , e3 , e4 , e5 , a [ l e f t . . r i g h t ] ;
@∗ /

s t a t i c vo id p r e p a r e _ i n d i c e s ( i n t [ ] a , i n t l e f t , i n t r i g h t ) {
{ c a l c E ( l e f t , r i g h t ) ; }
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e I n s e r t i o n S o r t ( a , l e f t , r i g h t , e1 , e2 , e3 , e4 , e5 ) ;
}

/ ∗@
@ norma l_behav iour
@ r e q u i r e s 0 <= l e f t && l e f t < r i g h t && r i g h t - l e f t >= 4 6 ;
@ e n s u r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ a s s i g n a b l e e1 , e2 , e3 , e4 , e5 ;
@∗ /

s t a t i c vo id c a l c E ( i n t l e f t , i n t r i g h t ) {
i n t l e n g t h = r i g h t - l e f t + 1 ;
i n t s e v e n t h = ( l e n g t h / 8 ) + ( l e n g t h / 6 4 ) + 1 ;
e3 = ( l e f t + r i g h t ) / 2 ; / / The midpo in t
e2 = e3 - s e v e n t h ;
e1 = e2 - s e v e n t h ;
e4 = e3 + s e v e n t h ;
e5 = e4 + s e v e n t h ;

}

/ ∗@
@ norma l_behav iour
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ l e f t . . r i g h t ] ;
@∗ /

s t a t i c vo id e I n s e r t i o n S o r t (
i n t [ ] a , i n t l e f t , i n t r i g h t ,
i n t e1 , i n t e2 , i n t e3 , i n t e4 , i n t e5 ) {

/ ∗@
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@ e n s u r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e2 ] < a [ e1 ] ) { i n t t = a [ e2 ] ; a [ e2 ] = a [ e1 ] ; a [

e1 ] = t ; }
}

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e3 ] < a [ e2 ] ) { i n t t = a [ e3 ] ; a [ e3 ] = a [ e2 ] ; a [

e2 ] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }
} }

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] && a [ e3 ] <=

a [ e4 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e4 ] < a [ e3 ] ) { i n t t = a [ e4 ] ; a [ e4 ] = a [ e3 ] ; a [

e3 ] = t ;
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i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }
}
} }

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] && a [ e3 ] <=

a [ e4 ] && a [ e4 ] <= a [ e5 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] , a [ e5 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e5 ] < a [ e4 ] ) { i n t t = a [ e5 ] ; a [ e5 ] = a [ e4 ] ; a [

e4 ] = t ;
i f ( t < a [ e3 ] ) { a [ e4 ] = a [ e3 ] ; a [ e3 ] = t ;
i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }
}
}
} }

}
}

Listing B.1: DualPivotQuicksort_sort_methods.java

p u b l i c c l a s s D u a l P i v o t Q u i c k s o r t _ s o r t _ b l o c k s {

s t a t i c i n t l e s s , g r e a t ;
s t a t i c i n t e1 , e2 , e3 , e4 , e5 ;

/ ∗@ norma l_behav iour
@ r e q u i r e s 0 <= l e f t && l e f t < r i g h t
@ && r i g h t - l e f t >= 46 && r i g h t < a . l e n g t h ;
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
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@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ e n s u r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e e1 , e2 , e3 , e4 , e5 , a [ l e f t . . r i g h t ] ;
@∗ /

s t a t i c vo id p r e p a r e _ i n d i c e s ( i n t [ ] a , i n t l e f t , i n t r i g h t ) {
/ ∗@

@ norma l_behav iour
@ r e q u i r e s 0 <= l e f t && l e f t < r i g h t && r i g h t - l e f t >=

4 6 ;
@ e n s u r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ a s s i g n a b l e e1 , e2 , e3 , e4 , e5 ;
@∗ /

{
i n t l e n g t h = r i g h t - l e f t + 1 ;
i n t s e v e n t h = ( l e n g t h / 8 ) + ( l e n g t h / 6 4 ) + 1 ;
e3 = ( l e f t + r i g h t ) / 2 ; / / The midpo in t
e2 = e3 - s e v e n t h ;
e1 = e2 - s e v e n t h ;
e4 = e3 + s e v e n t h ;
e5 = e4 + s e v e n t h ;

