A Short Documentation of Decision Procedures in KeY

Benjamin Niedermann

July 2, 2012

The purpose of this document is to give experienced KeY users and KeY developers a short
introduction into the connection between decision procedures (e.g., Yices, Z3 and Simplify) and
the KeY-system. As this connection mainly consists of the implementation of the SMT—formatﬂ
we also call it the SMT-integration of KeY. The only solver that does not make use of that
format, but uses a native format is Simplify, which is not maintained anymore by its developers.
We therefore only consider the SMT-format in this document and also call the external solvers
connected to KeY the supported SMT-solvers.

Further it is assumed that the reader is familiar with the KeY-system and its underlying
dynamic logic. We therefore do not introduce common definitions, but we assume that the
reader is aware of the most important definitions and notations as used in the KeY-Book. The
document consists of the following parts:

1. [Basic Concepts|— It is explained how external solvers are connected to the KeY-System
and which major design decisions have been made for the implementation.

2. [Using the SMT-Integration| — This section is addressed to readers that want to use
the integration: It is explained how to use solvers within KeY and how to manipulate the
settings of these solvers and the translation.

3. Implementation|— In this part the structure of the SMT-integration of KeY is explained
in more detail in order to give developers of the KeY-system a short introduction into the
implementation of the SMT-integration.

4. [Case Study]— The case study describes roughly how counterexamples that are created by
solvers can be used for deriving information about the currently considered sequent.

Note that this document is only written for purposes of documentation. It does not demand
to be complete or to introduce new knowledge, but it should help to get in touch with the
SMT-integration of the KeY-system.

1 Basic Concepts

In this section we shortly discuss how the SMT-integration basically works. Figure [1]illustrates
the approach we are following: Assuming that we are given a sequent S: I' - A, we create a
first-order logic formula based on that sequent. To that end we introduce a function 7" that maps
a formula ®p;, of dynamic logic onto a formula ® poy, of first-order logic such that the following
property is satisfied:

Property 1. ®p; is valid if Proyp is valid.

Thttp://www.smtlib.org/



KeY Sequent based on dynamic logic: ... ... -
kA

Translation T'|and assumptions A

SMT-formula based on first-order logic:
- ( ANTNNT@) = V T(l/f))

vEA ¢el PEA

Sequent is valid.

SMT-Solvers

[unkown| [ counterexample | | unsatisfiable T

Figure 1: The structure of the SMT-integration.

On the implementation level the function 7' corresponds to a translation of ®py, into Ppor
based on the SMT-format.

As certain properties cannot directly be modeled by classic first-order logic (e.g., sorts) we
introduce a finite set A of formulas that describe those properties. We call A the additional
assumptions of T

Then, we translate the sequent S into the following first-order logic formula

T(S)=-| NTnA N\ T(¢) = \/ T) (1)

YEA ¢el PEA

whereas we call T(S) the translation of S. This formula is then passed to the external solvers,
which try to prove its unsatisfiability. There can occur three results:

1. unkown: The solver is not able to prove the unsatisfiability of 7'(.S), but it also cannot
present a model proving the satisfiability. Roughly spoken, this event occurs either when
the solver is overwhelmed or some timeout has exceeded.

2. counterexample: The solver has found a model satisfying T'(S). By Property [1] this
does not yield necessarily that the given sequent is not valid. In Section [4 we give a short
outlook how that counterexample can be used in order to obtain further information.

3. unsatisfiable: The formula T'(.S) is unsatisfiable, which also implies that the given sequent
is valid. The corresponding goal of that sequent can therefore be closed.

The translation T can be described recursively regarding the structure of a formula. For sub-
formulas and terms based on first-order logic one can basically define T as the identity. On the
implementation level this means a straightforward conversion from the format used by KeY into
the SMT-format.

