
Chapter 8
From Specification to Proof Obligations

Daniel Grahl and Mattias Ulbrich

Specification with the Java Modeling Language (JML) has been introduced by
example in the previous chapter without giving formal definitions of the meaning
of JML specifications. Unfortunately, the JML reference manual [Leavens et al.,
2013] does not provide a formal semantics, but informal descriptions, often stated
in operational terms of the Java language. This is a serious shortcoming since the
primary use case of JML is formal specification. Some formal representations from
within the JML community have been suggested before [Jacobs and Poll, 2001,
Engel, 2005, Darvas and Müller, 2007, Bruns, 2009], but none of them prevailed.
Furthermore, over the years several extensions or dialects to JML have emerged (e.g.,
the extension with dynamic frames by Weiß [2011] that is used in KeY).

In the present chapter, we provide a denotational formal semantics to JML by
translating expressions and contracts to formulas in JavaDL. It thus links Chapter 3
on JavaDL with Chapter 7 on JML. We assume that the reader is familiar with JavaDL
and with the basic syntax of JML, and that he or she has an intuitive sense of their
semantics. This chapter gives a comprehensive definition of the semantics of JML,
more specifically of the dialect of the specification language used in the KeY system.
It is marked where the semantics presented in this chapter refines or deviates from
that given in the reference manual.

The chapter is divided into three sections: In Section 8.1, we define a translation
from JML expressions to JavaDL terms and formulas. In Section 8.2, we introduce
JavaDL contracts to which JML specifications are translated. Finally, in Section 8.3,
we give proof obligations for contracts, i.e., we explain which formulas need to be
proven for a given program to be correct w.r.t. its contract. We distinguish three kinds
of proof obligations: (1) functional correctness proof obligations (Section 8.3.1),
(2) dependency proof obligations (Section 8.3.2), and (3) well-definedness proof
obligations (Section 8.3.3). The full definition comprises many similar cases which
we present exemplarily. A full account of the JML semantics can be found in Appen-
dix A.

We focus on local correctness of a single method implementation. This means that
we only cover the provider’s side of a contract in the design by contract framework.
Chapter 9 on modular specification and verification goes beyond this and defines

243

244 8 From Specification to Proof Obligations

correctness of whole programs. Calculus rules that use contracts can be found there.
Chapter 13 on information flow introduces yet another extension to JML, which
is based on the semantics described in this chapter and generalizes the concept of
dependency proof obligations from Section 8.3.2.

8.1 Formal Semantics of JML Expressions

We start by giving semantics to JML expressions by providing a translation to JavaDL
terms or formulas (see Chapter 3). While JML has been designed to be intuitively
understandable, in particular expression syntax being similar to first-order logic, a
formal account is not always straightforward. On a closer look, the fact that JML
semantics relies on the Java program that is being specified renders the whole issue
more complex than expected. In particular, JML contains several implicit assumptions
that are not contained per se in JavaDL.

A note on notation: We use typewriter font for terminal (program) syntax
elements—such as local variables or operators—and math font for nonterminal
JML expressions.

We fix a Java program Prg with JML annotations. Let JTypesPrg denote the set of
JML types, including the reference types that are defined in Prg. Let JExpPrg denote
the set of well-formed JML expressions w.r.t. Prg according to syntax and typing
rules defined in the JML reference manual [Leavens et al., 2013].

JML expressions are statically typed such that for every operator the argument
and result types can be inferred at compile-time. Thus the translation of overloaded
operators distinguishes cases by types, e.g., the binary JML operator & is translated
to either logical conjunction (if the operands are of type Boolean) or an appropriate
bit vector operation (if the operands are of an integer type).

In JML, the concept ‘formula’ does not exist; its place is rather taken by Boolean
expressions. JavaDL, on the other hand, distinguishes between Boolean terms and
formulas. For a translation from JML to JavaDL we need to distinguish both cases
and define the translation from JML expressions as a mapping to either terms or
formulas in JavaDL.

Definition 8.1. Let T be a JavaDL type hierarchy for a Java program Prg. The
translation function b·c : JExpPrg ∪ JTypesPrg → TrmAny ∪DLFml∪T maps JML
expressions and types to terms, formulas, or types in JavaDL. It is defined in Tables
A.6–A.11 in Appendix A.2. Whether the result is a formula or a term depends on the
context; if necessary, a Boolean term x can be converted to a formula x .

= TRUE.

Logical symbols

The translated JavaDL terms may contain the predefined function symbols of the
signature ΣJ (see Figure 2.4). In addition, they may contain the program variables

8.1. Formal Semantics of JML Expressions 245

and function symbols (i) self for the reference to the current receiver object (i.e.,
the equivalent to this in Java), (ii) heap for the current heap, (iii) heappre for the
prestate heap, (iv) exc for an exception to be raised (and not caught) by the program,
(v) res for the result of a method, as well as (vi) any local variables, parameters, and
field identifiers defined by the Java program. The symbols heappre, exc, and res
only appear in postconditions.

In the remainder of this section, we discuss the translation for representative
examples.

8.1.1 Types in JML

The type system of JML comprises the type system of Java and extends it with the
specification-only types \bigint (mathematical integers), \real (real numbers),
and \TYPE (the type of all types). The JML dialect used in KeY further introduces
the types \seq (finite sequences), and \locset (location sets).1 All Java/JML types
that occur in the program under inspection (both primitive types and defined classes
and interfaces) have a direct counterpart in JavaDL.

In JML, the different integer data types (byte, short, char, int, long, and
\bigint) refer to different ranges of mathematical integers while there is only one
type int in JavaDL—representing the mathematical integers Z. Note that these types
are not subtypes of each other, but rather retrenchments [Schlager, 2002]. All JML
integer types are translated to the same domain int in JavaDL. To account for the
different value ranges, there exist restriction predicates inInt(x), inByte(x), etc. for
each integral type except \bigint. The semantics of this type restriction depends on
the choice of integer semantics in JavaDL; the resulting formulas will be different
(see Section 5.4): For instance IJava(inInt) = [−231,231−1] while Imath(inInt) = Z.

All mentioned specification-only types (\real, \bigint, \TYPE, \seq and
\locsec) are primitive data types, put in Java lingo. Note that the JML model-
ing classes, like JMLObjectSet, are not primitive but reference types. This chapter
does not cover some of the available primitive data types: floating-point types (float
and double) as well as the JML types \real and \TYPE are currently not supported
in KeY. There is no translation into JavaDL for them. The interested reader can
refer to [Bruns, 2009]. In contrast to the JML reference manual [Leavens et al.,
2013], we do not allow array types such as \bigint[]. Unlike all other array types,
they are not subtypes of java.lang.Object and therefore expose some semantical
irregularities.

