
Using Taclets for the SMT-Integration of KeY

Benjamin Niedermann

2009/2010

1 Introduction

KeY’s mightiness is among other things based on the large library of taclets which belong to the
KeY-System. By means of these taclets KeY is able to show proof obligations containing JavaCard
DL. Otherwise the KeY-System offers the possibility to hand proof obligations over to external
provers like Simplify, Z3 or Yices, to use their specialization in FOL. The external provers and
KeY extend each other in a symbiotic way. To enhance this connection it suggests itself combining
these two concepts more directly by using the taclet library also for the external provers. The idea
is to translate the taclets into FOL and then to pass the translation over to the external provers
as assumptions making concepts used in Key available for the external provers.
The process of passing the taclets over to externals provers is divided into two steps. First the
taclets are translated into a KeY-formula to have a general format. Second the KeY-formula is
translated into a special format used by the external prover. The second part is done by the SMT-
Translation of KeY that is already implemented and applicable.
The main question to be answered is how the taclets could be translated into FOL. One possibility
to achieve this goal is to translate a taclet into its meaning formula [1]. Meaning formulas contain
the logical meaning of the taclet. They were introduced to give the possibility of showing the
correctness of a given taclet.
For our purpose making the taclet library usable for external provers, we will take another di-
rection. Instead of showing that the taclet is correct, we assume that its correctness has already
been shown. We will only use the meaning formula to express the meaning of a taclet in FOL.
The presented translation mechanism of a taclet can in turn be divided into two main steps. First
the taclet is translated into its meaning formula consisting only of a boolean skeleton. In doing so
the formulas and terms of the taclet are assembled to one formula. The second step handles with
the elimination of schema variables in the resulting meaning formula. Of course the success of the
translation depends on the kind of schema variables occurring in the given taclet. It is not possible
to translate every taclet into FOL, e.g. taclets that contain substitutions cannot be translated.
But it transpired that especially taclets making statements about basic rules can be translated.
Until now over 130 taclets are supported successfully.
In section 2 a short introduction to the translation of taclets into first order logic is given. Section
3 describes how to use the translation in KeY, while section 4 describes the implementation of the
taclet translation. Finally, some examples are given for the convenient of the reader.

2 Translation of Taclets into Assumptions

This section describes how taclets can generally be translated into formulas of first order logic.

2.1 Preliminaries

Since this document is addressed to readers who are familiar with the KeY-System and its theo-
retical basics, only necessary definitions for comprehension are adduced. First we should say how
taclets can be described formally. A taclet that is considered in this document has the following

1



shape:

t1{ \assumes(ifSeq) \find(findSeq)
\replacewith(rw1) \add(add1 );
...
\replacewith(rwk) \add(addk) };

and can accordingly be defined as a tuple (findSeq , ifSeq , rw1, . . . , rwk, add1, . . . , addk). The con-
sidered taclets does not contain any patterns of the type \addrule. Theoretically it would be
possible to support \addrule by the translation but for the beginning this pattern is omitted to
reduce the complexity.
To make a connection between taclets and validity we use the known concepts of rules and sequents
[1]. A sequent Γ ` ∆ is derivable in a sound and complete calculus if

∧
Γ→

∨
∆ is valid.

Likewise in [1] we write (Γ ` ∆)∗ :=
∧

Γ →
∨

∆. The union of two sequents is defined by
(Γ1 ⇒ ∆1) ∪ (Γ1 ⇒ ∆1) := Γ1,Γ2 ⇒ ∆1,∆2.
A rule is defined as it is proposed in [2, Definition 3]:

Definition 1. A rule R is a binary relation between the set of all tuples of sequents and the set of
all sequents. If R(〈P1, . . . , Pk〉, C) (k ≥ 0), then the conclusion C is derivable from the premises
P1, . . . , Pk.