For sub-formulas and terms based on dynamic logic, we cannot use a direct translation,
but we translate those formulas and terms into uninterpreted unique predicates and functions,
respectively. To that end all free variables within the given term/formula are collected and used



as parameters for the arising predicate or function. For example the dynamic formula
[mle =y
over the program 7 is translated into the first-order logic formula
modOpl(z,y)

where modOpl is a new predicate symbol, which is only used for exactly that formula. Conse-
quently, the translation T still satisfies Property

As already mentioned, we also introduce a finite set A of assumptions that model concepts
that are not supported by classic first-order logic. In the following paragraphs we describe which
assumptions we have exactly implemented.

Sorts: In order to be independent from the concrete solvers, we do not make use of the type-
systems that are offered by those solvers, but we model the sort-hierarchy explicitly by means
of predicates. To that end we introduce for each sort X that occurs within the given sequent S
an unary predicate typeOfX that indicates whether an object belongs to that sort or not. Then,
in order to model the hierarchy we straightforwardly introduce implications that describe the
relation between sorts: For example let A be the sub-sort of B and let B be the sub-sort of C,
then we create the following two assumptions:

Va: typeOfA(x) — typeOfB(z)
Va: typeOfB(z) — typeOfC(z)

Finally, we need to enforce that for each type there is at least one object within the universe.
To that end we create for each sort X within S the following assumption:

Jz: typeOfX(x)

Unique Functions: As attributes of objects and arrays are modeled as unique functions within
the KeY-system, we need to enforce the uniqueness of such functions within the SMT-integration.
For that purpose we introduce for each pair

g: A0*>A1 X ... XAn,fZ A()*)Al X ... XAn
of unique functions of same signature the following assumption:

Var, .o, @nt [T, 20) #F g(X1, .00, Tn)

Taclets: Based on taclets optional assumptions can be introduced. To that end taclets are
translated into valid formulas still encoding the information of that taclet. For a detailed de-
scription how the translation is implemented we refer to the documentation that can be found in
KEY_FOLDER /doc/smt/Taclet Translation.pdf. In Section [2|it is then described in more detail
how one can choose taclets.

2 Using the SMT-Integration

Table (1] shows the solvers which are supported by KeY. It is highly recommended to use the
versions as stated, because only for those versions the integration is stable. For other versions it
is known that errors can occur because the output of the solvers differs for those versions.



Solver Version Format

73 3.2 SMT?2
Yices 1.0.34 SMT1
CvC3 2.2 SMT1
Simplify 1.5.4 Simplify-Format

Table 1: Supported solvers.

Figure [2| shows both the option dialog and the progress dialog of the SMT-integration. The
former one can be reached by the menu entry Options/SMT Solver. By means of this dialog
the user can customize the SMT-integration of KeY. The latter dialog pops up when solvers are
started and shows the current progress. In the following we explain in more detail how to use
these dialogs.

2.1 The Option Dialog

In this section we explain the single options which can be set for the solvers under Options/SMT
Solvers. Mainly, there are two types of options. The first ones control the behavior of the solvers,
while the second ones control the translation of a KeY formula into the corresponding format.

Controlling the Solvers: Since most of the options are already explained within the options
dialog, we only explain the most important ones, which can be found in the tab General, in order
to give further hints:

e Timeout T: Describes in seconds how long a solver instance may run until KeY interrupts
its execution. Consequently, T' does not state an overall timeout, but only a timeout for
each run of a solver. That means that applying a solver on several goals, for each goal the
same amount of time, namely T, is invested in order to solve the goal.

e Concurrent processes: While applying the SMT-integration of KeY, for each given goal
and each solver exactly one external process is started (instance of a solver). This option
specifies how many of those external processes may run concurrently.

e Check for support when a solver is started: If this option is set, each time a solver is
started first it is checked which version of the solver is used. If the version does not coincide
with one of the recommended versions a warning is presented in the progress dialog. Using
a non recommended version can yield to an exception in the worst case, but it is still
guaranteed that the soundness is not touched.

