
Automating Regression Verification

Dennis Felsing†
dennis.felsing@student.kit.edu

Sarah Grebing†
sarah.grebing@kit.edu

Vladimir Klebanov†
klebanov@kit.edu

Philipp Rümmer‡
philipp.ruemmer@it.uu.se

Mattias Ulbrich†
ulbrich@kit.edu

†Karlsruhe Institute of Technology, Germany
‡Uppsala University, Sweden

ABSTRACT
Regression verification is an approach complementing re-
gression testing with formal verification. The goal is to for-
mally prove that two versions of a program behave either
equally or differently in a precisely specified way. In this
paper, we present a novel automatic approach for regres-
sion verification that reduces the equivalence of two related
imperative integer programs to Horn constraints over un-
interpreted predicates. Subsequently, state-of-the-art SMT
solvers are used to solve the constraints. We have imple-
mented the approach, and our experiments show non-trivial
integer programs that can now be proved equivalent without
further user input.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; D.2.4
[Software Engineering]: Software/Program Verification

Keywords
Regression verification; program equivalence; invariant gen-
eration; formal methods

1. INTRODUCTION
One of the main concerns during software evolution is to

prevent the introduction of unwanted behavior, commonly
known as regressions, when implementing new features, fix-
ing defects, or during optimization. Undetected regressions
can have severe consequences and incur high cost, in par-
ticular in late stages of development, or in software that
is already deployed. Currently, the main quality assurance
measure during software evolution is regression testing [3].
Regression testing uses a carefully crafted test suite to check
that a modified version of a program is equivalent to the
original one in relevant behavioral aspects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASE’14, September 15–19, 2014, Västerås, Sweden
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642987.

Regression verification is a complementary approach that
attempts to achieve the same goals as regression testing with
techniques from formal verification. This means establishing
a formal proof of equivalence of two program versions. In
its basic form, we are trying to prove that the two versions
produce the same output for all inputs. In more sophisti-
cated scenarios, we want to verify that the two versions are
equivalent only on some inputs (conditional equivalence) or
differ in a formally specified way (relational equivalence).

Regression verification is not intended to replace test-
ing, as testing has unique capabilities. Tests can, for in-
stance, validate non-functional aspects of software (e.g., per-
formance) or its interactions with the underlying software
(and even hardware) layers. On the other hand, regression
verification—especially if automated—is an attractive ad-
ditional instrument of software quality assurance. If suc-
cessful, it offers guaranteed coverage, while not requiring
additional expenses to develop and maintain a test suite.

At the same time, regression verification offers a more fa-
vorable pragmatics than standard verification of functional
properties of individual programs. For regression verifica-
tion, one does not need to write and maintain complex spec-
ifications (which can be a significant bottleneck in the veri-
fication process). Furthermore, given two program versions
that are both complex but similar to each other, much less
effort is required to prove their equivalence than to prove
that they satisfy an—also complex—functional specification.
The effort for proving equivalence mainly depends on the dif-
ference between the programs and not on their overall size
and complexity. Regression verification can exploit the fact
that modifications are often local and only affect a small
portion of a program.

A number of approaches and tools for regression verifica-
tion exist already (see Section 6), but the majority of them
are not automatic and require the user to supply induc-
tive invariants (e.g., [9, 22, 32]). We present an approach
and a tool for automatic regression verification of imper-
ative programs with integer variables. We use automatic
invariant generation techniques to infer sufficiently strong
coupling predicates1 between programs—and thus prove be-
havior equivalence.

Our approach is targeted towards showing equivalence of
programs with complex arithmetic and control flow. This

1A coupling predicate is an inductive two-program invariant
that relates the two programs throughout their execution.
We are typically interested in coupling predicates that imply
result equality upon termination of both programs.

P1

P2

wlp

VCG

VC

Z3

SMT

Eldarica 3
7
�

Figure 1: Architecture of our approach

kind of programs is poorly supported by existing automatic
approaches, as these either require static (i.e., known at com-
pile time) control flow [31], employ coarse abstractions on
program computations [17,31], or are overly restrictive (e.g.,
require small bounds on loops or that equivalent unbounded
loops have equivalent bodies) [26].

Our method works well whenever sufficiently“simple”cou-
pling predicates over linear arithmetic exist that prove pro-
gram equivalence. This is often the case in practice, as we
argue throughout the paper. In particular, in Section 5 we
demonstrate the effectiveness of our technique using a col-
lection of small but non-trivial benchmarks.

In detail, the contributions of this paper are:

• A method for automatic regression verification for pro-
grams employing complex arithmetic on integer vari-
ables

• As part of the above, a method for computing efficient
verification conditions for program equivalence

• A tool implementing the approach (available at
http://formal.iti.kit.edu/improve/).

The architecture of our approach is shown in Figure 1 and
can be described as follows: a frontend translates the two
programs into efficient logical verification conditions (VC)
for program equivalence using the algorithm presented in
Section 3. The translation is completely automatic; the user
does not have to supply the coupling predicates, loop invari-
ants, or function summaries. Instead, placeholders for these
entities are inserted into the VC formulas. The produced VC
are in Horn normal form and are passed to an SMT solver for
Horn constraints (such as Z3 [23] or Eldarica [27]), as pre-
sented in Section 4. The solver tries to find a solution for the
placeholders that would make the VC true. If the solver suc-
ceeds in finding a solution and thus inferring, among other
things, a coupling predicate, the programs are equivalent.
Alternatively, the solver may show that no solution exists
(i.e., disprove equivalence) or time out.

1.1 Illustration

Example 1. Consider the function g1 in Figure 2(a).2

The function recursively computes the sum of integers in the
interval [1..n] (also known as the n-th triangular number).
The function g2 in Figure 2(b) computes essentially the same
result, but it has been optimized to employ tail recursion.

2Our approach requires that the two programs which we
prove equivalent have disjoint variable and function names.
To distinguish equally named identifiers from the two pro-
grams, we add subscripts indicating the program to which
they belong. We may also concurrently use the original iden-
tifiers without a subscript as long as the relation is clear from
the context.

int g(int n) {
int r = 0;

if (n <= 0) {
r = 0;

} else {
r = g(n-1) + n;

}
return r;

}

int g(int n, int s) {
int r = 0;

if (n <= 0) {
r = s;

} else {
r = g(n-1, n+s);

}
return r;

}

(a) basic version P 1 (b) optimized version P 2

Figure 2: Computing the n-th triangular number

The advantage of tail-recursive functions is that they can
be executed without growing the stack. To enable this opti-
mization, an accumulator parameter s has been added to the
signature of g2 for collecting and passing on intermediate re-
sults. As another consequence, g1 performs summation from
the end of the interval, while g2 starts from the beginning.

It is our goal to prove automatically using program veri-
fication technology that the two functions are equivalent in
the sense that

g1(n) = g2(n,0) for any n. (1)

The conceptually simplest way to achieve this goal is to infer
and compare a complete logical specification of each func-

tion, such as g1(n) = n(n+1)
2

for n > 0, and 0 otherwise.
Yet, such a “brute-force” approach is clearly infeasible at
the moment or in the foreseeable future.

