

KeY System

KeY tool set

Utilities (key.util)

Proving (key.core)

Symbolic Execution API
(key.core.symbolic_execution)

Proof Reference API
(key.core.proof_references)

Counter Example &
Test Case Generation

(key.core.testgen)

User Interface (key.ui)

Eclipse Integration

A Component of the KeY System

● The KeY System consists of well defined components
● Each component implements one or only a few clearly described responsibilities
● A component is a ready to use Eclipse Java Project consisting of:

– bin // The compiled byte code

– src // The source code

– lib // The needed libraries

– resources // Additional resources like images

– META-INF // Jar definition files and services

– build.xml // Ant script for deployment

● The separation of the KeY system into reusable components has the goals:
– To support different use cases and languages at the same time (compile and runtime)
– To avoid independent KeY branches

Hierarchical Component Dependencies

● Transitive dependencies are not shown for simplicity
● Component with application logic | Component with unit tests

key.util

key.core

key.core.proof_references

key.core.symbolic_execution

key.core.testgen

key.ui

key.util.test

key.core.test

key.core.testgen.test

key.core.proof_references.test

key.core.symbolic_execution.test

Code not used,
but required to load proofs
with symbolic execution profile

Component Responsibilities

● key.util: General utilities for Java: Can be used independent of KeY like
immutable collections

● key.core: User interface independent functionality to load source code, to
perform proofs including rules, pretty printing and persistence

● key.core.testgen: User interface independent functionality to generate counter
examples and test cases

● key.core.symbolic_execution: KeY's symbolic execution API independent
from any user interface

● key.core.proof_references: User interface independent functionality to
compute proof references

● key.ui: The typical Swing and console user interface of KeY including examples

Design Guidelines

● Each component contains everything to fulfill its responsibility
– Types of other components are not enriched for simplicity (e.g. to store additional Proof statistics)

– General solutions are preferable (e.g. provide an arbitrary data Map to store statistics in)

● Types of other components can be used and extended
(sub classing)

● Behavior of components can be modified via interfaces
– EventListener to observe progress and state changes

(e.g. ProofDisposedListener to observe Proof#dispose())

– Hooks via interfaces to modify behavior. Instances are configured by a configuration file and instantiated via
org.key_project.util.reflection.ClassLoaderUtil#loadServices(Class)
to avoid cyclic dependencies between components.
(e.g. ProofInitServiceUtil#getDefaultProfile(String) to request the default Profile instance with a
given name accessible via DefaultProfileResolver instances specified by META-
INF/services/de.uka.ilkd.key.proof.init.DefaultProfileResolver)

Separation between core and user interface

● Component key.core allows user interface independent proving, but
– Results and progress need to be shown

– User input might be required to complete a rule application

● The solution is a common API provided by key.core:
– UserInterfaceControl: Allows to load source code, to instantiate new proofs or to register existing

proofs and to access the ProofControl

– ProofControl: Allows to list rules, to apply an individual rule, to start the auto mode and to run
macros

– KeYEnvironment: Provides static methods to load source code in a default user interface which is
not shown to the user at all

● Component key.core.example shows how to programmatically verify all proof obligations of
the source code.

Implementation of the Swing user interface

● Component key.ui realizes the typical Swing user interface
(WindowUserInterfaceControl) and the batch mode using the console
(ConsoleUserInterfaceControl)

● The KeYMediator manages selected proof and node and provides other
implementation specific behavior
(e.g. freezing of the user interface)
– The KeYMediator is not responsible to apply rules or to start the auto mode or macros.

This is the responsibility of the ProofControl
● Attention: Do not add implementation specific functionality to the
UserInterfaceControl or ProofControl!
– May extend implementation classes AbstractMediatorUserInterfaceControl or

MediatorProofControl instead.

Future Work

● Profiles for different use cases (verification, information flow, …)
and languages (Java, ABS, ...)

key.utilkey.corekey.ui

java.symbolic_execution.profile

java.verification.profile

java.informationflow_xyz.profile

abs.verification.profile

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8