Further, for each single supported solver there is a tab showing the individual settings of those
solvers:

e Installed: This field shows whether KeY has recognized the solver. To that end KeY checks
whether there exists a corresponding file within the folder specified by the command defined
in the field Command. For example, for the command /home/user/z3/bin/z3 KeY checks
whether there is a file 23 contained in the folder /home/user/z3/bin/. If the command is
changed, then by means of the button Apply the check mechanism can be started.

e Command: The starting command of a solver can be defined by means of an absolute path
or by means of the path variable PATH of the operating system. In the latter case KeY
searches in all folders defined by PATH in order to find the file defined in the command
field.



Settings For Decision Procedures

| %’tmns Store translation to file:
i *
E choose folder
[} sMT-Translation ; - E]
o~ [J Taclet Translation | [] activated
Oz3 = - - 7
[ Vices IProgress dialog remains open after executing solvers. |v| | ? I
[ simplify £ -
| Timeout: 5.0
[ cves gg | |
Concurrent Processes: IS | IZ]
Check for support when a solver is started. II]
No proof has been loaded: those are the default settings. Apply I I Okay | | Cancel

(a) Option dialog.

SMT Interface
Processed 2 of 2 problems.
Z3 CVC3
Goal1 | valid. Ll valid. ILi] el
< DN
l Discard | | Apply
(b) Progress dialog.
Information for CVC3 applied on Goal 1
Translation | Taclets | Solver Output |
(implies ol
(=7b1_67b2_9)
(and
(implies
(=?bl1_6 TRUE_10)
(=?b2_9 TRUE_10))
(implies
(=?b2_9 TRUE_10) |
(=?b1_6 TRUE_10))))))))) 3
notes "Assumptions for sorts - there is at least one object of every sort:" B
assumption
(exists =
an 11 Y

(c) Dialog for detailed information.

Figure 2: Dialogs related to the SMT-integration.

5



e Parameters: Specifies the parameters that are passed to the solver when it is started. As
the default parameters are crucial for the stable execution of the solvers, it is recommended
only to add parameters without removing the default parameters. However, the default
parameters should usually be sufficient for executing the solvers.

e Supported: States whether the solver is supported by KeY, that is, it is of the correct
version. To that end KeY starts the solver and checks for its version. By means of the
button Check for support. the check can be triggered.

SMT-Translation:

e Use explicit type hierarchy. If this option is selected transitive relations in the type
hierarchy are modeled explicitly. For example assume that A is a subtype of B and B is
the subtype of the type C. In general it is sufficient to introduce the following two formulas
as assumptions for modeling the type hierarchy:

Vo : typeOfA(z) — typeOfB(z)
Va: typeOfB(z) — typeOfC(z)

where typeOfX denotes the corresponding type predicate for a type X. However, the experi-
ence shows that some solvers are overwhelmed by the transitive relation Vz: typeOfA(z) —
typeOfC(x) such that they cannot derive it on their own. On that account the translation
can be explicitly enriched by formulas also modeling transitive type relations. For the ex-
ample this means, that the formula Vz: typeOfA(z) — typeOfC(z) is also introduced as
assumption if the option is selected.

As this is done exhaustively, that is, for each transitive relation an assumption is introduced,
for huge type hierarchies this leads to many extra assumptions. In more detail there can
be O(n?) assumptions when n denotes the number of types.

e Instantiate hierarchy assumptions if possible. This option can be used in order to
simplify the type hierarchy and to resolve obvious relations. So far this option applies only
for the null-object null: For all types T1,...,T, that extend the Java type Object the
following assumptions are introduced:

typeOf T (null),. .., typeOf T}, (null)

Future Work: This approach can also be adapted to other constants used within the given
sequent, such that for those constants the type hierarchy is unrolled.

e Use built-in mechanism for uniqueness if possible. As already mentioned, for trans-
lating attributes of objects and arrays correctly we need unique functions. To that end
we introduce special assumptions as described in Section [II However, some of the solvers
(e.g., Z3) offer built-in mechanisms for unique functions, so that those can be used instead
of additional assumptions. If this option is selected, exactly this approach is applied.

