
SemSlice: Exploiting Relational Verification for
Automatic Program Slicing

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,
Daniel Lentzsch, and Mattias Ulbrich

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,bormer,herda,ulbrich}@kit.edu,

stephan.gocht@student.kit.edu
d.lentzsch@web.de

Abstract. We present SemSlice, a tool which automatically produces
very precise slices for C routines. Slicing is the process of removing
statements from a program such that defined aspects of its behavior are
retained. For producing precise slices, i.e., slices that are close to the min-
imal number of statements, the program’s semantics must be considered.
SemSlice is based on automatic relational regression verification, which
SemSlice uses to select valid slices from a set of candidate slices. We
present several approaches for producing candidates for precise slices.
Evaluation shows that regression verification (based on coupling invariant
inference) is a powerful tool for semantics-aware slicing: precise slices for
typical slicing challenges can be found automatically and fast.

1 Introduction

Program slicing. Program slicing [18] removes statements from a program in
order to reduce its size and complexity while retaining some specified aspects
of its behavior. Slicing techniques (or similar data dependency analyses) are
used to optimize the result of compilers. Slicing is also a powerful tool for
challenges in software engineering such as code comprehension, debugging, and
fault localization, where the user is involved [3]. A recent study [6] shows that
slicing can improve programming skills in novice learners.

The idea behind SemSlice. Traditional slicing techniques use an overapprox-
imation of dependencies in a program and thus produce imprecise, non-minimal
slices. SemSlice goes beyond purely syntactical dependency analysis and takes
the semantics of statements and expressions into account. It can thus produce
much more precise slices than related approaches. SemSlice is fully automatic
and does not require auxiliary annotations (like loop invariants etc.). SemSlice
finds slices by applying regression verification [7], an approach for proving re-
lational properties of programs, to check whether generated slice candidates
are valid slices, i.e., are equivalent to the original program with respect to the
specified slicing criterion. Thus, the process has two steps: (1) The tool gener-
ates a slice candidate, i.e., a sub-program of the original program that is not



necessarily a valid slice for the given criterion. (2) The tool uses the existing
but customized automatic relational verification engine to check whether the
candidate is equivalent to the original program with respect to the criterion. This
process is repeated and combined with syntactical slicing to iteratively refine
obtained slices.

Handling loops. Precise slices are particularly difficult to obtain for programs
with loops. SemSlice provides a higher degree of automation compared to
existing semantics-aware slicing frameworks [1, 11] which are based on inferred
or user-provided functional loop invariants. In the context of slicing, functional
loop invariants have disadvantages: In order to prove that at the location of the
slicing criterion the relevant program variables have the same value, strong loop
invariants are needed (they have to fix unique values for the variables). Moreover,
a loop invariant for the original program needs not be a valid invariant for the
sliced program; a different second invariant may be needed. SemSlice does not
employ functional invariants but operates on relational coupling loop invariants
which formalize the difference between two program variants and thus escape
this dilemma.

Contribution. SemSlice demonstrates the feasibility of using relational ver-
ification to compute precise slices. The advantage of this approach is that the
candidate generation engine does not need to care about the correctness of the
candidates – that is handled by the relational verifier. In addition to the three
heuristics for generating candidates described and evaluated in this paper, Sem-
Slice can easily be extended with others. Thus, SemSlice provides a platform
for relational verification based slicing for the software slicing community.

Structure of this paper. The remainder of this paper is structured as follows.
Section 2 introduces the concepts of program slicing and relational verification.
The implementation of SemSlice is described in Section 3. The different ap-
proaches to generate slice candidates are introduced in Section 4. The paper
is completed by a short evaluation in Section 5, a report on related tools in
Section 6 and a conclusion in Section 7.

2 Background

2.1 Static Backward Slicing

SemSlice performs a variant of static backward slicing (as introduced by
Weiser [18]), in which the slicing criterion—the specification of the behavioral
aspects that must be retained—comprises a set of program variables and a loca-
tion within the program. Statements which have no effect (a) on the value of the
specified program variables at the specified point and (b) on how often the point
is reached may be removed.

Formally, a slice candidate is a variant of the original program where zero or
more statements have been replaced with the side-effect-free skip statement. A

2



1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 x = h;

7 else
8 x = 42;

9 i++;

10 }

11 return x;

12 }

1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 skip;
7 else
8 x = 42;

9 i++;

10 }

11 return x;

12 }

1 int f(int h, int N){

2 int i = 0;

3 int x = 0;

4 while(i < N) {

5 if(i < N - 1)

6 skip;
7 else
8 skip;
9 i++;

10 }

11 return x;

12 }

Figure 1: (a) Original program, (b) Slice with respect to variable x at line 8, (c)
Incorrect slice candidate

slice candidate is considered a valid slice if, given the same input to the slice
candidate and original program, the following two conditions hold:

1. During execution of the slice candidate and the original program, respectively,
the location specified in the slicing criterion is reached for the same number
of times.