Instead, we exploit the similarities between program ver-
sions and attempt to infer coupling predicates, i.e., a rel-
ative specification that only states how the executions of
two versions relate to each other, but not what they com-
pute in general. Of course, we demand that the coupling
predicate is such that the two executions terminate in the
same state, but in general, it will be a stronger assertion.
To deal with unbounded recursion and loops, the predicate
must be inductive: assuming that it holds at a key point of
the computation (i.e., loop iteration, recursive call) should
be sufficient to show that it also holds at the next key point.
Conveniently, the complexity of such a relative specification
is often proportional to the difference between the two pro-
gram versions and not the program size.

Suppose, we want to calculate g(5). We call g1(5) resp.
g2(5,0). The functions descend recursively, proceeding to
compute g1(4)+5 resp. g2(4,5), and then g1(3)+4+5 resp.
g2(3,9). At this point, one could suspect that at every
recursion step

g1(n) + s = g2(n,s) . (2)

A simple induction proof can establish that our suspicion
is indeed correct: assuming this relation for the callees in
both functions allows us to prove the relation for the callers.
Thus, the formula (2) is a valid coupling predicate. Fortu-
nately, (2) also implies the desired equivalence for the top-
level call (1) with s = 0. Indeed, if one knows or guesses the
formula (2), then the fact that it is a valid coupling predicate
and that it implies equivalence can be proved automatically
with existing verification technology (cf., e.g., [9, 22,32]).

In this paper, we show that it is actually in many cases
possible to automatically infer coupling predicates that im-
ply program equivalence. The Horn encoding of the VCs for

the illustrative example is discussed in Section 4, and can be
solved by Eldarica [27] in roughly three seconds, inferring
the coupling predicate n1 = n2 → r1 + s2 = r2, where n1

is the argument of g1, n2 and s2 are the arguments of g2,
and ri denote the respective return values. We note that the
coupling predicate is linear even though the mathematical
function computed by the two programs is non-linear.

2. PROGRAM EQUIVALENCE
This section introduces the considered programming lan-

guage, and formalizes our notion of program equivalence in
terms of Dijkstra’s weakest preconditions [12]. The resulting
program equivalence condition can be reduced to a program-
free verification condition by applying reduction rules for
weakest preconditions. A set of reduction rules optimized
for equivalence proofs is defined in Section 3. Automation
of the procedure is discussed in Section 4.

The Programming Language.
We consider deterministic imperative programs with un-

bounded integer variables (mathematical integers), written
in ANSI C notation. Determinism means that program runs
starting in the same state also terminate in the same state.
Sequential real-world programs are deterministic, provided
that all variables are initialized before they are used (which
can be efficiently checked by a compiler). Furthermore, we
require that all considered programs terminate for all inputs;
this can be checked with one of the existing termination
checkers for imperative programs, such as, e.g., [14, 15]. To
simplify presentation, we assume that every function ends
with a return statement, and that return is always the last
statement in a function. Further program features, for in-
stance heap or arrays, are discussed in Section 5.2, but not
the main focus of the present paper.

We also assume that all programs have a distinguished
function that is the entry point of the program. The entry
point of the programs in our examples below is clear from
the context.

Syntactical Conventions.
For reasons of presentation, we require that the programs

P1 and P2 checked for equivalence have disjoint sets of vari-
ables. To distinguish equally named variables from the two
programs, we add subscripts indicating the program version
(1 or 2) to which they belong. We also establish the syn-
tactic convention that program inputs (i.e., formal function
parameters) are designated as ī1 resp. ī2, returned result
variables as r1 resp. r2, and the vectors of all variables oc-
curring in the programs as x̄1 resp. x̄2.

Background: Weakest Precondition Calculus.
Our reasoning about programs is formulated in terms of

Dijkstra’s weakest precondition calculus [12]. The weakest
precondition predicate wp(P,ϕ) denotes the weakest condi-
tion that needs to hold before an execution of statement
list3 P such that the execution terminates and the postcon-
dition ϕ holds in the final state. The termination require-
ment is often considered optional. Relinquishing it, one ob-
tains the weakest liberal precondition predicate wlp(P,ϕ),

3To simplify presentation, we will use the terms “statement
list” and “program” interchangeably. The exact relation will
be clear from the context.

which only demands that ϕ holds after the execution of P
if P terminates. Thus, the formula pre → wlp(P, post)
has the same intuitive meaning as the Floyd-Hoare triple
{pre}P{post}.

A weakest precondition calculus is a set of rules which al-
low the resolution of wp/wlp predicates into formulas in pure
first-order logic. Figure 3(a) lists a calculus for the wlp pred-
icate for the considered programming language; the rules
are standard, except that, for technical reasons, our calcu-
lus performs rewriting from the beginning of the statement
list to its end, while a presentation with rules operating in
the opposite direction is more customary. Reduction in for-
ward direction is more convenient, however, for identifying
structural similarity between the programs whose equiva-
lence is verified. The calculus in Figure 3(a) is complete in
the sense that every wlp-expression can be reduced to a pure
first-order formula.

The rules (5), (6) and (7) allow the direct resolution of
assignments, conditional statements and return statements
(remember that the latter may only appear at the end of
function bodies). The rule (8) for while loops is parametrized
by a loop invariant I(x̄1), a formula which needs to hold be-
fore the loop and must be preserved by the loop body under
assumption of the loop condition. Likewise, the rule (9)
for a (recursive) invocation b = f1(ā) of the function f1 is
parametrized by a function summary predicate Sf1(ā, b) that
relates the arguments ā to the result value assigned to vari-
able b. When the function summary Sf1 is used as abstrac-
tion for the behavior of f1, the correctness of the summary
has to be justified globally by an additional verification con-
dition

wlp(P1, Sf1(̄i1, r1)) , (3)

in which P1 is the function body of f1.
The invariant rule (8) and the recursive invocation rule (9)

may approximate loop or function behavior depending on
the chosen invariant or function summary. In this case, the
formula derived by applying the rules will still be a correct
precondition, but not necessarily the weakest one. Even
when approximating, finding suitable loop invariants and
summaries is in general a difficult task.

Stating Program Equivalence.
We consider two statement lists (usually the bodies of two

functions) P1 and P2 equivalent, in writing

pre → P1 ' P2 ,

when they behave equally (return the same value) for all
inputs for which the precondition pre holds. We lift this
notion to whole programs, by defining it as equivalence of the
two program entry functions. The precondition pre, which
can speak about variables from both P1 and P2, makes our
notion of equivalence conditional. It is also possible to relax
the equality between results to some other specified relation,
yielding relational equivalence.

These notions can be formalized using the wlp predicate
introduced above. Since we assume that P1 and P2 have
disjoint vocabulary, their code can simply be combined se-
quentially. We define:

pre → P1 ' P2 :=

∀ī1, ī2. (̄i1 = ī2 ∧ pre → wlp(P1 ; P2, r1 = r2)) . (4)

This kind of construction is known as self-composition [10,
11]. The weakest liberal precondition predicate has been
used in this definition, since we deliberately abstract from
termination issues in this paper.