e Use uninterpreted multiplication if necessary. Some solvers support only certain
kinds of multiplications. For example the solver Yices supports only multiplications of
type a - b where a or b must be a concrete number. In order to support more complex
multiplications, this option can be activated: If the solver does not support a certain kind



of multiplication, the occurrence of this multiplication is translated into the uninterpreted
function mult. Moreover, the following assumptions are added:

Vo mult(x,0
Vo : mult(0,x
Va: mult(z, 1
Va: mult(l,z) =
VaVy: mult(z,y) = mult(y, x)

VaVyVz: mult(mult(x, y), z) = mult(z, mult(y, 2))
VaVy: mult(z,y) = 0— > (x =0 and y = 0)
VaVy: mult(z,y) =1— > (x=1or y =1)

Note:

1. If this option is not selected, an exception is thrown in the case that an unsupported
multiplication occurs.

2. The translation makes the uninterpreted function mult unique so that there cannot
be any name clashes with functions that are introduced by the user.

e Use integers for too big or too small numbers. Some of the solvers (e.g., Simplify)
do only support numbers of fixed size. In the case that one uses less or greater numbers
than the supported range allows, the solvers abort with an error. In order to circumvent
this restriction this option can be selected:

Numbers that are not supported by the used solver are translated into uninterpreted con-
stants. Furthermore an assumption is added that states that the introduced constant is
greater than the maximum of the supported numbers. Example: Assume that a solver
supports numbers less or equal 10. Then the number 11 is translated into the constant cqq
and the assumption c1; > 10 is introduced.

Taclet Translation: This tab allows the user to select certain taclets that are translated into
valid first-order logic formulas that are passed as assumptions to the external solvers. To that
end the taclets are divided into several categories. It is possible to select either all taclets or a
sub-set of a category.

Further, some of the taclets also contain generic sorts. While translating the taclets, these
generic sorts are instantiated with concrete sorts such that each possible instantiation is created.
Consequently, if the given sequent contains many different sorts it can occur, that there are many
different instantiations for the generic sort. In order to control the number, the user can specify
how many generic sorts a taclet may have at most.

2.2 The Progress Dialog

The progress dialog pops up when a solver is started within the GUI-mode of KeY. It shows the
current progress of the applied external solvers and presents the upcoming results (see Figure.
The dialog is structured by one progress bar showing the overall progress and a table containing
for each goal and each solver exactly one cell: Each cell contains a progress bar and a button
with title 4. While the further one shows the current status of the given solver applied on that
particular goal, the latter one becomes applicable when the solver has been executed on the goal:
It triggers a dialog that shows detailed information (see Figure :



e Translation: This tab contains the SMT-translation of the given sequent that is passed to
the given solver.

e Taclets: If taclets are translated into assumptions, this tab contains the translation of these
taclets.

e Solver Output: While applying a solver on a particular goal, the solver sends messages to
the KeY-system. Those messages are presented within this tab.

The progress dialog also contains the two buttons Discard and Apply. The first one effects that
the dialog is closed losing the results of the solvers, while the second one sets all goals to be
closed for which the solvers could prove that the corresponding sequent is valid.

3 Implementation

In this section we describe the most important design decisions we have made. The SMT-
Integration can be divided into two main parts: While one is responsible for the translation of
a sequent into a SMT-formula, the other treats the execution of the solvers. We therefore have
divided this section in two subsections considering these parts independently.