}

/ ∗@
@ norma l_behav iour
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
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@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ l e f t . . r i g h t ] ;
@∗ /

{
/ ∗@

@ e n s u r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e2 ] < a [ e1 ] ) { i n t t = a [ e2 ] ; a [ e2 ] = a [ e1 ] ; a [ e1

] = t ; }
}

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e3 ] < a [ e2 ] ) { i n t t = a [ e3 ] ; a [ e3 ] = a [ e2 ] ; a [ e2

] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }

} }

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
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@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e4 ] < a [ e3 ] ) { i n t t = a [ e4 ] ; a [ e4 ] = a [ e3 ] ; a [ e3

] = t ;
i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;

i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }
}

} }

/ ∗@
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] , a [ e5 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e5 ] < a [ e4 ] ) { i n t t = a [ e5 ] ; a [ e5 ] = a [ e4 ] ; a [ e4

] = t ;
i f ( t < a [ e3 ] ) { a [ e4 ] = a [ e3 ] ; a [ e3 ] = t ;

i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ;

}
}

}
} }

}
}

}

Listing B.2: DualPivotQuicksort_sort_blocks.java

B.1.2. Comparison Between the Block Contract Rules

See 7.1.3.
p u b l i c c l a s s D u a l P i v o t Q u i c k s o r t _ s o r t _ e x t e r n a l {

s t a t i c i n t l e s s , g r e a t ;
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s t a t i c i n t e1 , e2 , e3 , e4 , e5 ;

/ ∗@
@ norma l_behav iour
@ r e q u i r e s a . l e n g t h > 4 6 ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ l e f t . . r i g h t ] ;
@∗ /

s t a t i c vo id e I n s e r t i o n S o r t (
i n t [ ] a , i n t l e f t , i n t r i g h t ,
i n t e1 , i n t e2 , i n t e3 , i n t e4 , i n t e5 ) {

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] ;
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@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e2 ] < a [ e1 ] ) { i n t t = a [ e2 ] ; a [ e2 ] = a [ e1 ] ; a [ e1 ]

= t ; }
}

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] ) ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e3 ] < a [ e2 ] ) { i n t t = a [ e3 ] ; a [ e3 ] = a [ e2 ] ; a [ e2 ]

= t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }

} }

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ] ) ;
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@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e4 ] < a [ e3 ] ) { i n t t = a [ e4 ] ; a [ e4 ] = a [ e3 ] ; a [ e3 ]

= t ;
i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;

i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }
}

} }

/ ∗@ r e q u i r e s a != n u l l ;
@ r e q u i r e s 0 <= l e f t && l e f t < e1
@ && e5 < r i g h t && r i g h t < a . l e n g t h ;
@ r e q u i r e s l e f t < e1 && e1 < e2 && e2 < e3
@ && e3 < e4 && e4 < e5 && e5 < r i g h t ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ r e q u i r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] ) ;
@ e n s u r e s ( a [ e1 ] <= a [ e2 ] && a [ e2 ] <= a [ e3 ]
@ && a [ e3 ] <= a [ e4 ] && a [ e4 ] <= a [ e5 ] ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < l e f t ;
@ ( \ f o r a l l i n t j ; l e f t <= j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i <= r i g h t ;
@ ( \ f o r a l l i n t j ; r i g h t < j && j < a . l e n g t h ;
@ a [ i ] <= a [ j ] ) ) ;
@ a s s i g n a b l e a [ e1 ] , a [ e2 ] , a [ e3 ] , a [ e4 ] , a [ e5 ] ;
@ s i g n a l s _ o n l y \ n o t h i n g ;
@∗ /

{
i f ( a [ e5 ] < a [ e4 ] ) { i n t t = a [ e5 ] ; a [ e5 ] = a [ e4 ] ; a [ e4 ]