Normally we will write a rule as the rule schemata

P1 P2 . . . Pk

C

and we will use the notation to present a taclet t = (findSeq , ifSeq , rw1, . . . , rwk, add1, . . . , addk)
as:

Rt =
rw1 ∪ add1 ∪ ifSeq . . . rwk ∪ addk ∪ ifSeq

findSeq ∪ ifSeq

Consider the following example: The taclet

boolean equal 2{ \find((b1 = TRUE ↔ b2 = TRUE )) \inSequentState
\replacewith(b1 = b2) };

becomes the rule schemata

Rt =
b1

.= b2
b1

.= TRUE ↔ b2
.= TRUE

To be able to talk about the soundness of a rule Rt and its corresponding taclet t we define:

Definition 2. A rule R is sound, if for each tuple (P1, . . . , Pk, Q) ∈ R the following implication
holds:

if P1, . . . , Pk are valid then Q is valid.

Taclets consist among other things of schema variables that must be instantiated while applying
a taclet. Formally we introduce a map ι from term schema variables to concrete terms to describe
such an instantiation. The instantiation ι is continued to arbitrary schema terms and formulas
such the following equation holds:

ι(op(t1, . . . , tn)) =

{
ι(op) if n = 0 and op is schema variable
op(ι(t1), ..., ι(tn)) otherwise

For the formal definition see [2, Definition 13]. Obviously an instantiation ι is a homomorphism.

2



2.2 Translation of Taclets - Basic Structure

This section deals with the general translation of a taclet to a formula of first order logic. Although
there are many different concepts within taclets like generic sorts, program schema variables or
substitution, all of these taclets can be reduced to the same logical structure.

Theorem 1. Every taclet t = (findSeq , ifSeq , rw1, . . . , rwk, add1, . . . , addk) can be translated into
a formula

M(t) = ι(
k∧

i=1

(rw∗i ∨ add∗i ∨ ifSeq∗)→ (findSeq∗ ∨ ifSeq∗)),

so that the taclet t is sound if the the formula M(t) is valid for all instantiations ι.

Proof. A taclet t = (findSeq , ifSeq , rw1, . . . , rwk, add1, . . . , addk) is sound by definition if and only
if its corresponding rule Rt is sound. Let (P1, . . . , Pk, Q) be a arbitrary tuple in Rt where Pi =
ι(rwi ∪ addi ∪ ifSeq) and Q = ι(findSeq ∪ ifSeq), then Rt is sound if and only if the following
implication holds:

P1, . . . , Pk are valid then Q is valid. (1)

A single sequent Pi (1 ≤ i ≤ k) is valid if (Pi)∗ is valid. This means since the deduction theorem
the implication holds if

P ∗1 ∧ . . . ∧ P ∗k → Q∗ (2)

is valid.

P ∗1 ∧ . . . ∧ P ∗k → Q∗ =
k∧

i=1

ι(rwi ∪ addi ∪ ifSeq)∗ → ι(findSeq ∪ ifSeq)∗ (3)

Now we have to pull out the ι over the propositional operators. The fact that ι is a homomorphism
allows us to proceed this step in both directions and leads us therefore to the equivalent formula:

ι(
k∧

i=1

(rwi ∪ addi ∪ ifSeq)∗ → (findSeq ∪ ifSeq)∗) (4)

It is easy to see that (P ∪Q)∗ ≡ (P ∗ ∨Q∗). Thus we get the following equivalent formula:

ι(
k∧

i=1

((rw∗i ∨ add∗i ∨ ifSeq∗)→ (findSeq∗ ∨ ifSeq∗)) (5)

After deriving the basic formula we must consider on the one hand how to translate sequents
and on the other hand how to deal with missing expressions. A sequent Γ ` ∆ is translated into∧

Γ →
∨

∆. If a sequent is missing the corresponding translation is false. The only exception is
a missing rewrite sequent rwi. In this case we use the translation of the find sequent findSeq
instead of the translation of the rewrite sequent rwi.
Most of the taclets have schema variables, therefore this problem is discussed in general at this
point. For more detailed information see 4.2. Let t be a taclet and M(t) the meaning formula
of t, containing the schema variable SV . The KeY System distinguishes, amongst other things,
between 3 different types as follows:

1. term schema variables: The schema variable can be translated into a universal quantified
logical variable of the same sort as SV has.

2. formula schema variables are not supported yet.