Reference types are mapped to their equally named Java correspondence. A distinc-
tion is made concerning whether or not the value null is included in the translation.
By default, bound variables in JML do not include null as possible value. This
default restriction is motivated by the observation that null dereference is a common

1 For the underlying theories of finite sequences and location sets, see Sections 2.4 and 5.2,
respectively. Usage of the \seq and \locset data types in JML specifications will be discussed in
Sections 8.1.3 and 9.3.2, respectively.

246 8 From Specification to Proof Obligations

source of programming errors. Chalin and Rioux [2005] reported on the observa-
tion that the majority of type references used in declarations in a Java program are
designed to hold only values different from null. It is therefore natural to assume
this constraint as the implicitly assumed default and have all situations in which
null is an admissible value be annotated explicitly. This shortens specifications and
enhances safety by making contracts stricter by default. Nonnull types are built into
the Eiffel language [Meyer, 1989]. For Java, there are dedicated static checkers for
nonnull annotated types (see [Chalin et al., 2008]).

We understand the JML type non_null T ∈ JTypes (which excludes the null
reference) as a subtype to the respective unrestricted type nullable T (i.e., the
actual Java reference type). In JavaDL we represent both types as the same type T and
encode the nonnullness as a constraint. We define a family of formulas inRangeT (x)
that represents the restrictions on term x to JML type T ∈ JTypes. This type restriction
formula is used anywhere in JavaDL formulas where range restriction is required,
e.g., in preconditions or in quantifier ranges. Note that the symbol inRange() does
not actually occur in formulas, but is merely an abbreviation used in this book.

For a reference type T that is not an array type, inRangeT (x) is defined as the
following formula:

x.created .
= TRUE∧ x 6 .= null

For reference array types, e.g., Object[], there is a further restriction that all
array entries x[i] are different from null as well—even in depth in case of multi-
dimensional arrays.2 To encapsulate this ‘deep nonnull,’ we use the recursively
defined predicate nonNull(h,x,d) which means that in heap h reference x is not null
for dimension d, see Section 8.2.1.2 for the formal definition.

Similar to the definition for reference types, the type \locset is restricted to
location sets in which all members of the set belong to allocated objects. There is no
JML expression denoting an unallocated object, and there is no way of constructing
an expression that denotes a set that contains unallocated locations. In Section 9.3.4,
we will encounter an example for why it is useful that dynamic frames in JML never
contain unallocated locations.

8.1.2 Translating JML Expressions to JavaDL

This subsection explains the translation of selected, relevant operators. A comprehen-
sive list can be found in Appendix A.2.

2 The translation does not include that the entries must be created. It is an implicit axiom in JavaDL
that all referenced objects are created. This is captured in the semantics of the wellFormed predicate,
see Definition 3.5.

8.1. Formal Semantics of JML Expressions 247

8.1.2.1 Boolean Logical Expressions

Boolean expressions are translated in a straightforward manner. For most JML
operators, there is simply an alternative JavaDL syntax. E.g., all three expres-
sions A != B, A <=!=> B, and A^B are translated to ¬(bAc ↔ bBc). For quan-
tified expressions, we add a type restriction to the range, as discussed above. E.g.,
(\forall int x; A; B) is translated to ∀ int x;(inInt(x)∧bAc → bBc), where
we assume the bound variable x in JML to be identified with the logical variable x.
According to the JML reference manual [Leavens et al., 2013, Sect. 12.4.24.6],
the range of quantification over reference types “may include references to ob-
jects that are not constructed by the program.” Our translation deviates from this
since in practice all nontrivial quantified expressions would not be well-defined.3

This means that a JML expression (\forall Object o; B) is translated to
∀ Object o;(o.created .

= TRUE∧o 6 .= null→ bBc).

8.1.2.2 Integer Expressions

Operations on integers in JML are the same as in Java with two exceptions: Expres-
sions with side effects such as x++ are not allowed in JML. The only addition is that
expressions can be of type \bigint, on which arithmetic operators represent their
mathematical counterparts. Depending on the promoted result type of the compound
expression, there are up to three different translations: one each for types int, long,
and \bigint. The promoted type is the least restrictive type of the subexpressions
(see [Gosling et al., 2013, Sect. 5.1.2]). Other integral types do not occur; there is
always an implicit promotion to int.

Arithmetic expressions of type \bigint are translated to their mathematical
counterpart. E.g., n + m is translated to bnc+ bmc if at least one of n or m is of
type \bigint. For the Java types int and long, the translation relies on dedicated
functions which represent the respective modulo semantics; n + m is translated to
either javaAddInt(bnc,bmc) or javaAddLong(bnc,bmc). As with the type restriction
predicates above, these proxy functions have different semantics depending on the
options in use. The division and modulo operators applied to \bigint are translated
to the functions jdiv and jmod,4 respectively.

Bitwise operations are also translated for int and long (i.e., operations on the
32- and 64-bit vector types), but it is a type error to use them with \bigint. The full
table of translations can be found in Table A.9 in the appendix. It is possible to use
explicit conversions to enforce certain semantics; e.g., -n where n is of type int is
translated to javaUnaryMinusInt(bnc) while -(\bigint)n is translated to −bnc.

3 In JML, there is no way of expressing createdness of objects. At some point an explicit \created
operator had been proposed and it was used in older versions of the KeY system, but it has never
found its way into the reference manual.
4 The functions jdiv and jmod represent division and remainder according to Java rules, albeit in
the unbounded domain. They must not be confused with the / and % operators in JavaDL, which
represent Euclidian division and modulo; see Section 5.4.

248 8 From Specification to Proof Obligations

8.1.2.3 Generalized Quantifiers

JML features so-called generalized quantifiers,5 which include sum and product
comprehensions as well as minimum and maximum operators. Syntactically, all of
them bind a (logic) variable of some type and consist of an optional Boolean guard
expression and a body expression of type int, both of which the bound variable may
appear in. Sum and product comprehensions are not always total functions—consider,
e.g., ∑i∈N i. For this reason, JavaDL provides dedicated bounded comprehension
operators over integer intervals, for which induction schemata can be given (see
Section 5.4.2). For bounded comprehensions to be translated, we restrict them to
conform to a shape like (\sum T x; n <= x && x < m; t) with only one bound
variable and an interval which is closed to the left and open to the right, and where T
is an integral type. Of course, this excludes certain (well-defined) comprehensions,
because of their syntactical shape, such as (\product Object o; false; 42)
or (\sum \bigint i, j; 0 < i && i < j && j < 23; i*j). Such compre-
hensions are translated to the unbounded sum and product operators sum and prod,
for which only minimal reasoning support is available.