3. EFFICIENT CONDITIONS
FOR PROGRAM EQUIVALENCE

At this point, one could in theory directly resolve the wlp
predicate in (4) by applying the rules from Figure 3(a) to
obtain a first-order verification condition for equivalence of
P1 and P2. However, the sequential composition of the two
programs would require that they be analyzed individually
without exploiting structural similarities between them.

Instead, we devise additional rules for the wlp predicate
for the case that the program code given as the first argu-
ment is composed of two pieces with disjoint vocabulary.
The disjointness allows us to use more rules than would be
sound otherwise, as the statements with disjoint data cannot
interfere with each other. The additional rules make use of
two forms of coupling predicates that relate the states of the
compared programs: mutual invariants C, which describe
reachable states of two loops in the respective programs, it-
erating in a synchronized manner, and mutual function sum-
maries R that express the relative behavior of two functions
in the programs. The result of applying the new rules is
a much more efficient first-order verification condition for
equivalence.

In Figure 3(b), we present the additional rules. To make
the composition of two programs with disjoint vocabulary
explicit, we use ;; instead of ; as separator between them.
Semantically, both are equivalent. In particular, it is always
sound to replace P1 ;;P2 with P1 ;P2. Conversely, it is sound
to replace P1 ; P2 with P1 ;; P2 whenever P1 and P2 have
disjoint vocabulary.

Rule (10) allows us to swap the two programs, thus en-
abling resolution of statements from both programs in an
alternating fashion. The rule is sound since the statements
of the two programs cannot possibly interfere; they have no
common variables to refer to.

Together with the rules (5) and (6) of Figure 3(a), the
swap rule allows us to resolve all statements but loops or
recursion. These are the difficult cases since they require
finding a suitable loop invariant or a function summary. The
next two sections therefore introduce efficient rules for pair-
wise loops and function calls. The wlp calculus can isolate
the relevant loop pairs from within their programs even if
they are embedded into enclosing conditionals or loops.

Proposition 1 (Soundness and Completeness).
Let Φ be a purely first-order formula derived from the con-
dition wlp(P1 ;; P2, ϕ) by rules from Figure 3(a) and (b). If
the program P1 ; P2 is started in a state satisfying the pre-
condition Φ, and terminates, then ϕ holds in its final state.
Furthermore, it is possible to choose suitable mutual invari-
ants and summaries such that the derived formula is the
weakest such precondition.

We give a justification for the validity of the proposition
in the following.

3.1 While loops
We first consider equivalence of programs with loops, but

without recursive function invocations. The loop rule for

program equivalence is different from the rules discussed so
far in that it talks about both programs at the same time
and actually connects the two:

wlp(while(ψ1) B1 ; P1 ;; while(ψ2) B2 ; P2, ϕ) ;

C(x̄1, x̄2) ∧ ∀x̄1, x̄2.
(

(C(x̄1, x̄2) ∧ ψ1 ∧ ψ2 → wlp(B1 ;;B2, C(x̄1, x̄2)) ∧
(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ψ2 → wlp(B2, C(x̄1, x̄2))) ∧
(C(x̄1, x̄2) ∧ ψ1 ∧ ¬ψ2 → wlp(B1, C(x̄1, x̄2))) ∧
(C(x̄1, x̄2) ∧ ¬ψ1 ∧ ¬ψ2 → wlp(P1 ;; P2, ψ))

)
.

The rule is parametrized by the mutual loop invariant
C(x̄1, x̄2), which is part of the coupling predicate that we
are interested in. Unlike the invariant rule for a single pro-
gram (8), which has two cases (loop condition holds or does
not hold), this rule has four possible evaluations of the two
loop conditions to consider.

For the justification of this rule, let us look at a particular
reordering of the statements in the two loops. The central
idea behind the rearrangement is that the two loops can be
subject to a loop fusion resulting in the following program
equivalence:

while(ψ1) B1 ;; while(ψ2) B2 '
while (ψ1||ψ2) { if(ψ1) B1 ; if(ψ2) B2 } .

(14)

Why is the single loop equivalent to the sequential execution
of the separate loops? Running the two loops sequentially
results in running the sequence of statements

(B1, B1, . . . , B1︸ ︷︷ ︸
n times

, B2, B2, . . . , B2︸ ︷︷ ︸
m times

) ,

in which the first loop body B1 is repeated n times followed
by m repetitions of the second body B2. Let w.l.o.g. the
second loop be executed more often than the first in this
schematic example (i.e., m > n). Due to disjoint vocabu-
lary, loop body executions from different programs may be
swapped. The run may hence be rearranged to

(B1, B2, B1, B2, . . . , B1, B2︸ ︷︷ ︸
n times

, B2, . . . , B2︸ ︷︷ ︸
m− n times

) (15)

without changing the semantics. One can make out m it-
erations now, of which the first n execute both loop bod-
ies B1, B2, while the remaining m − n rounds only execute
the second loop body B2. The sequence (15) is a run for the
fused loop from (14). It is the additional if-statements that
ensure that bodies are only executed as often as they would
be executed in a sequential execution. The disjunction in
the guard ensures that the fused loop is iterated precisely as
often as the maximum iterations of the individual loops.

Applying the traditional while wlp rule (8) to the fused
loop from (14), has the same effect as applying the two-
program rule (12). Since the traditional wlp calculus is
sound and complete, our extension thus inherits these prop-
erties.

Mutual loop invariants are simpler than full functional
invariants if the two programs are related. To show equiva-
lence between a while loop and (a copy of) itself, for instance,
the simple invariant x̄1 = x̄2 is sufficient regardless of what
the loop computes.

wlp(x = t ; P, ϕ) ; let x = t in wlp(P, ϕ) (5)

wlp(if(ψ) T else E ; P, ϕ) ; if ψ then wlp(T ; P, ϕ) else wlp(E ; P, ϕ) (6)

wlp(return r, ϕ) ; ϕ (7)

wlp(while(ψ) B ; P, ϕ) ; I(x̄1) ∧ ∀x̄1.((I(x̄1) ∧ ψ → wlp(B, I(x̄1)))

∧ (I(x̄1) ∧ ¬ψ → wlp(P, ϕ)))

(8)

wlp(r = f1(t̄) ; P, ϕ) ; ∀r. Sf1(t̄, s)→ wlp(P, ϕ) (9)

(a) Conventional wlp calculus rules

wlp(P1 ;; P2, ϕ) ; wlp(P2 ;; P1, ϕ) (10)

wlp(return r ;; P2, ϕ) ; wlp(P2, ϕ) (11)

wlp(while(ψ1) B1 ; P1 ;; while(ψ2) B2 ; P2, ϕ) ; C(x̄1, x̄2) (12)

∧ ∀x̄1, x̄2.
(

(C(x̄1, x̄2) ∧ ψ1 ∧ ψ2 → wlp(B1 ;;B2, C(x̄1, x̄2))

∧ (C(x̄1, x̄2) ∧ ¬ψ1 ∧ ψ2 → wlp(B2, C(x̄1, x̄2)))