3



3. program schema variables: Program schema variables could be translated in the same way
as term schema variables, but in many taclets the program schema variables are attended by
attribute terms, that are instantiated with concrete values by the translation (see 4.2.4). To
reduce the complexity of the resulting formula the same is done to program schema variables.
Consequently the translation can be generally described as an instantiation of these schema
variables with concrete values. At first sight this approach does not seem feasible because
the number of the high number of possible instantiations, but it turned out that the external
provers can handle this in many cases. For detailed information and a discussion see 4.2.4
and 4.2.6.

2.3 Rewriting Taclets

Rewriting taclets have the same shape as the taclets introduced in 2.1 with the difference that
the find-Pattern can be only a formula or term:

t2{ \assumes(assum) \find(find)
\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

The idea for the translation is to re-use the meaning formula (1) by reducing the taclet to a
non-rewriting taclet. The detailed reduction can be found in [1, page 234, section 4.5.3]. The re-
sult are two meaning formulas:

Type of find translation
term

∧k
i=1(find .= rwi → add∗i )→ assum∗

formula
∧k

i=1((find↔ rwi)→ add∗i )→ assum∗

2.4 Correctness

The derivation of the meaning formula shows that if the meaning formula is valid, then the
corresponding taclet is sound. The opposite direction that would be necessary for our purposes is
not true in general. The reason is that we have to use the deduction theorem to obtain the formula
(2) from the sentence (1). Consider this example: Assume that P is the sequent ` p(c) and Q is the
sequent ` ∀x.p(x) where c is a constant and p a predicate, then we obtain the following statements
by applying P and Q to (1) respectively (2):

If p(c) is valid then ∀x.p(x) is valid. (6)

p(c)→ ∀x.p(x) (7)

Obvious (6) is a valid statement because p(c) is not a true expression in every FOL-model. On
the other hand (7) is not valid. This arises the problem that we cannot use the meaning formulas
for every taclet. To motivate why we can use nevertheless the meaning formulas to achieve our
goals we have to consider the reason why they were introduced: The idea was to design a formula
that on the one hand encodes the meaning of a taclet and on the other hand is valid for as many
taclets as possible. Therefore the probability that we can show the validness of a meaning formula
of a concrete taclet should not be underestimated. Consequently the idea is to show for every
supported taclet that its corresponding meaning formula is valid. Because the taclet is translated
into a KeY formula first it is obvious using KeY to show the validness. The KeY System offers the
user the possibility to save the resulting assumptions to a KeY problem file that can be proven
afterwards. Remark: Until now it has never occurred that the resulting KeY problem file cannot
be proved, i.d. there have not been any wrong translations of taclets.

4



3 Using the Taclet Translation in KeY

This sections describes briefly how to use the taclet translation within the KeY system.

3.1 Options

The settings dialog for the taclet translation (”Options|Decision Procedures”) offers several options
to change the behavior of the taclet translation:

1. ’Taclets|Selection’: In this menu the user can select the taclets that should be translated into
assumptions. This selection influences the behavior of the used external provers significantly.
If the user chooses too many taclets the external prover can be overwhelmed, therefore the
user should nearly know which taclets are necessary for closing the proof. The recommended
approach is to start the external prover with different taclet selections.

2. ’Taclets’: In this tab the user can determine the number of different generic sorts that are
allowed within a taclet. Most of the taclet contain two or less different generic sorts. You
should use a minimum of different generic sorts! The actual number you have to choose
depends on the taclets that you want to translate.
Furthermore you can store the assumptions made of the selected taclets to a problem file of
KeY. This options offer the user the possibility to prove the assumptions with KeY.

4 Implementation

This section describes the structure of the implementation.

4.1 Structure

The process of passing the taclets over to external provers is divided into two steps. First the
taclets will be translated into KeY-formula to have a general format. Second the KeY-formula will
be translated into a special format of a external prover that is used. The second part is done by
the SMT-Translation that is yet implemented and applicable. To achieve this the class structure
in figure 4.1 is implemented. Only important classes are shown.

Abbildung 1: class diagram

• Class UsedTaclets: Within this class the taclets are encoded that are supported by the
taclet translation. If you want to add further taclets change this class. Beware that you only
add taclets that can be translated correctly by the translation mechanism. The user is not

5



allowed to change the list of supported taclets while runtime to ensure the correctness of
KeY. The correctness of KeY should not depend on the user.