= t ;
i f ( t < a [ e3 ] ) { a [ e4 ] = a [ e3 ] ; a [ e3 ] = t ;
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i f ( t < a [ e2 ] ) { a [ e3 ] = a [ e2 ] ; a [ e2 ] = t ;
i f ( t < a [ e1 ] ) { a [ e2 ] = a [ e1 ] ; a [ e1 ] = t ; }

}
}

} }
}

}

Listing B.3: DualPivotQuicksort_sort_external

B.2. Loop Contracts

B.2.1. List Increment

See 7.2.2.
p u b l i c i n t e r f a c e I n t L i s t {

/ ∗@ p u b l i c gh os t \ l o c s e t f o o t p r i n t ; ∗ /
/ ∗@ p u b l i c gh os t \ s e q seq ; ∗ /

/ ∗@ p u b l i c i n v a r i a n t \ s u b s e t (
@ \ s i n g l e t o n ( t h i s . seq ) , f o o t p r i n t ) ;
@ p u b l i c i n v a r i a n t \ s u b s e t (
@ \ s i n g l e t o n ( t h i s . f o o t p r i n t ) , f o o t p r i n t ) ;
@ p u b l i c i n v a r i a n t (
@ \ f o r a l l i n t i ; 0<= i && i < seq . l e n g t h ;
@ seq [ i ] i n s t a n c e o f i n t ) ;
@ p u b l i c a c c e s s i b l e \ i n v : f o o t p r i n t ;
@∗ /

}

Listing B.4: IntList.java

p u b l i c f i n a l c l a s s IntNode {
p u b l i c / ∗@ n u l l a b l e @∗ / IntNode nex t ;
p u b l i c i n t d a t a ;

}

Listing B.5: IntNode.java

p u b l i c f i n a l c l a s s I n t L i n k e d L i s t implements I n t L i s t {

/ ∗@ n u l l a b l e @∗ / IntNode f i r s t ;
/ ∗@ n u l l a b l e @∗ / IntNode l a s t ;
i n t s i z e ;
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/ ∗@ gh os t \ s e q nodeseq ; ∗ /

/ ∗@ i n v a r i a n t f o o t p r i n t == \ s e t _ u n i o n ( t h i s . ∗ ,
@ \ i n f i n i t e _ u n i o n ( i n t i ; 0<= i && i < s i z e ;
@ ( ( IntNode ) nodeseq [ i ] ) . ∗ ) ) ;
@
@ i n v a r i a n t ( \ f o r a l l i n t i ; 0<= i && i < s i z e ;
@ ( ( IntNode ) nodeseq [ i ] ) != n u l l
@ && ( ( IntNode ) nodeseq [ i ] ) . d a t a == seq [ i ]
@ && ( \ f o r a l l i n t j ; 0<= j && j < s i z e ;
@ ( IntNode ) nodeseq [ i ] == ( IntNode ) nodeseq [ j ]
@ ==> i == j )
@ && ( ( IntNode ) nodeseq [ i ] ) . nex t == ( i == s i z e - 1
@ ? n u l l : ( In tNode ) nodeseq [ i + 1 ] ) ) ;
@
@ i n v a r i a n t f i r s t == ( s i z e == 0
@ ? n u l l : ( In tNode ) nodeseq [ 0 ] ) ;
@ i n v a r i a n t l a s t == ( s i z e == 0
@ ? n u l l : ( In tNode ) nodeseq [ s i z e - 1 ] ) ;
@
@ i n v a r i a n t s i z e == seq . l e n g t h && s i z e == nodeseq . l e n g t h ;
@∗ /

/ ∗@ no rma l_ beh av i o r
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < s i z e ;
@ ( ( i n t ) seq [ i ] ) == \ o l d ( ( i n t ) seq [ i ] ) + 1 ) ;
@ e n s u r e s s i z e == \ o l d ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; 0 <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@∗ /

p u b l i c vo id mapIncrement_ loopCont rac t ( ) {
In tNode c u r r e n t = f i r s t ;
i n t i = 0 ;