∧ (C(x̄1, x̄2) ∧ ψ1 ∧ ¬ψ2 → wlp(B1, C(x̄1, x̄2)))

∧ (C(x̄1, x̄2) ∧ ¬ψ1 ∧ ¬ψ2 → wlp(P1 ;; P2, ψ))
)

wlp(r1 = f1(t̄1) ; P1 ;; r2 = f2(t̄2) ; P2, ϕ) ; ∀r1, r2. Rf1/f2(t̄1, r1, t̄2, r2)→ wlp(P1 ;; P2, ϕ) (13)

(b) Additional wlp calculus rules for independent programs

Figure 3: Weakest precondition calculus

3.2 Recursion
We now consider programs that have (recursive) function

calls but no loops. Recursive calls of related functions in
both programs can be abstracted by a single predicate, a
mutual function summary (a term originated in [21]), that
describes the relation between the arguments and result val-
ues of both invocations simultaneously and in relation to one
another. The calculus rule to handle simultaneous function
invocations is

wlp(r1 = f1(t̄1) ; P1 ;; r2 = f2(t̄2) ; P2, ϕ) ;

∀r1, r2. Rf1/f2(t̄1, r1, t̄2, r2)→ wlp(P1 ;; P2, ϕ) .

The rule is parametrized by the mutual function summary
Rf1/f2(t̄1, r1, t̄2, r2).

Abstracting function invocations with a mutual summary
requires a (global) justification that the summary is a faith-
ful abstraction, and we need to add the proof obligation

∀ī1, ī2. wlp(P1 ;; P2, Rf1/f2(̄i1, r1, ī2, r2)) (16)

to the verification conditions of equivalence. Here, P1 and
P2 are the statement lists from the function bodies of the
invoked functions f1 and f2.

The justification of rule (13) is as follows. Due to the
disjointness of the program vocabulary, the statements in
the rule can be reordered:

r1=f1(t̄1) ; P1 ;; r2=f2(t̄2) ; P2 '
r1=f1(t̄1) ; r2=f2(t̄2) ; P1 ; P2 .

Condition (16) guarantees that Rf1/f2(t̄1, r1, t̄2, r2) is a faith-
ful abstraction of P1 ;P2. Just as in the single-program case,
it is thus sound to overapproximate the two recursive invo-
cations with the mutual function summary.

As with mutual loop invariants, mutual function sum-
maries are simpler than individual function summaries if

the two programs are related. In case a recursive function is
verified against (a copy of) itself, the simple mutual function
summary ī1 = ī2 → r1 = r2 can be used.

Note that the same mutual summaryRf1/f2(t̄1, r1, t̄2, r2) is
used for every occurrence of the pair f1/f2 of functions; this
is in contrast to the coupling invariant rule (12) for loops,
where it is possible to choose different mutual invariants
C(x̄1, x̄2) for every application. While our calculus could in
principle be extended to support multiple mutual summaries
per f1/f2 pair, the use of only a single such summary mini-
mizes the number of required proof obligations (16).

4. AUTOMATIC EQUIVALENCE PROOFS
The application of the wlp rules in Figure 3 requires knowl-

edge of specific predicates, namely loop invariants I (̄i1, x̄1)
in rule (8), mutual loop invariants C(x̄1, x̄2) in (12), function
summaries Sf1(t̄, s) in (9), and mutual function summaries
Rf1/f2(t̄1, r1, t̄2, r2) in (13). Together, those formulas repre-
sent the coupling predicate that witnesses program equiva-
lence. Derivation of summaries and invariants is in general a
complicated process and can require creativity and manual
intervention. Thanks to the specialized wlp-rules for pro-
gram equivalence, however, it is often possible to carry out
equivalence proofs with comparatively simple predicates. In
Section 1.1, for instance, it is possible to show the equiva-
lence of programs computing non-linear functions with the
help of just linear predicates; our experiments (Section 5)
show that such simple predicates are sufficient for a wide
range of realistic cases from regression verification.

We leverage recent methods for solving fixed-point con-
straints in order to compute required predicates fully au-
tomatically [19, 23, 27]. Such methods are in principle in-
complete, but they are effective for deriving predicates in
practical cases arising from equivalence proofs.

Recursive Horn Clauses.
In order to derive invariants and coupling predicates, ver-

ification conditions are represented in form of Horn con-
straints over (uninterpreted) relation symbols, including I,
C, Sf1, Rf, and then solved with the help of model checking
techniques like predicate abstraction and Craig interpola-
tion. More generally, we fix a set R of uninterpreted fixed-
arity relation symbols, and consider Horn clauses of the form
H ← ϕ ∧B1 ∧ · · · ∧Bn, where:

• ϕ is a constraint over variables occurring in the clause;
in our experiments, ϕ is always a formula in quantifier-
free Presburger arithmetic, but extension to other the-
ories (e.g., arrays) is possible;

• each Bi is an application p(t1, . . . , tk) of a relation sym-
bol p ∈ R to first-order terms;

• H is similarly either an application p(t1, . . . , tk) of a
symbol p ∈ R to first-order terms, or false.

H is called the head of the clause, ϕ ∧ B1 ∧ · · · ∧ Bn the
body. In case ϕ = true, we usually leave out ϕ and just write
H ← B1 ∧ · · · ∧ Bn. First-order variables in a clause are
considered implicitly universally quantified; relation sym-
bols represent set-theoretic relations over the universe of a
first-order semantic structure. A set of Horn clauses HC
over predicates R is called solvable if there is an interpreta-
tion of the predicates R as set-theoretic relations such the
universal closure of every clause h ∈ HC holds.

Example 2 (Example 1 continued). Figure 4 shows
the equivalence VC for the programs from the illustration
example (Figure 2) as Horn clauses. Here, R is the un-
interpreted predicate symbol (placeholder) for the coupling
predicate (mutual function summary) of g1 and g2 intro-
duced by application of rule (13). The uninterpreted predi-
cates Sg1 and Sg2 are the function summaries for the respec-
tive individual functions and are introduced by (9). Clauses
with head false result from equivalence proof obligations (4),
whereas the clauses with a head different from false are due
to justification conditions (3) and (16).

Verification Conditions as Horn Clauses.
For the encoding of verification conditions as Horn clauses,

we assume that the set R contains symbols that can act as
summaries for individual functions and function pairs (of
appropriate arity), as well as relation symbols I1, I2, I3, . . .
and C1, C2, C3, . . . to represent loop invariants:

R = {Sf, Rf1/f2 | f, f1, f2 functions} ∪
{I1, I2, I3, . . . , C1, C2, C3, . . .} .

We then consider the conjunction of the equivalence state-
ment pre → P1 ' P2 and the correctness of the summaries
for all functions reachable from P1 or P2:

∀ī1, ī2. (̄i1 = ī2 ∧ pre → wlp(P1 ;; P2, r1 = r2))

∧
∧
f a

function

∀īf. wlp(Pf, Sf(̄if, rf))

∧
∧
f1,f2

functions

∀īf1, īf2. wlp(Pf1 ;; Pf2, Rf1/f2(̄if1, rf1, īf2, rf2)) .