Bounded sum and product comprehensions in JavaDL represent iterated addition
or multiplication in the mathematical integers. In JML, the type of a generalized quan-
tifier is the type its body. For a faithful translation, an additional cast is applied to the
bounded comprehensions. The expression (\sum int x; n <= x && x < m; t),
for example, is translated to the following:

castToInt(bsum{int x}(bnc,bmc,btc))

Minimum and maximum operators appear in the form (\max T i; A; t),
which intuitively stands for ‘the maximum of all t(i) such that A(i) holds.’ However,
maximum is not a total function either. Consider, e.g., (\max \bigint i; i), for
which the above axiomatization would entail that there exists a largest integer. Mini-
mum and maximum operators are translated to dedicated operators in JavaDL, for
which there exists only minimal reasoning support at the time of writing;6 using the
\min and \max is discouraged. Minimum and maximum can instead be formalized
in first-order logic with basic arithmetic. Since it allows for complete reasoning, this
is the preferred way in practice.

8.1.2.4 Pure Method Calls

Methods declared as pure can be used as specification expressions. In JavaDL,
pure methods are represented by observer symbols (see Definition 9.7). An instance
method call o.m(p1, . . ., pn) is thus translated to C ::m(heap,boc,bp1c, . . . ,bpnc)

5 See also [Mostowski, 1957] on the concept of generalized quantifiers in logic.
6 In particular, the property described in the JML reference manual [Leavens et al., 2013,
Sect. 12.4.24.2] is not provable, where the maximum over an empty range is defined as the minimum
over the body type (which is also undefined for \bigint).

8.1. Formal Semantics of JML Expressions 249

where C is the class of which boc is an instance containing the most specific method
implementation for m according to the dynamic dispatch rules of the Java language.
For static methods, the receiver parameter is null. Not all methods may be used
in specifications: Since evaluating the specification must not change the execution
context, only pure methods may be referred to from JML clauses. Note that in JML,
methods that occur in specifications may also be weakly pure, i.e., they may create
new objects on the heap and change their state, but do not have an influence on the
existing part of the heap. The translation to JavaDL thus ignores possible side effects.

8.1.2.5 Referring to the Prestate

In postconditions of method contracts and in history constraints the expression
\old(x) is used to denote the prestate value of x. There is no restriction on the
type or syntactical structure of x in general; it may include pure method calls or
object references. In JavaDL, this can be achieved by performing every heap ac-
cess which appears in the scope of \old with the prestate heap heappre instead of
the default heap. This applies to both field accesses and observer symbols such as
pure methods or model fields. E.g., the reference expression \old(o.f.g) is trans-
lated to selectT (heappre,selectT ′(heappre,o,f),g) and \old(o.f).g is translated to
selectT (heap,selectT ′(heappre,o,f),g). A pure method call as in \old(this.m())
is translated to C ::m(heappre,self).

This implementation is an improvement over older versions of KeY which did not
use an explicit heap, but replaced occurrences of \old with fresh variables which
were assigned prior to symbolic execution [Baar et al., 2001]. Neither was it allowed
to access pure methods in the prestate.

Note that \old can only be applied to proper expressions. This means that JavaDL
terms like selectT (heappre,selectT ′(heap,o,f),g) cannot be expressed in JML—at
least not without jumping through hoops like adding model methods. The obvious
o.f.\old(g) is not a well-formed JML expression because the reference suffix g
is not an expression. The generalized version of \old with a label to refer to an
arbitrary heap state (not just the prestate) is currently not supported in KeY.

Two Notions of the Past

Yi et al. [2013] propose another notion of referring to the prestate. While \old
stands for a value (which may be of a reference type), the proposed \past oper-
ator represents a pointer into the prestate heap. This means that every expression
using this pointer is implicitly evaluated in the prestate, e.g., \past(o).f.g or
\past(o.f).g both mean the same as \old(o.f.g). The main motivation for
such an operator is to bridge a gap with \old which exposes implementation
detail. Imagine o’s static type to be an interface. How do we state that the object
denoted by o in the poststate equals o in the prestate without exposing implemen-

250 8 From Specification to Proof Obligations

tation details? Using \past, this can be expressed as o.equals(\past(o)),
but there does not exist an equivalent expression using \old. Please note that
the value of \past(o) is still the same as \old(o).

Even on the level of JavaDL, this is difficult to express. While not in standard
JML, KeY’s extension features two-state model methods (see Section 9.2.2).
These represent observer functions which observe two heaps simultaneously.
This allows the \old operator to appear in the implementation. We could give a
two-state model method equalsOld() with the following implementation:
/*@ public two_state model boolean equalsOld ()
@ { return this.f == \old(this.f); }
@*/

However, we would have to implement such a model method for each concrete
subtype because the implementation refers to the fields of the concrete type.
Note that model methods are always strictly pure in our JML dialect.

The Boolean expression \fresh(o) also appears in postconditions and states that
o points to a freshly allocated object, i.e., it was not created in the prestate and it is
not a null reference:

b\fresh(o)c= selectboolean(heappre,boc,created) .
= FALSE∧boc 6 .= null

Note that the value of o is evaluated in the poststate. Please note that the \fresh
operator is overloaded; there is an expression \fresh(s) where s is a location set
expression in KeY’s dialect of JML, which means that all locations in s belong to
objects which were newly allocated.

8.1.2.6 Type Expressions

Standard JML features a type of types \TYPE, which is not present in KeY’s
JML since the underlying JavaDL assumes a finite type system. Type expressions
as such are supported within certain contexts: Boolean expressions of the form
\typeof(x) == \type(T)where x is an expression of any type and T is a type, are
translated to exactInstanceT (x) (introduced in Section 2.4.3). Only the syntax where
a \typeof expression appears on the left hand side and \type(T) (denoting a fixed
type) appears on the right hand side is supported. Any other occurrences of type
equality are Skolemized.

To describe that an expression x evaluates to an instance of type T , but not
necessarily to an exact instance of T , the Java operator instanceof can be used.
The expression x instanceof T is translated to instanceT (bxc).

8.1. Formal Semantics of JML Expressions 251

8.1.2.7 Location Set Expressions

Weiß [2011] introduced dedicated location set expressions to JML. For some of
them a translation is straightforward, as they have been designed to correspond to
predicates and functions in JavaDL with obvious meaning, e.g., \intersect(s,t).
But location set expressions also replace reference set expressions from standard JML.
These are faithfully translated to terms in JavaDL. For instance, b\everythingc=
setMinus(allLocs,unusedLocs(heap)), taking into account that JML only considers
locations which belong to already allocated objects. Please note that the keyword
\strictly_nothing (an extension introduced by KeY) is not an expression in this
sense, but can be used to form a nonstandard assignable clause, see Definition 8.4
below.