/ ∗@ l o o p _ c o n t r a c t no rma l_ beh av io r
@ r e q u i r e s \ i n v a r i a n t _ f o r ( t h i s ) ;
@ r e q u i r e s 0 <= i && i <= s i z e ;
@ r e q u i r e s i < s i z e
@ ==> c u r r e n t == ( IntNode ) nodeseq [ i ] ;
@ r e q u i r e s i == s i z e ==> c u r r e n t == n u l l ;
@ e n s u r e s \ i n v a r i a n t _ f o r ( t h i s ) ;
@ e n s u r e s ( \ f o r a l l i n t j ; \ b e f o r e ( i ) <= j && j < s i z e ;
@ ( i n t ) seq [ j ] == \ b e f o r e ( ( i n t ) seq [ j ] ) + 1 ) ;
@ e n s u r e s s i z e == \ b e f o r e ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; 0 <= j && j < s i z e ;
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@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@ d e c r e a s e s nodeseq . l e n g t h - i ;
@∗ /

{
wh i l e ( c u r r e n t != n u l l ) {

++ c u r r e n t . d a t a ;
/ /@ s e t seq = \ s e q _ c o n c a t ( \ s e q _ s u b ( seq , 0 , i ) ,

\ s e q _ c o n c a t ( \ s e q _ s i n g l e t o n ( c u r r e n t . d a t a ) ,
\ s e q _ s u b ( seq , i +1 , s i z e ) ) ) ;

c u r r e n t = c u r r e n t . nex t ;
++ i ;

}
}

}

/ ∗@ no rma l_ beh av i o r
@ e n s u r e s ( \ f o r a l l i n t i ; 0 <= i && i < s i z e ;
@ ( ( i n t ) seq [ i ] ) == \ o l d ( ( i n t ) seq [ i ] ) + 1 ) ;
@ e n s u r e s s i z e == \ o l d ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; 0 <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@∗ /

p u b l i c vo id m a p I n c r e m e n t _ l o o p I n v a r i a n t ( ) {
In tNode c u r r e n t = f i r s t ;
i n t i = 0 ;

/ ∗@ l o o p _ i n v a r i a n t \ i n v a r i a n t _ f o r ( t h i s ) ;
@ l o o p _ i n v a r i a n t 0 <= i && i <= s i z e ;
@ l o o p _ i n v a r i a n t i < s i z e
@ ==> c u r r e n t == ( IntNode ) nodeseq [ i ] ;
@ l o o p _ i n v a r i a n t i == s i z e ==> c u r r e n t == n u l l ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; 0 <= j && j < i ;
@ ( i n t ) seq [ j ] == \ o l d ( ( i n t ) seq [ j ] ) + 1 ) ;
@ l o o p _ i n v a r i a n t ( \ f o r a l l i n t j ; i <= j && j < s i z e ;
@ ( i n t ) seq [ j ] == \ o l d ( ( i n t ) seq [ j ] ) ) ;
@ l o o p _ i n v a r i a n t s i z e == \ o l d ( s i z e ) ;
@ a s s i g n a b l e \ s e t _ u n i o n ( \ s i n g l e t o n ( seq ) ,
@ \ i n f i n i t e _ u n i o n ( i n t j ; 0 <= j && j < s i z e ;
@ \ s i n g l e t o n ( ( ( IntNode ) nodeseq [ j ] ) . d a t a ) ) ) ;
@ d e c r e a s e s nodeseq . l e n g t h - i ;
@∗ /

wh i l e ( c u r r e n t != n u l l ) {
++ c u r r e n t . d a t a ;
/ /@ s e t seq = \ s e q _ c o n c a t ( \ s e q _ s u b ( seq , 0 , i ) ,

\ s e q _ c o n c a t ( \ s e q _ s i n g l e t o n ( c u r r e n t . d a t a ) , \ s e q _ s u b
( seq , i +1 , s i z e ) ) ) ;
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c u r r e n t = c u r r e n t . nex t ;
++ i ;

}
}

}

Listing B.6: IntLinkedList.java
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