• Interface TacletSetTranslation: Interface to the SMT-Translation. Classes that implement
this interface are used to translate a set of taclets.

• Class DefaultTacletSetTranslation: Implements the interface TacletSetTranslation. This
class translates sequentially the given taclets by means of TacletTranslator.

• Interface TacletTranslator: Classes that implement this interface are used to translate a
single taclet into a FOL-formula. The classes should be stateless.

• Class AbstractTacletTranslator: This class implements the interface TacletTranslator and
provides the translation pipeline (4.2). Subclasses can override methods of this class to
change the single functionality of the pipeline. AbstractTacletTranslator make use of the
classesAttributeTranslator, ProgramSV Translator andGenericTranslator to source func-
tionality out. Furthermore AbstractTacletTranslator contains static methods that are used
by different classes.

• Class FindTacletTranslator: Extends AbstractTacletTranslation and translates the basic
structure of a given taclet.

• Class GenericTranslator: Translates the generic sorts within a taclet, by instantiating them
with concrete sorts that are collected from the current sequent.

• Class AttributeTranslator: Translates program schema variables that refer to attribute
terms.

4.2 The Translation Pipeline

The translation of a taclet is fragmented into several steps. The description of this steps is geared
to the current implementation of the taclet translation and explains how the special concepts like
generic sorts, schema variables and attribute operators are translated.

4.2.1 Check the Taclet.

First of all the taclet is checked, this means the procedure decomposes the given taclet and analysis
its basic structure and conditions:

Supported variable conditions: Supported operators:
TypeComparisionCondition,
TypeCondition,
AbstractOrInterfaceType,
ArrayComponentTypeCondition

Junctor, Equality, Quantifier,
RigidFunction, IfThenElse,
TermSV , FormulaSV ,
V ariableSV , MetaNextToCreate,
NonRigidHeapDependentFunction,
AttributeOp, MetaCreated,
ProgramSV , ArrayOp

4.2.2 Generate the Basic Structure of the Taclet.

For generating the basic structure see 2.2.

4.2.3 Exchange Schema Variables for Logic Variables.

The resulting term is decomposed recursively. Every term schema variable is replaced by a free
and unique logical variable. In this case unique means that schema variables that are equal are
nevertheless replaced by the same variable but different schema variables not.

6



4.2.4 Replace Attribute Terms.

Some taclets make a statement about the relationship between an object and its attributes where
the object and its attributes are only named by schema variables.
Example:

only object are referenced {
\assumes(obj.〈created〉 .= TRUE , inReachableState `)
\find(obj.attribute)
\varcond(\isReference(\typeof(attribute)))
\add(obj.attribute.〈created〉 .= TRUE ∨ obj.attribute .= null `)}

If you want to translate such a taclet t into a first order logic formula you cannot do so without
knowing the context that belongs to the current sequent that should be proofed. At least you
need to know which Java classes are involved in the current proof obligation. The simplest but not
very efficient way would be the following: For every Java class C that belongs to the current proof
obligation instantiate t with all possibilities that can be derived from C in respect of t. Assume
for example that we want to proof the sequent:

S : inReachableState ∧ o@C.〈created〉 .= TRUE ` o.a.〈created〉 .= TRUE

Further the only Java class that belongs to this proof obligation is C with the attributes a and b
that are of reference types. The translation would be:

1. inReachableState ∧ created(obj) =̇ TRUE )→
∀ T obj.((created(a(obj)) =̇ TRUE ∨ a(obj) .= null)

2. inReachableState ∧ created(obj) =̇ TRUE )→
∀ T obj.((created(b(obj)) =̇ TRUE ∨ b(obj) .= null)