The binary union operator is called \set_union for technical reasons. The
JML language also features a set comprehension operator \infinite_union that
binds a variable of any type and has a location set expression in the body. Op-
tionally, a guard can be given. Like other comprehension operators, the translation
from JML to JavaDL includes default guards. For instance, the JML expression
\infinite_union(Object o; \singleton(o,f)) is translated to the follow-
ing term:

infiniteUnion{Object o}(if (x.created .
= TRUE∧ x 6 .= null)

then ({(o,f)}) else (empty))

The set comprehension notation of standard JML is not supported in KeY.

8.1.2.8 Reachability

Both standard JML and the dialect used by KeY feature a \reach operator, but their
syntax and semantics differ. Both serve the purpose of specifying properties on the
set of objects (excluding null) which are reachable by subsequent field and array
index references. In standard JML, \reach(o) intuitively stands for the set7 of all
objects transitively reachable through any instance field from the reference o.

By contrast, in KeY \reach is a predicate symbol that states whether an object
is reachable from another one. It takes as a parameter the locations that are allowed
in the reference chain—including static fields. The operator appears both as 3-
place and 4-place, where \reach(`, o1, o2) means ‘bo2c is transitively reachable
from bo1c through any location in b`c,’ where ` is a location set expression; and
\reach(`, o1, o2, n) stands for reachability in exactly bnc steps. The former is
equivalent to (\exists \bigint n; n >= 0; \reach(`, o1, o2, n)).

Except for the fact that there is no explicit reasoning about sets of objects
in KeY, its reachability operators are more expressive than those of standard
JML. The standard JML expression \reach(o1).contains(o2) is equivalent to

7 More precisely, it is an object of type JMLObjectSet since JML does have abstract data types.

252 8 From Specification to Proof Obligations

\reach(o1.*, o1, o2), while nontrivial location sets cannot be expressed in stan-
dard JML.

A similar operator is \reachLocs that denotes a location set consisting of all
locations of reachable objects. Again, there are two versions of \reachLocs, one
with an explicit number of steps and one with implicit quantification.

8.1.2.9 Escaping to JavaDL

It may happen that some properties cannot (or at least not without considerable effort)
be represented in JML, but can be represented on the level of JavaDL. A typical
case are user-defined functions or predicates which do not have a counterpart on
the JML level.8 For this purpose, KeY introduces escapes from JML into JavaDL.
Within the delimiters (* *)+ (known as “informal predicate” in standard JML) any
JavaDL term may appear, which is inserted verbatim during translation. Even more
convenient is the function escape \dl_, which allows one to refer to a nonbinding
JavaDL function (or predicate) while parameters are still given in JML. The escape
sequence \dl_ must be immediately followed by a function name. Variable binding
is not allowed.

For instance, \dl_add(a,\old(a)) refers to the function add, which represents
addition in the mathematical integers. This function is not directly available in JML
when the parameters have Java integer type. In case the JavaDL function has a
heap parameter the base heap heap is implicitly added as the first parameter. Take
a function f : Heap×Object→ Object, for instance. \dl_f(o) is translated into
f (heap,boc). JML operators such as \old, whose translation to JavaDL can be
tedious to express,may be used in parameters.

8.1.3 Abstract Data Types in JML

KeY’s extension to JML additionally features the abstract data type [Reynolds, 1994]
of finite sequences at the language level, referred to as \seq. This type is primitive in
Java lingo, like the other specification-only types \bigint and \locset (see above).
Reasoning about the underlying theory of finite sequences is well supported in KeY
(see Section 5.2).

Algebraic data types can be defined inductively, i.e., their definition consists of a
definition for each constructor. This kind of recursive definition is both well-founded
and total due to the inductive nature of initial algebras [Jacobs and Rutten, 1997] that
entails that every element of the carrier set can be uniquely described using a finite
number of constructor applications (i.e., construction is invertible). As an example,
in the List example above, we can model each state of the list using only the two

8 Model methods (see 9.2.2) may instead be used for specification. However, in reasoning, model
methods are treated similarly as (pure) Java methods, while functions or predicates can be given
dedicated rules to reason about them efficiently.

8.1. Formal Semantics of JML Expressions 253

constructors ‘empty list’ and ‘appending an element,’ which form a basic sequence
data type. This principle also allows us to do proofs by induction. The length can be
defined as an observer of these constructors. We can then perform induction over the
length of a sequence.

The algebraic data type \seq of finite sequences is predefined in KeY-JML,
its operations are displayed in Table 8.1. These operators are directly translated
to their counterparts in JavaDL. Section 5.2 presents the underlying theory of fi-
nite sequences. In particular, we have a comprehension operator \seq_def where
(\seq_def \bigint x; i; j; t) denotes the sequence 〈t[x/i], . . . , t[x/ j− 1]〉.
Please note that \seq is not a parametric type; its elements are not typed. For
this reason, sequence access always needs to be preceded by an (unsafe) type cast.9

Table 8.1 Defined operations on the \seq data type in JML (extension in KeY)

syntax signature

empty sequence \seq_empty →\seq
singleton sequence \seq_singleton(e) T → \seq
concatenation \seq_concat(s1, s2) \seq×\seq→\seq
subsequence s[i.. j] \seq×\bigint×\bigint→\seq
comprehension (\seq_def \bigint x; i; j; t) \bigint×\bigint×T →\seq
access (T)s[i] \seq×\bigint→ T
length s.length \seq→\bigint

Like \bigint or \locset, the type \seq counts as a primitive type in the Java
sense. This means that all operations are side effect-free like mathematical func-
tions, instances do not need to be created, and expressions can be compared using
equality (==). In particular, it is allowed to quantify over all (infinitely many) se-
quences. Abstract data types must be distinguished from model types [Leavens et al.,
2006b, Sect. 2.3] in standard JML, which are not supported by KeY. These model
types—like JMLObjectSequence—still are Java reference types that may be used
in specifications—with all their issues like createdness.

8.1.4 Well-Definedness of Expressions

Some functions or predicates are only partially defined. A standard example is the
division function which is only defined for divisors other than zero. In the context
of Java programs, illegal heap accesses are particularly important, e.g., the value of
a field access on null is not defined, as is the value of a[5] where a is an array of
length 5 or less. According to the JML reference manual [Leavens et al., 2013], a
Boolean expression is valid in a state if it has the truth value true and “does not cause
an exception to be raised.”

9 In JavaDL, the access function itself is type parametric. An access in JML (prefixed with a type
cast) is translated to the appropriate typed access. See Table A.15 in Appendix A for details.

254 8 From Specification to Proof Obligations

Our translation from JML to JavaDL ignores this dimension of undefinedness.
KeY can generate well-definedness proof obligations (see Section 8.3.3 below) that
establish well-definedness of JavaDL formulas as described by Kirsten [2013].