2. When the location is reached for the ith time in the original program and for
the ith time in the slice (i ≥ 1), each variable specified in the slicing criterion
has the same value in the original program’s state and in the slice’s state.

Figure 1 shows an example of static backward slicing. The goal is to slice the
C routine in Figure 1a with respect to a slicing criterion, which requires the value
of x at the return statement in line 11 to be preserved. A valid slice for this
criterion is shown in Figure 1b: The assignment in line 6 has been taken from
the program. Instead of removing it, we have replaced it by a synthetic skip
statement without effects to keep the program structure similar to the input
program. This line has no effect on the value of x after the loop as x is always
set to 42 in the last loop iteration. To show that this program is a slice of the
original, an overapproximating syntactical analysis (ignorant of the meaning of
statements) is insufficient. A semantic analysis is required to determine that the
last loop iteration always executes the else-branch. The slicing procedure needs
to reason about loops and path conditions.

2.2 Relational Program Verification

Relational verification is an approach to prove specified relations between two
given programs (or variants of the same program) to be valid. The tool that Sem-
Slice relies on for relational verification is the automatic regression verification
tool LLRêve [12], which takes two programs as input. If it terminates, the tool
has either proved that the programs behave equivalently or it comes up with a
counterexample input showing that the programs’ semantics are different.

LLRêve operates on a generalized version of product programs [2] in which
two programs are combined into one in order to be able to reason simultaneously

3



about corresponding loops in the programs. Thus, the program behavior needs
not be fully encoded into functional loop invariants, but only the relation between
the two behaviors. Relying on relational coupling invariants allows the verification
engine to automatically infer the needed abstractions (loop invariants and function
summaries) in more cases than if functional abstractions are used. As an example,
for proving that the candidate shown in Fig. 1b is a correct slice with respect
to the given slicing criterion, our approach has inferred the following coupling
invariant:

((N1 −N2 + i2 − i1 = 0) ∧ (N1 − i1 ≥ 1))
∨((N1 −N2 + i2 − i1 = 0) ∧ (x1 = x2))

Since our analysis considers two programs, the variable names occuring in
the coupling invariant are annotated with 1 or 2 depending on which program
they belong to. Note that the coupling invariant states that the value of x is the
same in both programs (at the location specified by the slicing criterion).

3 Implementation

SemSlice1 combines the slicing candidate generation with the existing tools clang,
LLRêve, and Eldarica. Its workflow is shown in Figure 2. We implemented
the candidate generation component and adapted LLRêve for checking slices
candidates. The other components are used “of the shelf”. A user-friendly web
interface for SemSlice can be accessed at formal.iti.kit.edu/slicing.

Clang and LLVM. Clang2 is a front end of the LLVM compiler infrastructure
[14] and is used to compile C code into the LLVM intermediate representation
(IR). The slicing process operates on the IR, and the resulting slice is also returned
in IR. While a reverse transformation into C is possible in principle, it is currently
not supported by the LLVM framework and adding this feature would require
a significant effort. Building on top of LLVM reduces language complexity and
allows us to use the API of LLVM which provides methods to modify the IR
(e.g., to remove statements) and standard code analyses (like loop detection).

Candidate generation. A duplicate of the original program is modified by
removing statements to generate a slice candidate. The choice which statements
are removed depends on the chosen candidate selection method (see Section 4).
The process can be iterated; then the results of previously checked slice candidates
are taken into consideration for generating new ones.

LLRêve and Eldarica. SemSlice encodes the slicing criterion as a relational
specification between the slice candidate and the original program in first order
logic. From this input, LLRêve generates an SMT formula, more precisely a set of
1 The SemSlice source code is available at github.com/mattulbrich/llreve/
tree/slicing.

2 http://clang.llvm.org

4

http://formal.iti.kit.edu/slicing
https://github.com/mattulbrich/llreve/tree/slicing
https://github.com/mattulbrich/llreve/tree/slicing
http://clang.llvm.org


Candidate

Generation

clang

.llvm.llvm

.llvm.llvm

.smt.smt

LLRêve Eldarica

.llvm.llvm

.c.c

feedback

Figure 2: SemSlice Architecture for finding a valid slice

constrained horn clauses, in which the coupling invariants become uninterpreted
predicate symbols to be inferred by the solver. Eldarica [10], a state-of-the-art
SMT solver, checks the formula for satisfiability, i.e., for existence of sufficiently
strong relational invariants. If the formula is satisfiable, a valid slice has been
found. It may be refined further or taken as the final result. Otherwise, Eldarica
may provide a counterexample, i.e., an input under which the criterion is evaluated
differently in the slice candidate and the original program.