(17)

false ← n1 6 0 ∧ n2 6 0 ∧
n1 = n2 ∧ s2 = 0 ∧ 0 6= s2

false ←
n1 > 0 ∧ n2 > 0 ∧
n1 = n2 ∧ s2 = 0 ∧ r1 6= r2 ∧
R(n1 − 1, r1, n2 − 1, n2 + s2, r2)

false ←
n1 > 0 ∧ n2 6 0 ∧
n1 = n2 ∧ s2 = 0 ∧ r1 6= s2 ∧
Sg1(n2 − 1, r1)

false ←
n1 6 0 ∧ n2 > 0 ∧
n1 = n2 ∧ s2 = 0 ∧ 0 6= r2 ∧
Sg2(n2 − 1, n2 + s2, r2)

Sg1(n1, 0) ← n1 6 0

Sg1(n1, r1 + n1) ← n1 > 0 ∧ Sg2(n1 − 1, r1)

Sg2(n2, s2, s2) ← n2 6 0

Sg2(n2, s2, r2) ← n2 > 0 ∧ Sg2(n2 − 1, n2 + s2, r2)

R(n1, 0, n2, s2, s2) ← n1 6 0 ∧ n2 6 0

R(n1, r1+n1, n2, s2, r2) ← n1 > 0 ∧ n2 > 0 ∧
R(n1 − 1, r1, n2 − 1, n2 + s2, r2)

Figure 4: Program equivalence VC as Horn clauses

Intuitively, any valuation of the relation symbols R that
makes (17) valid is a witness for the equivalence of P1 and P2,
assuming pre holds initially.

The next step is the elimination of the wlp transformer
from (17), by means of exhaustive application of the rules
in Figure 3. When applying (9) or (13) to replace function
calls f, f1, f2 with the corresponding summary, the relation
symbol Sf or Rf1/f2 is inserted in the formula; similarly,
when applying the loop rules (8) or (12), a fresh relation
symbol Ik or Ck is introduced. We explain one possible
strategy for applying the reduction rules below. Once appli-
cation of the wlp rules to (17) has terminated, Horn clauses
can be extracted from the reduct VC (a pure first-order for-
mula), thanks to the following lemma:

Lemma 1. Suppose VC resulted from exhaustive applica-
tion of rules in Figure 3 to (17). Then the clause normal
form VCH of VC is Horn.

The clause normal form VCH is derived by first distributing
negations (negation normal form) in VC , then pulling out
all universal quantifiers ∀ (prenex normal form), and finally
transforming to conjunctive normal form [20]. To see that
the clause normal form VCH is Horn, observe that (17) only
contains wlp in positive positions, and that any two positive
occurrences of relation symbols are separated by a conjunc-
tion; both properties are preserved by application of wlp
rules, and entail that each clause in the clause normal form
contains at most one positive relation symbol.

Reduction Strategy.
In some situations, it can happen that more than one rule

in Figure 3 is applicable to a wlp expression, so that in prin-
ciple more than one verification condition VC can be derived
from (17). Different VCs can represent different ways to
match up loops and corresponding function calls in the two
programs checked for equivalence, and can therefore make

the subsequent solving of the Horn constraints VCH more
or less difficult.

At the moment, we resolve such choice points using a
greedy application strategy:

1. as long as possible, rules (5), (6), (7), (11) to elimi-
nate assignments, conditionals, and return statements
of the individual programs, possibly together with (10)
to change the order of programs.

2. if no further rules from point 1 are applicable, try to
use (12) or (13) for synchronous handling of loops or
function calls; if this succeeds, go back to 1.

3. if no further rules from point 1 or 2 are applicable, use
(8) or (9) to eliminate single loops or function calls; if
this succeeds, go back to 1.

This strategy matches up loops and function calls in the or-
der in which they occur in the considered programs. The
strategy produces good results in our experiments, but can
clearly be refined to take more sophisticated similarity mea-
sures into account. Further discussion is given in Section 5.

Solving Horn Clauses.
A number of algorithms exist to solve the Horn clauses

VCH , including predicate abstraction [19, 27] and property-
directed reachability (PDR, also known as IC3) implemented
in Z3 [23]. The procedures attempt to construct a sym-
bolic solution of VCH in a decidable logic, for instance in
(quantifier-free) Presburger arithmetic; such a solution maps
every n-ary relation symbol in R to a symbolic predicate
over n variables.

Example 3 (Example 2 continued). For the clauses
in Example 2, the following predicates are found for the un-
interpreted symbols:

R(n1, r1, n2, s2, r2) 7→ (n1 = n2 → r1 + s2 = r2)

Sg1(n1, r1) 7→ true

Sg2(n2, s2, r2) 7→ true

which is the solution already discussed in Section 1.1. The
function summaries Sg1 and Sg2 can be trivially chosen to be
true since the Horn clauses in which they occur in the body
are already valid without them.

In general, if it terminates, a Horn solver will produce one of
two possible results: (i) a symbolic solution of the processed
Horn clauses, or (ii) a concrete counterexample tree that
witnesses that no solution of the Horn clauses exists. The
leaves in a counterexample tree correspond to entry clauses
(clauses without relation symbols in the body), the root of
the tree to an assertion clause with head false; the counterex-
ample shows that every attempt to satisfy the Horn clauses
has to lead to one of the assertion clauses being violated.4

Through additional bookkeeping and labeling, counterexam-
ples can be translated back to runs of the programs P1, P2

that are checked for equivalence; the counterexample spec-
ifies the path taken through each program, as well as the
values of all program variables.

4Due to reasons of computability, sets of Horn clauses ex-
ist for which neither (i) nor (ii) can be returned: those are
clauses that are solvable in a set-theoretic sense, but no so-
lution can be expressed in the decidable language used for
predicates. In such cases, usually non-termination occurs.

We summarize by stating the correctness of our proce-
dure. It is important to note that the procedure is correct
independently of the order in which wlp rules are applied
for translating (17) to VCH ; in particular, counterexam-
ples are always genuine, and point to an actual case of non-
equivalence. Good strategies when applying the rules can,
however, improve efficiency and prevent non-termination of
the Horn solver.

Theorem 1 (Correctness). If a Horn solver applied
to VCH terminates, then one of the following holds:

• a solution is found for VCH , and in this case the con-
sidered equivalence pre → P1 ' P2 holds;

• a counterexample is found, and the programs are not
equivalent.

5. IMPLEMENTATION AND
EXPERIMENTS

Implementation.
We have implemented our approach for a language close

to a subset of ANSI C in a tool named Rêve. Program data
is limited to local variables and function parameters of type
int, which is interpreted as unbounded (i.e., mathemati-
cal) integers. Bounded integers can be simulated by instru-
menting programs with modulo operations, at the cost of in-
creased reasoning complexity. Supported control structures
are if-then-else and while statements, function calls and re-
turns. For simplicity, the return statement must always be
the last statement of a function and must return a local
variable. Recursive function calls may not occur within the
conditions of if or while statements. Checking conditional
and relational equivalence of programs is supported.