8.2 From JML Contract Annotations to JavaDL Contracts

In this section we introduce JavaDL contracts as the principal concept in the verifica-
tion framework of KeY. First and foremost, JavaDL contracts serve as an intermediate
layer between JML specifications and proof obligations in JavaDL. The largest part
of this section is taken by defining a normalization of JML contracts comprising
various steps (Section 8.2.1). Then the special cases of contracts for constructors
(Section 8.2.4) and model methods and fields (Section 8.2.3) are covered and fi-
nally the formal definition of a JavaDL contract—and how it is derived from a JML
contract—is given in Section 8.2.4. The subsequent Section 8.3 then describes how
the JavaDL proof obligations for the correctness of a JML specification are construc-
ted. It will be explained in Chapter 9 how contracts can be used in proofs for sound
modular reasoning about Java programs.

The definition of a proof obligation encompasses more than a mere translation of
the JML expressions in the clauses of the contract into JavaDL. Additional logical
constructions are needed to model aspects of the Java world precisely in the first-
order setting of JavaDL. We add constraints to confine the liberal model of general
predicate logic to those system states which can be reached through the execution of
Java code. For instance, in Java a field with a reference type can only point to either
null or to an already created object, but in JavaDL, it could possibly also point to
an object yet to be created. The proof obligations for methods use dynamic logic
constructs of JavaDL as they need to talk about both the before- and the after-state of
execution of methods.

We discuss in general how the contracts for a generic method are handled in KeY.
For this sake we assume that a method m is defined in some class C as follows.
class C {

public R m (final T1 p1, . . ., final Tn pn) { . . . }
...

}

We assume that all parameters pi are declared final, i.e., they are not assigned a
value in the method body.10

10 This restriction is not present in the KeY system, but it eases the presentation.

8.2. From JML Contract Annotations to JavaDL Contracts 255

8.2.1 Normalizing JML Contracts

JML is a feature-rich specification language in which the same specification intention
can often be formulated in different ways. This eases the job for the specifier and
makes specifications more concise and easier to understand.

For instance, JML allows the formulation of structured specifications. The be-
havior of a method does not need to be formulated as a single contract, but can be
split up into multiple, possibly nested individual contracts (called specification cases)
that model different parts of the behavior. Within a contract, multiple clauses of the
same kind (e.g., several ensures clauses) can be used to express properties of the
behavior; keywords like normal_behavior or pure can be used as abbreviations of
frequently applied specification elements. Moreover, JML is designed as a redundant
language in which many features have more than one associated keyword.

The syntactic richness of the specification language is a benefit when readability
and understandability of specifications is desired. However, for the precise description
of the translation of contracts, a small core language having the same expressiveness,
is favorable. In the following, we consider such a core language11 for JML in which
additional specifications constructs are assumed syntactic sugar defined in terms of
that core. The considered JML core language closely resembles the one presented by
Raghavan and Leavens [2000], although we deliberately deviate in some respects.

We present a normalization process that translates a general JML method contract
without syntactical restriction into a normalized JML contract in the core language.
This ‘desugaring’ may yield one or more separate contracts12 for the given method,
of which it needs to satisfy all. Note that this transformation is only used as a concept
for explanation; JML contracts are not implemented in this way in the KeY system.

The JML normalization process consists of the following steps:

1. Flattening of nested specifications
2. Making implicit specifications explicit
3. Processing of modifiers
4. Adding of default clauses, if not present
5. Contraction of multiple clauses
6. Separation of verification aspects

We consider two classes of normalized contracts: functional contracts and dependency
contracts. Listing 8.1 displays the shape of a normalized functional method contract
as we produce it in this section, while Listing 8.2 displays the shape of a normalized
dependency contract. For details on JML clauses, see Section 7.1.1.

In the next paragraphs we outline the ideas behind the normalization steps. They
may be skipped by readers familiar with the semantics of the desugared JML con-

11 Our idea of a ‘core’ is to include a minimal syntax that has enough expressive means to accom-
modate the meaning of the entire language as we support it.
12 We say here that a method can have more than one contract since that fits best the translation into
JavaDL. Within the JML community it is more common to say that every method has precisely one
contract with possibly several cases (including those inherited from supertypes). The difference is
only terminological, not conceptual.

256 8 From Specification to Proof Obligations

/*@ M behavior
@ requires Pre;
@ ensures Post;
@ signals (Throwable e) ExPost;
@ diverges [true|false];
@ measured_by Var;
@ assignable Ass;
@ helper
@*/

/*@nullable*/ RetType methodName(/*@nullable*/ T1 p1, . . .)

Listing 8.1 JML functional method contract specification case template

/*@ M behavior
@ requires Pre;
@ measured_by Var;
@ accessible Acc;
@ helper
@*/

/*@nullable*/ RetType methodName(/*@nullable*/ T1 p1, . . .)

Listing 8.2 JML method dependency contract specification case template

structs and who are convinced that the shape of the normalized contract is general
enough.

8.2.1.1 Flattening of Nested Specifications

JML allows the specification of nested cases (also called structured specifications)
using the {| . . . |} construct with opening and closing braces. It can be used to
formulate specifications with some common clauses which are relevant for all cases,
and with clauses for several separate and specific cases. The listing on the left of

before
{| alt1

also alt2 . . .
also altn |}

before
alt1

also
before
alt2

. . .
also

before
altn

Figure 8.1 A nested JML specification (on the left) and the flattened contracts (on the right) after
expansion

Figure 8.1 depicts the syntactical form of a nested specification where before is a

8.2. From JML Contract Annotations to JavaDL Contracts 257

(possibly empty) sequence of requires clauses and alti is a sequence of arbitrary
JML clauses (possibly including further requires clauses). The intuitive meaning
of the nested clauses is that any one of the clauses connected by also makes a valid
contract (but not the ‘outside’ preconditions on their own). The nonnested specifica-
tion cases can thus be derived by replacing {| . . . |} by any one of the alternatives
alti. The nested contract in the listing on the left of Figure 8.1 is, hence, equivalent
to the list of the n separate specification cases (conjoined using the keyword also)
that appears in the listing on the right. This expansion can be performed in the same
manner when more than one nesting operator occurs, or if the nesting of cases is
nested itself.

For the remaining desugaring steps, we consider the separated flat contracts
individually.

8.2.1.2 Making Implicit Specifications Explicit

JML provides a number of modifiers and specific keywords for frequent specification
scenarios. For the description of the translation, however, it is advisable to make their
meaning explicit by means of other specification clauses to reduce the number of
cases that need to be considered. Section 7.5 describes how the JML user can specify
whether a method parameter or its return value may take the value null.