3.1 Translating a Sequent:

The structure of the classes used for translating a sequent S: I' F A is illustrated in Fig-
ure The idea is that the translation is described on an abstract level by means of the class
AbstractSMTTranslation such that the concrete translation is described by means of its sub-
classes. To that end we assume that S is already given as a formula having the shape:

No— Vv

oel PEA

In order to translate that formal into an representation that is understandable for the solvers,
it is translated by translateProblem into a string representation using the specific format of
the considered solver. The following listing sketches the most important method calls within
translateProblem:

public StringBuffer translateProblem (Term problem ,
SMTSettings settings){

StringBuffer smtProblem = translateTerm (problem ,settings);

List<StringBuffer> assumptions =
createAssumptions (problem ; settings);

builtCompleteText (smtProblem , assumptions , settings );
}

As the name suggest, the method translateTerm translates a term into the corresponding
SMT-format. To that end it makes use of the template method pattern, that is, the abstract class
AbstractSMTTranslation implements the method translateTerm such that some of the called
methods within that method are overridden by the sub-classes of AbstractSMTTranslation.
The following code snippet illustrates the structure of that procedure:



SMTTranslator SMTSettings

+translateProblem(term:Term,settings:SMTSettings) | = = = = —>+useBuiltInUniqueness(): boolean
+useAssumptionsForBigSmallIntegers(): boolean

AbstractSMTTranslator

+buildCompleteText(formula:StringBuffer,
assumptions:Container<StringBuffer>,
settings:SMTSettings): StringBuffer
+translatelLogicalNot(op:StringBuffer): StringBuffer
+translateLogicalAnd(opl:StringBuffer,op2:StringBuffer): StringBuffer
+translate...(): StringBuffer
A

SimplifyTranslator SmtLibTranslator SmtLib2Translator

Figure 3: Class diagram of the most important classes involved in the translation. The list of
methods of the classes is not complete

public StringBuffer translateTerm (Term term, SMTSettings settings){
StringBuffer subTerms [] = new StringBuffer[term.arity ()];

for (int i=0; i
subTerm [ i
}

if (term.op()== Junctor .AND){

return translateLogicalAnd (subTerms[0],subTerms[1]);
telse if(term.op() = Juncter .NOT){

return translateLogicalNot (subTerms[0]);

telse if (...){
}

< term.arity () i++){
] = translateTerm (term.sub(i),settings);

}

After translating the sub-terms recursively, the resulting translations of these sub-terms are
assembled regarding the operator of term. For example, if the given term describes a logical
and, then the abstract method translateLogicalAnd is called in order to assemble the sub-
terms. How the logical and is translated in fact is not specified at this point, but it depends on
the concrete implementation of the sub-classes of AbstractSMTTranslation.

The method call createAssumptions in translateProblem creates the assumptions as de-
scribed in Section |1} To that end for each assumption an own string representation is created.

Finally, the method buildCompleteText is called, which builds the string representation of
the problem that is passed to the external solvers. To that end it assembles the translations of
the given assumptions and the translation of the given sequent. Further, it enriches the problem
representation with settings that control the solvers (e.g., used logic, different strategies). As the
creation of the complete problem representation depends on the considered format, this method
is abstract and must be implemented by its sub-classes.



3.2 Executing External Solvers

Figure[4 shows the class diagram of the classes used for modeling the execution of external solvers
within KeY.

In order to model a concrete solver with its properties we have introduced the interface
SolverType: For each solver (Z3, Yices,...) there is a singleton implementing that interface.
Those singletons mainly encode information about

e the versions that are supported by KeY, and
e the command that is used to start the solver, and
e the parameters that are additionally passed to the solvers.

Further, the method createTranslator allows to create instances of the interface SMTTranslator
by means of the factory pattern, whereas an instance of the appropriate sub-class is returned (e.g.,
while Z3Solver returns an instance of SmtLib2Translator, YicesSolver returns an instance of
SmtLibTranslator).

The method createSolver provides the possibility to create instances of the class SMTSolver
by means of the factory pattern. An object of that class represents a single process of a solver.
Consequently, there can be several instances of that class for the same solver at the same time.
This class also contains an instance of the class SMTResult, which stores the result of that
particular solver. Moreover, the constructor of SMTSolver expects an instance of the class
SMTProblem.