Since we cannot quantify over attributes we must instantiate every taclet with all possible com-
binations of attributes that belong to the used classes. Accordingly we get two instantiations in
this example. Obviously to show the validity of sequent S we only need the first instantiation
while the second instantiation is unnecessary. Consequently the idea is that we do not need every
attribute of C for the instantiation, but that the attributes that occur in S could suffice. There
is no guarantee that every sequent can be proved by only considering attributes that occur in S,
but this is a good trade off between efficiency and power of the taclet translation. Therefore the
implementation collects first all attribute terms of S and then uses this set for the instantiation
of t.
Especially this part of the translation can easily become a bottle neck: Not only the number of
attributes that belongs to a single class and the number of classes increase the number of possible
instantiation of a taclet t, but also the kind of statement that t makes can have a huge influence
on the possible number of instantiations. There are taclets whose translation depend not only
on one but on two or more Java classes, e.g. taclets that make statements about the inheritance
relationship between Java classes. For this case no optimization was implemented so far.
To reduce the complexity of the formula the quantifiers are omitted by the same idea: Instead
of quantifying over all possible objects, concrete objects are collected from the sequent S for the
instantiation (See the third example in 5).
As it can been seen in the example above, the implementation must respect the variable conditions
that belong to the taclet t.

4.2.5 Quantify over all Logical Variables

To get general statements all logical variables must be universally quantified. This is done in this
step.

7



4.2.6 Instantiate Generic Sorts

Many taclets make use of generic sorts. Likewise attribute terms generic sorts cannot be handled
by SMT-provers directly. The approach to solve this problem is the same as described in 4.2.4.
First all concrete sorts contained in the given sequent S are collected. Then the terms given by
4.2.5 are instantiated with these sorts. While doing so the translation procedure must handle with
variable conditions that restrict the instantiation of generic sorts.
Example:

disjoint repositories {
\find(G ::< get > (idx0) = H ::< get > (idx1))
\varcond(\not\same(G,H))
\replacewith(false)}

The example make use of the two generic sorts G and H. As described by \varcond the two
generic sorts must not be instantiated by the same concrete sort.
Beware of the fact that the number of resulting terms increases exponentially according to the
number of different generic sorts. Consequently there are n2 (n: number of concrete sorts) possible
instantiations for the taclet disjoint repositories. The good news is that there is only a fistful of
taclets that contain more than two different generic sorts. None of the supported taclets has more
than four different generic sorts.

4.2.7 Last check

The last check is done to guarantee that there is not a taclet that contains schema variables that
have not been instantiated yet. This happens for example when the considered proofs state does
not contain enough attribute terms or concrete sorts that match.

5 Examples

1. example:

schema variables:
\term boolean b1
\term boolean b2

taclet:
boolean equal 2{ \find((b1

.= TRUE ↔ b2 = TRUE )) \inSequentState
\replacewith(b1

.= b2) };

translation:
boolean equal 2∗ ≡ ∀ boolean b′1. ∀ boolean b′2.(((b′1

.= TRUE ↔ b′2
.= TRUE )↔ b′1

.= b′2)
→ false→ false)

2. example:

8



schema variables:
\term boolean b

taclet:
apply eq boolean rigid { \assumes(` b .= TRUE )\find(b) \inSequentState

\replacewith(FALSE ) };

translation:
apply eq boolean rigid∗ ≡ ∀ boolean b′.(((b′ .= FALSE )→ false)→ (` b .= TRUE )∗)
(` b .= TRUE )∗ = b′

.= true

3. example
Assume that we want to show the following sequent S:

inReachableState ∧ o@C.〈created〉 .= TRUE ` o.a.〈created〉 .= TRUE

To prove this sequent the KeY-System would apply the following taclet:

only object are referenced {
\assumes(obj.〈created〉 .= TRUE , inReachableState `)
\find(obj.attribute)
\varcond(\isReference(\typeof(attribute)))
\add(obj.attribute.〈created〉 .= TRUE ∨ obj.attribute .= null `)}

where obj and attribute are program schema variables and C is the following Java class:

c l a s s C{
Object a ;
Object b ;

}

The translation of this taclet is:

(inReachableState ∧ created(o) .= TRUE )→ (created(a(o)) .= TRUE ∨ a(o) .= null)

Literatur

[1] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[2] Bernhard Beckert and Martin Giese and Elmar Habermalz and Reiner Hähnle and Andreas
Roth and Philipp Rümmer and Steffen Schlager. Taclets: A New Paradigm for Constructing
Interactive Theorem Provers. Number 9–2004. 2004.

9