Making Nonnull Specifications Explicit

JML follows a ‘nonnull by default’ policy (see also Sections 7.5 and 8.1.1) which
means that every reference type in a method declaration (type of a parameter or return
type) which is not explicitly annotated with the JML modifier /*@nullable*/ is
implicitly declared as nonnull. In a first normalization step, we make these implicit
assumptions explicit by adding /*@non_null*/ in those places without explicit
nullity annotation.13

Then we make the semantics of the nullity modifiers explicit by replacing every
/*@non_null*/ modifier in front of a method parameter p by /*@nullable*/ and
at the same time add the clause requires p != null; to every method contract
for the method. If the return type of a method is /*@non_null*/, we also replace
that modifier by /*@nullable*/ and add the clause ensures \result != null;
to every contract for the method. These steps do not change the semantics of the
contracts, but make it explicit.

In case the type of a method parameter (or the return type) is an array type over a
reference type (e.g. Object[]), the nonnull annotation does not only specify that the
value is always different from null, but also that all entries differ from null, too.
For arrays of higher dimension this goes even deeper. To specify this, we introduce
the JavaDL predicate nonNull : Heap×Object× int. The formula nonNull(h,x,d) is

13 Unless the enclosing class has been annotated with /*@nullable_by_default*/, in which
case /*@nullable*/ is the added modifier.

258 8 From Specification to Proof Obligations

true if and only if x refers (on heap h) to an array of objects different from null that
themselves are nonnull arrays of dimension d−1. Formally, it is defined through the
following axiom.

∀Heap h, Object x; nonNull(h,x,0)↔ x 6 .= null∧
∀Heap h, Object x, int d; d > 0→ (nonNull(h,x,d)↔ x 6 .= null ∧

(∀int i; 0≤ i∧ i < x.length→ nonNull(h,selectObject(h,x,arr(i)),d−1)) .

For a d-dimensional array parameter x declared as /*@non_null*/ Object[]d x,
the precondition then reads requires \dl_nonNull(x, d);.14

Making Object Invariant Specifications Explicit

Like the nonnullness of method parameters, receiver class invariants are also part of
the specification without being explicitly written down.

In standard JML the objects for which the class invariants hold are determined by
the so-called visible state semantics; in KeY’s JML, all objects for which the class
invariants hold must be stated explicitly using the operator \invariant_for. With
one exemption: A nonstatic method is implicitly assuming (as a precondition) the
invariant for the receiver object this before the method call and needs to assure
it after the call (as a postcondition). This default specification can be explicitly
deactivated by adding the modifier /*@helper*/ to the method specification.

To desugar the implicit invariant semantics for nonhelper methods, we add a
helper modifier to the method and the clauses

• requires \invariant_for(this);
• ensures \invariant_for(this); and
• signals (Throwable e) \invariant_for(this);

to every specification case for the method. A static method has no receiver object,
and thus cannot refer to an object invariant. Instead, the static class invariant is
implicitly assumed and must be guaranteed. The translation as explicit clauses15

reads requires \static_invariant_for(C); in which C is the enclosing class
in which the static method defined.

The order of clauses plays an important role in the well-definedness of contracts
(see Section 8.3.3). It is therefore important to mention that the newly added clauses
are added before the first existing annotation.

14 The first argument to \dl_nonNull of type Heap is added automatically by the translation as
outlined in Section 8.1.2.9.
15 The operator \static_invariant_for(C) referring to the static invariant of class C is a KeY
extension to JML.

8.2. From JML Contract Annotations to JavaDL Contracts 259

Making The Kind Of Behavior Explicit

JML supports specification not only of normally terminating program runs, but also
for the case of abnormal termination (uncaught exceptions). When writing a specifica-
tion, one can distinguish between specification of the normal and of the exceptional
case by declaring them as normal_behavior and exceptional_behavior, re-
spectively.

For a normalized contract, both keywords are reduced to the keyword behavior
by which a contract is initiated. The normal behavior gets an additional clause
signals (Throwable t) false; indicating that the method does not raise any
exception or error. Likewise, exceptional behavior specifications get an additional
postcondition ensures false; indicating that the method never terminates nor-
mally. Note that the declaration of either behavior does not specify divergence.

Desugaring signals_only Clauses

KeY supports signals_only clauses, which restrict the types of exceptions that can
possibly be raised by a method. Unlike the throws declaration in the Java language,
it does not only constrain checked exception types (subclasses of Exception which
are not subclasses of RuntimeException), but all instances of class Throwable.
For a discussion on exception types in Java, see the box on page 260.

The clause signals_only T1, . . ., Tp; lists one or more names Ti of classes
extending Throwable. It can be replaced by the semantically equivalent clause:
signals (Throwable e) (e instanceof T1 ||. . .|| e instanceof Tp);

8.2.1.3 Expanding Purity Modifiers

There are two more method modifiers pure and strictly_pure indicating that a
method does not have (observable) side effects. They both mean that the method
terminates unconditionally and that it does not modify existing heap locations.
The modifier pure is hence translated into the two clauses diverges false; and
assignable \nothing;. The modifier strictly_pure is an extension introduced
to JML by KeY to indicate that the heap is not modified at all (neither existing nor
freshly created locations; see also Section 7.9.1). It becomes diverges false; and
assignable \strictly_nothing; when translated into JavaDL. The semantic
differences between pure/nothing and strictly_pure/strictly_nothing are
outlined in Section 8.2.4.

8.2.1.4 Adding Default Clauses

The clauses in the normalized contract in Listing 8.1 are not optional. If a contract
does not have (at least) one clause for every keyword, clauses with default values

260 8 From Specification to Proof Obligations

Table 8.2 Default values for absent clauses and operators used to contract two or more clauses with
the same keyword

Clause Default value Contraction operator

requires true &&
ensures true &&
diverges false ||
assignable \everything \set_union
accessible \everything \set_union
signals (Throwable t) true see below
signals_only see below not allowed
measured_by not specified not allowed

are added to make the contract complete. The second column in Table 8.2 lists the
default values which are used for the clauses added in case a keyword does not occur.

Default values are designed in such a fashion that they match the user’s expecta-
tions of an unconstrained method, known as the principle of least surprise [Leavens,
1988]. The default clauses express that the method may be called in any state and that
it may terminate in any state. It may also terminate abnormally with any exception or
error; it may read from or write to any location on the heap.

The default clause for diverges is a little different in this context since its default
is to disallow nonterminating behavior. Instead, if nontermination is to be allowed for
a specific method (e.g., for the event loop of a reactive system), it must be explicitly
stated. In this respect, the default value is not the most liberal, but rather the most
restrictive one. It matches user expectation, however, since more often than not do
we want our code to terminate.