The tool (i.e., the wlp calculus) is implemented in Stan-
dard ML. As Horn constraint solvers we used Z3 (unstable
branch as of 2013-11-27) and Eldarica (as of 2014-04-16).

Experiments.
We have evaluated the effectiveness and performance of

our tool on a collection of benchmarks. The benchmarks
vary in size from 16–53 lines of code (for both programs to-
gether) and are available with the tool at the URL given in
the introduction. Benchmark results are summarized in Ta-
ble 1. We also give results from the only automatic tool that
is directly comparable to ours (due to scope, cf. Section 6),
the Regression Verification Tool (RVT) by Strichman and
Godlin [17].

The programs in the first group in Table 1 are recursive,
while the ones in the second group contain loops. Bench-
marks where the two programs were not equivalent are in
the third group, and their names end with a bang (!). All
other benchmarks contain equivalent programs; the 7 out-
come is in this case a false negative.

Benchmarks limit1 to limit3 were given by Strichman
and Godlin as beyond the limits of their approach to regres-
sion verification. Benchmarks barthe2-big and barthe2-

big2 embed the benchmark barthe2 into a larger program
that is syntactically identical in both versions. We could not
prove equivalent the ackermann benchmark, as the result of
a recursive function call is used as the argument to another
recursive function call. Furthermore, we originally could not

prove the limit1 benchmark, as two steps of the first loop
are equivalent to one step of the second loop, an issue that
we solve in the next section and illustrate with the larger
digits10 benchmark.

The triangular-mod benchmark corresponds to the il-
lustrating example instrumented with modulo operations to
simulate integer overflow.

As far as we are aware, RVT does not supply additional
information to assist the user in case of a failed proof at-
tempt. While, in theory, the model checker underlying RVT
produces a counterexample, such a counterexample can be
spurious due to the fixed abstraction employed. The El-
darica solver that we use, in contrast, returns a genuine
counterexample for many failed proofs (cf. Section 4). We
found these counterexamples useful in diagnosing problems
with the programs, even though we currently do not trans-
late these counterexamples into source code terms.

5.1 An Example for Loop Equivalence
We consider a real-world example from [1]. The pro-

gram P1 in Figure 5(a) computes the number of digits in
the decimal expansion of n through a series of integer divi-
sions by 10. The program P2 in Figure 5(c) computes the
same result but (asymptotically) about seven times faster.
This speedup is accomplished by reducing the strength of
operations. The loop has been unrolled four times5 and the
majority of divisions have been replaced by pure compar-
isons.

Unsurprisingly, P1 and P2 cannot be proved equivalent
automatically. To do so, the tool would in the least need to
figure out the (very complex) relation between one iteration
of the loop in P1 and four iterations of the same loop. To
overcome this barrier, the software engineer needs to supply
to the tool the knowledge that an unrolling transformation
took place. At the moment, we achieve this transfer by man-
ually carrying out the unrolling on P1 and producing the
intermediate program P ′1 shown in Figure 5(b). We then
prove automatically that P ′1 and P2 are equivalent. Note
that P ′1 is still significantly different from P2, as unrolling
is not the only optimization that has been performed orig-
inally. The program P ′1 still performs four times as many
divisions as P2. The if-conditions directly follow the divi-
sions and depend on them, which slows the program down,
while the four if-conditions in P2 are all dependent on the
same division result.

After 11.3 seconds, Rêve with Eldarica succeeds in prov-
ing equivalence with the following automatically inferred
coupling predicate:

(b2 = 1 ∧ r1 = r2 ∧ 10n1 6 n2 ∧ n2 6 10n1 + 9)

∨ (b2 = 0 ∧ r1 = v2 ∧ n2 > 10n1 ∧ n1 6 0) .

Here, n1 and r1 denote the variables of P ′1, and n2, b2, r2
the variables of P2. The variable b2 indicates whether the
loop will (b2 = 1) or will not (b2 = 0) be executed once
more. The coupling predicate is hence a disjunction over
these two cases: While the loop is iterated, r1 and r2 hold
the same value and n1 is one division by 10 ahead of n2, i.e.,
n1 = n2 div 10. Exactly this fact is expressed by the linear
constraint 10n1 6 n2 ∧ n2 6 10n1 + 9. When the loop of P2

5Loop unrolling is a simple transformation, in which the
loop body is replicated within the loop and guarded by the
loop guard. This transformation preserves the semantics of
the program.

Table 1: Benchmark results

Run time (seconds)

Benchmark LOC R
V

T

R
ê
v
e
+

Z
3

R
ê
v
e
+

E
l
d
a
r
ic
a

Source

Recursion

ackermann 30 0.8 − − [17]
mccarthy91 22 1.1 1.8 1.7 [17]
limit1 22 7 − − [17]
limit2 22 7 − 5.2 [17]
limit3 24 7 − 4.5 [17]
add-horn 26 7 − 4.3
triangular 23 7 − 3.3
triangular-mod 53 7 − −
inlining 20 7 − 5.7

Loops

simple-loop 16 0.8 0.1 5.3
loop 22 7 − 2.8
loop2 22 7 − 3.2
loop3 28 7 − 5.4
loop4 22 7 − 27.4
loop5 22 7 − 26.4
while-if 22 7 − 3.8
digits10 32 7 − 11.3 [1]
barthe 28 7 − 4.8 [9]
barthe2 22 0.5 10.2 3.9 [9]
barthe2-big 32 1.6 − 5.7
barthe2-big2 42 1.7 − 8.0
bug15 26 1.0 0.1 1.8 [17]
nested-while 28 1.5 − 5.2 [17]

Not equivalent

ackermann! 30 7 0.1 4.9
limit1! 22 7 0.0 1.4
limit2! 25 7 0.7 10.9
add-horn! 28 7 0.1 1.9
triangular-mod! 49 7 0.5 28.1
inlining! 20 7 0.1 2.7
loop5! 22 7 0.0 2.2
barthe! 31 7 1.8 21.9
nested-while! 28 7 0.1 5.2

LOC=non-empty, non-comment lines of code in both pro-
grams together. Dash (−) denotes timeout at 600 sec-
onds, cross (7) denotes that the tool terminates but can-
not prove equivalence. All times have been measured on a
2.5 GHz Intel Core2 Quad machine, using only one core.

has finished, its negated loop guard n1 6 0 holds and the
final results are stored in r1 and v2.

5.2 Discussion
Our method exploits structural similarities between the

compared programs, and can generally be expected to per-
form well when applied to programs with a high degree of
similarity. In other situations, for instance when exchanging
complete algorithms (e.g., replacing a bubble sort procedure

int f(int n) {
int r = 1;
n = n/10;

while (n > 0) {
r++;
n = n / 10;

}
return r;

}

int f(int n) {
int r = 1;
n = n/10;

while (n > 0) {
r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;
if (n > 0) {

r++;
n = n / 10;

}
}

}
}
return r;

}

int f(int n) {
int r = 1;
int b = 1;
int v = -1;

while (b != 0) {
if (n< 10) { v = r; b = 0; }
else if (n< 100) { v = r+1; b = 0; }
else if (n< 1000) { v = r+2; b = 0; }
else if (n <10000) { v = r+3; b = 0; }
else {

n = n / 10000;
r = result + 4;

}
}
return v;

}

(a) basic version P1 (b) intermediate version P ′1 (c) optimized version P2

The programs P1 and P2 shown above are reformulations of those given in [1] in order to comply with the input requirements
of our tool. The do-while and for loops have been replaced by while loops. The boolean flag b and the temporary storage
variable v in P2 have been introduced to avoid premature returns from the function.