The class SMTProblem encapsulates the problem to be considered, that is, it stores either
a goal, sequent or formula. If it stores a formula then getTerm yields exactly that formula.
Otherwise it creates a formula of shape A per @ = \/we A ¥ based on the given goal or sequent
and returns it. Further, it contains a list that stores instances of the class SMTSolver. Later on,
this list stores the concrete solver instances that have been applied on that problem.

By means of the class SolverLauncher the solvers can be triggered. To that end it contains
the method launch that expects a list problems containing instances of SMTProblem and a
further list solvers containing instances of SolverType. Calling launch leads to the execution
of those solvers on all problems: To that end for each problem P € problems and each solver
S € solvers one instance Ip g of SMTSolver is created and attached to P.

Afterwards, each instance Ip g is applied on the problem to which it is attached. To that end
the method start of Ip g is called: In particular this lead to the translation of P into the proper
format and the execution of an external solver that corresponds to S. In order to communicate
with S while it is executed, a pipe is created between KeY and the solver (see class Pipe). By
means of that pipe it is possible to send commands to the solver and to exert direct influence on
the solver.

After the external process that is related to Ip g has stopped, the result is analyzed and
stored within an instance of SMTResult that is attached to Ips.

4 Case Study

In the case that the considered sequent S is not valid, the translation T'(S) of that sequent is
satisfiable, that is, there is a model that fulfills that formula. This model can then be used
for analyzing why the sequent is not valid. Thus, we desire to obtain models for sequents that
are not valid. Even though the solvers automatically generate those model if possible, it is not
guaranteed that they can always find such a model. If the translation T'(.S) is too complicated,
the solver is overwhelmed and returns the result unkown.

10



SMTSolverResult

VersionChecker outputh
i *
SolverType «instance of SMTSolver belongs to»
+createTranslator(): SMTTranslator +SMTSolver (problem:SMTProblem)
+createSolver(): SMTSolver +start()
+checkForSupport(): boolean 1
Pipe|— —
| communicate
creates anld observes» 1
Z3Solver| |YicesSolver SMTProblem
+getTerm(): Term
1

SolverLauncher

+Llaunch(problems:List<SMTProblem>,solvers:SolverType)

Figure 4: Class diagram of the most important classes involved in the execution of solvers.

On that account we are looking for an approach that simplifies T'(.S) still preserving the
property that we can draw conclusions about S. In this section we describe such an approach
by presenting a case study.

The main idea is that we assume the universe to be finite. In particular we make the as-
sumption that there are only few elements within the universe such that there is a manageable
amount of instantiations of T'(.S) that can be checked automatically. The hope is that even the
restricted universe contains a model proving the satisfiability. Note that this approach only can
be used for analyzing the sequent: It can occur that we find spurious models for T'(S), that is,
the model satisfies T'(S) within the restricted universe, but not within the infinite universe. For
example assume that the considered universe consists of integers. While in the infinite case the
following formula is unsatisfiable, in the finite case it is satisfiable:

davVy: y < x

The approach can therefore only be used in order to obtain hints why the sequent cannot be
proved valid. Figure [5|illustrates how a sequent can be analyzed.

In order describe the universe systematically each variable T'(S) is replaced with a bitvector
referring exactly to one element in the universe. That means, that the elements are numbered by
the bitvectors. In order to restrict the size of those bitvectors we further partition the universe
into different classes:

e 7 = {Contains all heaps.}

e F = {Contains all fields.}

O = {Contains all objects extending the Java-class Object.}

e 7 = {Contains all integers.}

B = {contains all booleans.}

11



\ 4
t] [unsatisfiable]
Analyze sequent by means [sa A - ) )
( of the generated model Apply solver on T(S)J >{ Sequent is valid

N

[unkown]

\ 4

(Make universe finite: T'(SD

\
[sat] f )\ [unsatisfiable/unkown]
A

pply solver on T'(S >{ Result is unknown)
¢ J C

Figure 5: Analyzing a sequent by means of SMT-solvers.

For the different classes we can introduce different sizes for the used bitvectors. For example,
while for B we only need a bitvector of size 1, we need for Z larger bitvectors in order to gain
appropriate results.