As described above, clauses of type signals_only are desugared. We define a
default value in case no such clause is given, even though it will be translated into
a signals clause. The default for signals_only clauses includes the unchecked
exception types Error and RuntimeException as well as those checked exception
types that are explicitly declared in the throws clause of the method signature. This
is the most liberal specification possible in Java since these are all the exception
types that the compiler permits to be thrown. For a method with the signature
void foo() throws IOException, for instance, the default clause is
signals_only Error, RuntimeException, IOException; .

Exceptions and Errors

In Java methods one may throw exceptions and errors to indicate abnormal situ-
ations and to terminate execution abruptly. Java discriminates between regular
exceptions (i.e., instances of java.lang.Exception) and errors (i.e., instances
of java.lang.Throwable that are not instances of Exception). While the for-
mer are designed to be handled within the program (to recover from the abnormal

8.2. From JML Contract Annotations to JavaDL Contracts 261

Object

Throwable

Error Exception

VirtualMachineError AssertionError

OutOfMemoryError
RuntimeException

IOException

NullPointerException

Figure 8.2 The type hierarchy of exceptions in Java

situation), the latter are reserved for severe, unexpected internal problems. Er-
rors are not meant to be caught but to terminate the whole program abruptly. A
typical example for an error is OutOfMemoryError that is thrown by the virtual
machine if a memory allocation fails due to lack of (physical) memory.

Both, regular exceptions and errors, have unchecked exceptions as sub-
types, that may be raised at any time during execution without the been
to declare them at compile time. Unchecked regular exceptions are in-
stances of java.lang.RuntimeException, unchecked errors are instances
of java.lang.Error. All other exception types are checked exceptions. An
excerpt from the Java type hierarchy is shown in Figure 8.2.

In the JML view of things, an execution which terminates abnormally by a
thrown exception is still within the scope of the specification. JML distinguishes
between normal postconditions (specified using ensures) and exceptional post-
conditions (specified using signals).

The situation is different for errors: The JML reference manual [Leavens
et al., 2013, Sect. 9.6.2] defines any method contract to be fulfilled vacuously
if the method terminates with an error. On the one hand, errors may appear at
many occasions during execution and in an unpredictable (and in some sense
nondeterministic) manner; hence, it may be justified to ignore them. On the other
hand, an error represents a severe failure of the software system that must not be
overlooked (see [Bloch, 2008, Item 57f.]).

One pathological example that shows that ignoring errors is problematic is
the following method which employs the Java assert statement (not the JML
equivalent in JML comments). If the asserted property is not met, an assertion
in Java code raises an AssertionError. Hence, the following JML method
contract is valid according to the JML reference manual [Leavens et al., 2013]:

262 8 From Specification to Proof Obligations

//@ normal_behavior
//@ ensures false;
void foo () { assert false; }

This is surprising since the contract is intuitively unsatisfiable. It can be argued
that the semantics in the JML reference manual [Leavens et al., 2013]is mostly
motivated by runtime assertion checking, not by static verification, and therefore
does not need to be concerned with errors. Since, however, the Java language
actually allows the programmer to raise arbitrary instances of Throwable (and
its subclass Error)—and also to catch them—it is reasonable to extend the se-
mantics of exceptional contracts to embrace errors as well as regular exceptions.

In KeY, JML signals clauses may list any subclass of Throwable. This is
vital for the soundness of the contract framework of KeY (see Section 9.1.3).
Otherwise, a caller of the above method could rely on the (unsatisfiable) post-
condition after catching the error.

The actual causes of unpredictable errors (insufficient main memory, too
deeply nested recursions, incompatible class files, etc.) could be modeled in a
static analysis and be reasoned about. This would increase the verification cost
tremendously, however. In KeY, all such error causes are hence silently ignored.

The measured_by clauses do not have a default value. If it is not specified, that
aspect of the specification is left open. Unless the method calls itself recursively
(directly or indirectly via intermediate method calls), this clause is not required.

8.2.1.5 Contraction of Clauses

The normalized contracts of Listings 8.1, 8.2 not only require at least one clause
for every keyword, but also that there be at most one. Prior to normalization, there
may be several clauses of the same kind in a contract, which helps structuring the
specification. It is, for instance, considered good practice to specify each aspect of
the precondition in its own requires clause.

In cases where multiple clauses of the same kind have been specified, they must be
contracted to one single clause. The operator used to contract two or more clauses into
one clause depends on the kind of the clause. The operators used for the respective
clause types are listed in the right column of Table 8.2. Pre- and postconditions, for
instance, are both connected using the logical conjunction &&. Note that due to lazy
evaluation in Java, the order of clauses matters for well-definedness as we will point
out in Section 8.3.3.

The contraction of signals clauses is a little more delicate since they may give
postconditions for various exceptional situations. The two clauses
signals (ExcClass1 e) Post1;
signals (ExcClass2 e) Post2;

can be contracted to the semantically equivalent single signals clause

8.2. From JML Contract Annotations to JavaDL Contracts 263

signals (Throwable e) (e instanceof ExcClass1 ==> Post1)
&& (e instanceof ExcClass2 ==> Post2) .

Depending on the type of the exception by which the method is terminated, the
respective postcondition must hold.

For signals_only and measured_by clauses, multiple specifications do not
make sense and are, hence, not allowed.

8.2.1.6 Separation of Verification Aspects

The contract language of JML is rich and the specifications may cover several
behavioral aspects at the same time. We now describe how a single contract touching
on more than one specification aspect is broken down into different single-aspect
contracts.

Separation Of Functional And Dependency Contracts

A contract at this point may still have both functional clauses (that appear in List-
ing 8.1) and dependency clauses (that appear in Listing 8.2).

These are separated into the two categories: The functional clauses (signals,
diverges, ensures and assignable) constitute the functional contract whereas
the accessible clause makes up the dependency contract. The requires and
measured_by clauses are shared by both.

If one of the functional or the dependency contract is trivially fulfilled (for in-
stance if accessible \everything is specified), that trivial contract is dropped
immediately.

Splitting Possibly Diverging Contracts

JavaDL can only handle either partial or total contracts and does not have a concept
of contracts for conditional termination. Therefore, any contract with conditional
termination is transformed into two unconditional contracts such that a contract that
contains diverges d; becomes the two cases

requires d; requires !d;
diverges true; diverges false;

unless it is a constant (true or false) already. We will assume this shape of contract
from now on.

264 8 From Specification to Proof Obligations

8.2.1.7 Example

We illustrate with a small example the result of normalization. Listing 8.3 shows
a method specified with a single method contract that contains both functional
elements (like the signals or the ensures clauses) and dependency elements (the
accessible clause).

class Example {
/*@ public behavior
@ requires to >= from;
@ signals_only IndexOutOfBoundsException;
@ signals (IndexOutOfBoundsException e) from < 0 || to >= a.length;
@ ensures a[\result] >= a[from];
@ accessible a[*];
@*/

/*@ pure */
public int maxIntArray(int[] a, int from, int to) {

// ...
}

}

Listing 8.3 Example of a JML method contract prior to desugaring

Listing 8.4 shows the same method with the two contracts that are the result of
the normalization process described above. Semantically, the two specifications are
equivalent. It is easy to see that the original specification is much conciser. However,
the normalized contracts have no implicit clauses and are easier to handle in logic.