Implementation aspects. LLRêve can only check relational specifications
in the final states of the two programs. A slicing criterion, however, may refer
to any point within the program. We have adapted the clause construction in
LLRêve to allow for relational conditions to be checked within functions.

Since a valid slice requires by definition that the criterion’s statement is
reached equally often in program and slice, SemSlice enforces that all loops
are iterated equally often by encoding this requirement into the proof obligation.
This requirement is a little too strict: for a loop not containing the criterion, there
might be a correct slice which iterates the loop less often, but cannot be validated
with our technique. This requirement enforces the mutual termination property
(i.e. the slice terminates iff the original program also terminates) of the original
program and the slice candidate. If it were to be relaxed than our approach would
be able to validate more candidates, however, the mutual termination property
would have to be shown through other means.

4 Slice Candidate Generation

SemSlice provides three methods for candidate generation. They differ in time
requirements, number of generated candidates, and precision.

The naive brute forcing (BF) approach generates all possible slice candidates.
It is complete in the sense that it finds the smallest slice that can be validated
with relational verification. Section 5 shows that it runs surprisingly fast on small
programs, but due to the exponential number of slice candidates it does not scale.

Single statement elimination (SSE) successively removes statements from the
program. If removing a statement yields an invalid slice, SSE reverts and tries
removing another statement. This results in a quadratic number of LLRêve

5



Table 1: Evaluation
Original BF SSE CGS

Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count_occurrence_error self 50 13 42 11
count_occurrence_result self 50 16 44 13
dead_code_after_ssa [17] 4 <1 2 4 <1 2 4 <1 2 1
dead_code_unused_variable self 3 <1 2 2 <1 2 3 <1 2 1
identity_not_modifying [8] 8 <1 3 3 <1 7 5 <1 6 1
identity_plus_minus_50 [1] 5 <1 2 4 <1 5 4 <1 5 1
iflow_cyclic [17] 18 62 14 2197 <1 16 6 <1 17 1
iflow_dynfamic_override self 15 23 8 1298 <1 11 8 <1 12 1
iflow_endofloop (Figure 1) self 19 118 15 4065 <1 16 7 <1 18 2
intermediate self 13 4 11 129 <1 12 5 <1 12 2
requires_path_sensitivity [11] 20 647 16 26894 <1 17 10 <1 18 3
single_pass_removal self 13 <1 3 7 <1 6 11 <1 8 1
unchanged_over_itteration self 20 29 9 932 1 15 14 <1 20 2
unreachable_code_nested self 10 <1 2 1 <1 9 1 <1 4 1
whole_loop_removable self 20 15 8 469 <1 17 5 <1 17 2

invocations. Thus, it scales better than brute forcing, but cannot remove groups
of statements that cannot be removed individually like x:=x+50; x:=x-50.

Counterexample guided slicing (CGS) works in the opposite direction: It
successively adds statements to a candidate until it can be proved valid. In case of
an invalid slice candidate, CGS uses the counterexample provided by Eldarica
to choose which statements are to be added in the next iteration. In each iteration
the slice candidates grow by at least one statement such that termination is
guaranteed. On the considered examples, CGS terminates very fast after only
a few iterations, but with potentially reduced precision compared to the other
methods.

5 Evaluation

Table 1 shows an evaluation of SemSlice using a collection3 of small but intricate
examples (e.g., the example of Figure 1 or a routine in which the same value is
first added and then subtracted) that each focus on a particular challenge for
semantics-aware slicing. Some are taken from slicing literature [1, 4, 8, 11, 17]
while others were crafted by ourselves. The second column indicates the source of
each example, the third the number of LLVM-IR statements in the program. For
each candidate generation method from Section 2.1, the table lists the number
of statements in the smallest slice found by SemSlice, the (wall) time needed
by the tool, and the number of calls to the SMT solver. The experiments were
conducted on a machine with an Intel Core I5-6600K CPU and 16GB RAM. The
exponential brute forcing approach works satisfactorily fast on functions with up
to 20 statements, and while it requires more time than the other approaches, it
computes more precise slices.
3 The benchmarks are available at github.com/mattulbrich/llreve/tree/
slicing/slicing/testdata/benchmarks

6

https://github.com/mat tulbrich/llreve/tree/slicing/slicing/testdata/benchmarks
https://github.com/mat tulbrich/llreve/tree/slicing/slicing/testdata/benchmarks


Modern coding conventions [15, pg. 34] suggest that functions should comprise
at most some 20 lines of code, and our approach is capable to deal with challenges
of that size. What hinders us slicing real-world programs is that SemSlice
cannot yet deal with bit-operations, complicated heap structures, and deep
calling hierarchies.