Figure 5: Computing the number of digits (digits10) from [1]

with quicksort), or when changing the design of a system in
a fundamental way, it is less likely that an equivalence proof
can be found automatically.

Our method works well whenever sufficiently“simple”cou-
pling predicates exist that prove program equivalence. This
applies in a number of important cases:

• as a baseline, our procedure will always be able to
prove that a program is equivalent to itself, by ap-
plying the greedy reduction strategy from Section 4,
and choosing the coupling predicates x̄1 = x̄2.

• the procedure is also complete when applied to two
programs with the same control structure and locally
equivalent (though not necessarily identical) loop and
function bodies. In this case, the same coupling predi-
cates x̄1 = x̄2 can be chosen for the entry points of the
bodies.

• the procedure is complete for program transformations
that correspond to affine mappings of program states;
this includes renaming or exchanging variables, shift-
ing the value of a variable by a constant offset, or
changing the sign of some variable.

We currently do not consider equivalence of programs that
use arrays or heap data structures, but we intend to work
on lifting these limitations in the future. It is, for instance,
known that assertions about arrays can be encoded in Horn
clauses [13]. An approach to regression verification of pro-
grams with tree-shaped heap structures can be presumably
adapted from [17].

6. RELATED WORK
Research on proving program equivalence is driven by a

variety of applications, including security verification, com-

piler optimizations, backwards compatibility and refactor-
ing, cryptographic algorithms, hardware design, and general-
purpose regression verification.

Godlin and Strichman [16–18] present an approach for
automatic general-purpose regression verification. In this
approach, loops in the programs are transformed to recur-
sive procedures, and matching recursive calls are abstracted
by an uninterpreted function. The equivalence of functions
(that no longer contain recursion) is then checked by the
CBMC model checker. In our vernacular, the approach can
be described as an attempt to verify equivalence with the
fixed coupling predicate ī1 = ī2 → r1 = r2 for every re-
lated pair of recursive functions. This abstraction imposes
the limitation that function calls with different arguments or
a different number of recursions of two matching recursive
functions are not supported. The technique is implemented
in the RVT tool and supports a subset of ANSI C.

Verdoolaege et al. [30,31] have developed an automatic ap-
proach to prove equivalence of static affine programs. The
approach focuses on programs with array-manipulating for

loops and can automatically deal with complex loop trans-
formations such as loop interchange, reversal, skewing, tiling,
and others. It is implemented in the isa tool for the static
affine subset of ANSI C. Initially, dataflow analysis is ap-
plied to build a dependence graph abstraction of each of the
two programs. Then the equivalence hypothesis for outputs
is propagated through the graphs towards the inputs, in a
manner resembling verification condition generation. The
static control flow requirement means that the control flow
of the program must be known already at compile time.
Furthermore, arithmetical operations in the loop/function
bodies are abstracted. Addition is, e.g., replaced by an as-
sociative and commutative uninterpreted function. The ab-
straction prevents proving equivalence of such programs as
x=x+1; x=x+1; and x=x+2;.

Barthe et al. [9] present a calculus for reasoning about
relations between programs that is based on pure program
transformation. The calculus offers rules to merge two pro-
grams into a single product program. The merging process
is guided by the user and facilitates proving relational prop-
erties with the help of existing verification technology (the
Why tool, in that particular case). The verification process
still requires user-supplied annotations though.

Almeida et al. [2] have verified the correctness of the Open-
SSL implementation of the RC4 cipher w.r.t. a reference im-
plementation. The authors use self-composition of programs
together with interactively verified lemmas about particular
program transformations and optimizations.

Sinz and Post [26] prove equivalence of two AES cipher
implementations by means of bounded model checking. The
approach unrolls resp. inlines all loops and recursive calls.
Such reasoning is only feasible if the program admits small
bounds on loops or depth of recursive calls. In the case of
AES, a complete unrolling of the main loop was not possible,
so the authors proved equivalence of loop bodies instead.

Backes et al. [5] propose to leverage slicing and impact
analysis to improve scalability of regression verification. The
idea is to subject both program versions to a dependency
analysis, then to remove the code present in both versions
that has no data or control dependencies on the introduced
change, and to apply an existing technique (e.g., bounded
symbolic execution) to show equivalence of the reduced pro-
grams.

Mutual function summaries have been prominently put
forth by Hawblitzel et al. in [21] and later developed in [22].
The concept is implemented in the equivalence checker Sym-
Diff [25], where the user supplies the mutual summary, and
the verification conditions are discharged by Boogie. Loops
are encoded as recursion. The BCVerifier tool for proving
backwards compatibility of Java class libraries by Welsch
and Poetzsch-Heffter [32] has a similar pragmatics.

Banerjee and Naumann [6, 7] study equivalence of Java-
like programs from the perspective of data encapsulation.
They develop a programming discipline and a static analysis
ensuring that changes in an object-oriented data structure’s
implementation are confined and cannot affect its clients
other than through specified public methods.

Several relational program logics (e.g., [4,8,28]) have been
developed for security applications. Proving in these logics
requires user-supplied inductive invariants.

A large body of work also exists on equivalence checking
of hardware logic circuits; see [24] for an overview. The ap-
proaches fall into two major groups. One group builds the
product machine of two circuits and exhaustively traverses
the state space to ensure that the corresponding outputs of
the two circuits are identical in every reachable state. The
other group recognizes that the incremental nature of the
design process induces structural similarity between the cir-
cuit variants under verification and tries to exploit them.
The techniques to do so include functional equivalences, in-
direct implications, permissible functions, and others (see
e.g., [29]).

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel approach that

uses invariant inference techniques to automatically con-
duct regression proofs for two imperative integer programs.
To this end, the two versions of the program are trans-

formed into Horn clauses over uninterpreted predicate sym-
bols. These clauses constrain equivalence-witnessing cou-
pling predicates that connect the states of the two programs
at key points. A Horn constraint solver is used to find a
solution for the coupling predicates, if one exists.

The approach is implemented and we have demonstrated
its effectiveness on integer programs with non-trivial arith-
metic and control flow. Future work includes an extension
to programs with arrays and heap structures, as well as de-
velopment of more fine-grained coupling schemes.

Acknowledgments
This work was partially supported by the German National
Science Foundation (DFG) under the IMPROVE project
within the priority program SPP 1593 “Design For Future –
Managed Software Evolution”, and by the Swedish Research
Council.

8. REFERENCES
[1] A. Alexandrescu. Three optimization tips for C++,

2012. A presentation at Facebook NYC. Available at
www.facebook.com/notes/facebook-engineering/

three-optimization-tips-for-c/

10151361643253920.