Now consider the following exampleﬂ

void sumAndMax(int [] a) {

sum
max
int

/@

(CRCNONORCNcNONONE)

k

0;
0;

loop_invariant

@« /
while (k <= a.length) {
if (max < alk]) {

}

0 <= k & k <= a.length

&& (\forall int i; 0 <=1 && i < k; ali] <= max)

& (k = 0 = max = 0)

&& (k > 0 => (\exists int i; 0 <=1 && 1 < k; max = ali]))
&& sum = (\bsum int i; 0; k; a[i])

&& sum <= k * max;

assignable sum, max;
decreases a.length — k;

max = alk];

sum += alk];
k++;

2The example is based on a problem presented at the VSTTE’10 competition.

12



}

Due to condition k <= a.length the given program is not correct, but it leads to an index-out-
of-bounds exception. On that account KeY cannot prove that program to be sound, but some
branches remain open. For the following we assume that the file

KEY_FOLDER /examples/smt/casestudy/SumAndMaxProof.key

is loaded within KeY: Consider the open goal with number 2395: It occurs after splitting the
proof for checking for an index-out-of-bounds exception such that all updates have already been
resolved. When we apply Z3 on that goal, the solver stops because it exceeds the timeout. In
the following we explain how we can use the translation that is passed to the solver in order to
find a model.

In the file

KEY_FOLDER /examples/smt/casestudy/translation/original. smt

the original translation of that goal is stored (In Section [2| it is explained in more detail how
to excerpt that translation from KeY). In order to introduce a finite universe we replace the
two sorts w and Int with placeholders #BIT_HFEAP, #BIT_FIELD, #BIT_ OBJECT and
#BIT_INT that represent bitvectors. We have stored the result in file

KEY_FOLDER /examples/smt/casestudy/translation/template.smt

For example in line 81 we have replaced the following function declaration

(declare—fun boolean_col__col_select_21
(uuu )u)

with

(declare—fun boolean_col__col_select_21
(#BIT HEAP #BIT_OBJECT #BIT_FIELD ) #BIT_OBJECT )

because by definition of the function select it expects a heap, an object and a field, and returns
an object.

Further, in line 30 we have declared that the function type_of _any_23_24 expects a bitvector
modeling objects. As this bitvector may have a different size to bitvectors modeling integers,
heaps and fields we need to comment out the assumptions in line 223, 231 and 260. These
assumptions describe that integers, fields and heaps are sub-sorts of any, which we do not need
to model necessarily.

By means of the program replace.jar, which is contained in

KEY_FOLDER/examples/smt/casestudy/translation/

we replace these placeholders with concrete values. To that end we execute the program within
that particular folder by means of the following command:

java -jar ./replace.jar ./template.smt . /instantiation.smt

13



The program expects the user to enter the sizes of the different bitvector types. Appropriate
values are:

BIT_INT =3
BIT_HEAP =2
BIT FIELD =4
BIT_ OBJECT =5

Then the program reads the file . /template.smt and replaces all occurrences of the placeholders
with the corresponding values. Further, it translates all numbers into bitvectors of corresponding
size and replaces the operators <, <=, >=, > with buslt, busle, busgt and busge, respectively.
Finally, it stores the result in ./instantiation.smt.

Afterwards, we start Z3 entering the following command in the terminal:

Z8 -in -smt2

The parameters say that we want to start Z3 using the interactive mode such that it expects
the SMT2-format. We then copy the content of instantiation.smt into the terminal and confirm.
After a short period of time the solver returns sat, which means that it has found a model.

The command
(get-value k_0_8)

returns the value for the variable k and the command
(get-value ((length-7 a_2)))

returns the length of the array a. In both cases the same bitvector is returned, that is, we have
detected an index-out-of-bounds error.

14



	Basic Concepts
	Using the SMT-Integration
	The Option Dialog
	The Progress Dialog

	Implementation
	Translating a Sequent:
	Executing External Solvers

	Case Study