6 Related Work

Static slicing is an active research area, other semantic approaches have been
published using abstract interpretation [9, 16] or term rewriting [8, 13]. In this
section we focus on approaches with accessible tools.

GamaSlicer [5] features a graphical user interface and is designed for slicing
Java programs annotated with JML. It provides multiple slicing algorithms, the
most sophisticated one is assertion based slicing [1], which uses the specification
as slicing criterion. A valid slice is obtained by removing statements from the
original program such that the original specification still holds. Unlike SemSlice,
this tool requires functional loop invariants from the user.

Tracer is a tool that runs in command line and computes slices for C programs
based on path sensitive backward slicing [11]. It uses symbolic execution to find
and remove unfeasible paths in a program and thereby increase precision compared
to syntactic slicing. To cope with path explosion of the symbolic execution tree,
parts of the tree are reused. This approach scales very well, but unfeasible data
dependencies over multiple iterations of a loop like those in Figure 1a cannot be
detected.

7 Conclusion

We presented SemSlice, a fully automatic tool to compute slices using semantic
information. The approach uses relational verification to show that a slice can-
didate is equivalent to the original program with respect to a slicing criterion.
Three different approaches to compute slice candidates were introduced.

The presented approach works well on small, but intricate programs. To be
able to treat larger programs with SemSlice, we will in future work combine the
regression verification engine with other better scaling, but less precise regression
verification tools.

As our approach builds on top of a relational verification engine that infers
relational coupling invariants, functional loop invariants need not be specified. Our
evaluation shows powerful and highly precise program slicing can be implemented
by relying on relational verification. That indicates that relational verification is
indeed a very useful basis for building formal program analysis tools.

References

[1] Barros, J.B., Da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based
slicing and slice graphs. Formal Aspects of Computing 24(2), 217–248 (2012)

7



[2] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product
programs. In: Butler, M., Schulte, W. (eds.) Proceedings, International
Symposium on Formal Methods. Lecture Notes in Computer Science, vol.
6664, pp. 200–214. Springer (2011)

[3] Binkley, D., Harman, M.: A survey of empirical results on program slicing.
Advances in Computers 62, 105–178 (2004)

[4] Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Infor-
mation and Software Technology 40(11), 595–607 (1998)

[5] da Cruz, D., Henriques, P.R., Pinto, J.S.: Gamaslicer: an online laboratory
for program verification and analysis. In: Proceedings of the Tenth Workshop
on Language Descriptions, Tools and Applications. p. 3. ACM (2010)

[6] Eranki, K.L., Moudgalya, K.M.: Program slicing technique: A novel approach
to improve programming skills in novice learners. In: Proceedings of the
Conference on Information Technology Education. pp. 160–165. ACM (2016)

[7] Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the International Conference on
Automated Software Engineering. pp. 349–360. ASE ’14, ACM (2014)

[8] Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Pro-
ceedings of the Symposium on Principles of Programming Languages. pp.
379–392. ACM (1995)

[9] Halder, R., Cortesi, A.: Abstract program slicing on dependence condition
graphs. Science of Computer Programming 78(9), 1240–1263 (2013)

[10] Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A
Verification Toolkit for Numerical Transition Systems, pp. 247–251. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

[11] Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward
slicing. In: Proceedings of the 19th International Conference on Static
Analysis. pp. 231–247. Springer (2012)

[12] Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using
compiler IR. In: Blazy, S., Chechik, M. (eds.) Verified Software. Theories,
Tools, and Experiments, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 9971, pp. 149–165. Springer (Nov 2016)

[13] Komondoor, R.: Precise slicing in imperative programs via term-rewriting
and abstract interpretation. In: Static Analysis, pp. 259–282. Springer (2013)

[14] Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program
analysis & transformation. In: Code Generation and Optimization, 2004.
CGO 2004. International Symposium on. pp. 75–86. IEEE (2004)

[15] Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edn. (2008)

[16] Mastroeni, I., Nikolić, Ð.: Abstract program slicing: From theory towards
an implementation. In: International Conference on Formal Engineering
Methods, ICFEM 2010. Proceedings, pp. 452–467. Springer (2010)

[17] Ward, M.: Properties of slicing definitions. In: Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation. SCAM’09.
pp. 23–32. IEEE (2009)

[18] Weiser, M.: Program slicing. In: Proceedings of the 5th International Con-
ference on Software Engineering. pp. 439–449. IEEE Press (1981)

8


	SemSlice: Exploiting Relational Verification for Automatic Program Slicing