[2] J. Almeida, M. Barbosa, J. Sousa Pinto, and
B. Vieira. Verifying cryptographic software correctness
with respect to reference implementations. In
M. Alpuente, B. Cook, and C. Joubert, editors,
Formal Methods for Industrial Critical Systems,
volume 5825 of Lecture Notes in Computer Science,
pages 37–52. Springer Berlin / Heidelberg, 2009.

[3] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, New York, NY,
USA, first edition, 2008.

[4] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic
for information flow in object-oriented programs. In
Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’06, pages 91–102, New
York, NY, USA, 2006. ACM.

[5] J. Backes, S. Person, N. Rungta, and O. Tkachuk.
Regression verification using impact summaries. In
E. Bartocci and C. Ramakrishnan, editors, Model
Checking Software, volume 7976 of Lecture Notes in
Computer Science, pages 99–116. Springer Berlin
Heidelberg, 2013.

[6] A. Banerjee and D. A. Naumann. Ownership
confinement ensures representation independence for
object-oriented programs. J. ACM, 52(6):894–960,
2005.

[7] A. Banerjee and D. A. Naumann. State based
ownership, reentrance, and encapsulation. In
Proceedings of the 19th European Conference on
Object-Oriented Programming, ECOOP’05, pages
387–411, Berlin, Heidelberg, 2005. Springer-Verlag.

[8] G. Barthe, J. Crespo, B. Grégoire, C. Kunz, and
S. Zanella Béguelin. Computer-aided cryptographic
proofs. In L. Beringer and A. Felty, editors, Interactive
Theorem Proving, volume 7406 of Lecture Notes in
Computer Science, pages 11–27. Springer Berlin
Heidelberg, 2012.

[9] G. Barthe, J. M. Crespo, and C. Kunz. Relational
verification using product programs. In M. Butler and
W. Schulte, editors, Proceedings, 17th International
Symposium on Formal Methods (FM), volume 6664 of
Lecture Notes in Computer Science, pages 200–214.
Springer, 2011.

[10] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure
information flow by self-composition. In 17th IEEE
Computer Security Foundations Workshop, CSFW-17,
Pacific Grove, CA, USA, pages 100–114. IEEE
Computer Society, 2004.

[11] A. Darvas, R. Hähnle, and D. Sands. A theorem
proving approach to analysis of secure information
flow. In Proceedings of the Second International
Conference on Security in Pervasive Computing,
SPC’05, pages 193–209, Berlin, Heidelberg, 2005.
Springer-Verlag.

[12] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications
of the ACM, 18(8):453–457, Aug. 1975.

[13] I. Dillig, T. Dillig, and A. Aiken. Fluid updates:
Beyond strong vs. weak updates. In Proceedings of the
19th European Conference on Programming Languages
and Systems, ESOP’10, pages 246–266, Berlin,
Heidelberg, 2010. Springer-Verlag.

[14] S. Falke, D. Kapur, and C. Sinz. Termination analysis
of imperative programs using bitvector arithmetic. In
Proceedings of the 4th International Conference on
Verified Software: Theories, Tools, Experiments
(VSTTE’12), pages 261–277, Berlin, Heidelberg, 2012.
Springer-Verlag.

[15] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Automated termination proofs with AProVE.
In V. van Oostrom, editor, Rewriting Techniques and
Applications, 15th International Conference (RTA
2004), Proceedings, volume 3091 of Lecture Notes in
Computer Science, pages 210–220. Springer, 2004.

[16] B. Godlin and O. Strichman. Inference rules for
proving the equivalence of recursive procedures. Acta
Inf., 45(6):403–439, 2008.

[17] B. Godlin and O. Strichman. Regression verification.
In Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pages 466–471. ACM, 2009.

[18] B. Godlin and O. Strichman. Regression verification:
proving the equivalence of similar programs. Software
Testing, Verification and Reliability, 23(3):241–258,
2013.

[19] S. Grebenshchikov, N. P. Lopes, C. Popeea, and
A. Rybalchenko. Synthesizing software verifiers from
proof rules. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 405–416.
ACM, 2012.

[20] J. Harrison. Handbook of Practical Logic and
Automated Reasoning. Cambridge University Press,
2009.

[21] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and
H. Rebêlo. Mutual summaries: Unifying program
comparison techniques. In Proceedings, First
International Workshop on Intermediate Verification
Languages (BOOGIE), 2011. Available at

http://research.microsoft.com/en-us/um/people/

moskal/boogie2011/boogie2011_pg40.pdf.

[22] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and
H. Rebêlo. Towards modularly comparing programs
using automated theorem provers. In M. P. Bonacina,
editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction,
Lake Placid, NY, USA, June 9-14, 2013. Proceedings,
volume 7898 of Lecture Notes in Computer Science,
pages 282–299. Springer, 2013.

[23] K. Hoder and N. Bjørner. Generalized property
directed reachability. In Proceedings of the 15th
International Conference on Theory and Applications
of Satisfiability Testing, SAT’12, pages 157–171,
Berlin, Heidelberg, 2012. Springer-Verlag.

[24] S.-Y. Huang and K.-T. Cheng. Formal Equivalence
Checking and Design DeBugging. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[25] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and
H. Rebêlo. SymDiff: A language-agnostic semantic diff
tool for imperative programs. In Proceedings of the
24th International Conference on Computer Aided
Verification, CAV’12, pages 712–717, Berlin,
Heidelberg, 2012. Springer-Verlag.

[26] H. Post and C. Sinz. Proving functional equivalence of
two AES implementations using bounded model
checking. In Proceedings of the 2009 International
Conference on Software Testing Verification and
Validation, ICST ’09, pages 31–40. IEEE Computer
Society, 2009.

[27] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive
interpolants for Horn-clause verification. In
Proceedings of the 25th International Conference on
Computer Aided Verification, CAV’13, pages 347–363,
Berlin, Heidelberg, 2013. Springer-Verlag.

[28] C. Scheben and P. H. Schmitt. Efficient
self-composition for weakest precondition calculi. In
C. B. Jones, P. Pihlajasaari, and J. Sun, editors,
Proceedings, 19th International Symposium on Formal
Methods (FM), volume 8442 of Lecture Notes in
Computer Science, pages 579–594. Springer, 2014.

[29] C. van Eijk. Sequential equivalence checking based on
structural similarities. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 19(7):814–819, 2000.

[30] S. Verdoolaege, G. Janssens, and M. Bruynooghe.
Equivalence checking of static affine programs using
widening to handle recurrences. ACM Trans. Program.
Lang. Syst., 34(3):11:1–11:35, 2012.

[31] S. Verdoolaege, M. Palkovic, M. Bruynooghe,
G. Janssens, and F. Catthoor. Experience with
widening based equivalence checking in realistic
multimedia systems. J. Electronic Testing,
26(2):279–292, 2010.

[32] Y. Welsch and A. Poetzsch-Heffter. Verifying
backwards compatibility of object-oriented libraries
using Boogie. In Proceedings of the 14th Workshop on
Formal Techniques for Java-like Programs, FTfJP ’12,
pages 35–41. ACM, 2012.