8.2.2 Constructor Contracts

JML contracts can also be annotated to Java class constructors. The normalization
process is almost the same as the one described above. But a few differences do exist:

• As the object has only been created just prior to the constructor call, as-
suming the instance invariant to hold already, is not sensible. Therefore,
\invariant_for(this) is not an implicit precondition for constructors. It
is, however, implicitly added to the (normal and exceptional) postconditions for
constructors, because a constructor is obliged to establish initially the invariant
of the created object. The static class invariant \static_invariant_for(C)
is added to any nonhelper constructor of class C.

• In contrast to original JML, constructor contracts in KeY’s variant of JML are
attached to new invocations, i.e., the sequence of both instance allocation, field
initialization, and the actual constructor execution (see Section 3.6.6).

8.2. From JML Contract Annotations to JavaDL Contracts 265

class Example {
/*@ public behavior
@ requires a!= null
@ && \invariant_for(this) && to >= from;
@ signals (Throwable e)
@ (e instanceof IndexOutOfBoundsException ==>
@ from < 0 || to >= a.length)
@ && (e instanceof Throwable ==> \invariant_for(this))
@ && (e instanceof IndexOutOfBoundsException);
@ ensures a[\result] >= a[from] && \invariant_for(this);
@ diverges false;
@ assignable \nothing;
@ also
@ requires array != null
@ && \invariant_for(this) && to >= from;
@ accessible a[*];
@*/

/*@ helper */
public int maxIntArray(/*@nullable*/int[] a, int from, int to) {

// ...
}

}

Listing 8.4 Example of the JML method contract from Listing 8.3 after desugaring

• As a consequence, the instance to be initialized is fresh, i.e., \fresh(this) is
true in the poststate. Likewise, a (weakly) pure constructor may assign the fields
of this.

8.2.3 Model Methods and Model Fields

JML supports methods which exist for verification purposes only: model methods.
They reside, like all JML annotations, in special comments and may—as specification
artifacts—make use of the language capabilities of JML. The types and expressions
used in model methods need not be constrained to those of Java. Model methods
can be subjected to contracts in exactly the same way as Java methods. When
defining a model method, the modifier model must be used to indicate its nature as
specification-only element (like for model fields).

A model method to compute the sum of the absolute values of a sequence of
integers together with a method contract could thus read:

JML
/*@ public behavior
@ requires seq.length > 0;
@ ensures \result >= 0;
@ assignable \strictly_nothing;

266 8 From Specification to Proof Obligations

@ model int sumAbs(\seq seq) {
@ return (\sum int i;
@ 0<=i && i<seq.length; Math.abs((int)seq[i]));
@ }
@*/

JML

Besides model methods, JML also supports the less general, but related, concept
of model fields (motivated and introduced in Section 7.7.1). Conceptually, model
fields can be considered as model methods without arguments. Thus, model fields
are far more related to query methods than to ordinary Java fields since their value is
not stored within the heap state space but is computed from the heap state. However,
on the syntactic level model fields are declared like fields and quite differently than
model methods. The expressive power of model methods is much higher than that of
model fields and will be explained in detail in Section 9.2.2. To reduce the number of
syntax elements in normalized annotations, this section reports on how model fields
can be reduced to nullary model methods, and proceeds then with model methods.

Model fields have their definition fixed by a represents clause. Such clauses are
implicitly private, in the sense that the definition given by them applies only to exact
instances of the class with the clause; a redefinition (or a repetition of the original
definition) is required in subclasses. Represents clauses have an unmodifiable implicit
precondition \invariant_for(this); thus, the definition of a model field must
only be expanded if the object invariant of the receiver object holds.

The general model field definition
/*@ model T modelField;
@ represents modelField = Repr;
@ accessible modelField : Acc
@ \measured_by Var;
@*/

hence is semantically equivalent16 to the definition of the strictly pure model method
/*@ public behavior
@ accessible Acc;
@ measured_by Var;
@ requires \invariant_for(this);
@ assignable \strictly_nothing;
@ model T modelMethod() {
@ return Repr;
@ }
@*/

in which the represents clause Repr has become the value returned by the model
method. All references to modelField must be replaced by a call modelMethod()
to the method without arguments. The clause requires \invariant_for(this);

16 See the box on page 267.

8.2. From JML Contract Annotations to JavaDL Contracts 267

has been made explicit17 to emphasize the fact that the invariant needs to hold when
evaluating the model method.

If the value of a model field is not defined using a functional predicate represents
but relationally using the more general such_that mechanism, the model field defi-
nition
/*@ model T modelField;
@ represents modelField \such_that Cond;
@*/

becomes as a model method with the semantically equivalent definition
/*@ public behavior
@ requires \invariant_for(this);
@ ensures Cond[this.modelField→\result];
@ assignable \strictly_nothing;
@ model T modelMethod();
@*/

in which Cond[this.modelField→\result] denotes the JML expression Cond
in which every reference to this.modelField has been replaced by the keyword
\result.

A model method may—like an abstract method—be declared without specifying
a method body. While an abstract method, however, must be refined in a concrete
implementation class by a concrete method with a method body definition, a model
method may remain underspecified without implementation. It is then the contract of
the model method that characterizes the semantics of the symbol, see Section 9.2.2.

Subtle Differences Between Model Methods and Model Fields

Above we claimed that the model method replacement for a model field is
semantically equivalent. This is the case when looking at the matter from a
distance. Model methods possess some advanced features which make their
semantics deviate slightly from model fields:

• Model method bodies are inherited, but represents clauses of model fields
are not. As for an ordinary method, a model method definition is inherited by
all subclasses unless they provide a new method definition. Thus, a subclass
not mentioning a redefinition of the model method has the same definition
as the superclass whereas the model field remains undefined for instances
of the subclass.

• Termination conditions are different between model methods and fields. For
recursive model fields, a variant must be specified using a \measured_by
statement. Mutually dependent model fields need not provide evidence for
termination and formulating inconsistent definitions is thus possible. Model

17 It would also be assumed implicitly unless modelMethod were declared helper.

268 8 From Specification to Proof Obligations

methods have a stricter termination model in the sense that there must never
occur infinite recursion when evaluating them.

8.2.4 JavaDL Contracts

With normalized JML contracts at hand, it is time to bring the specification language
artifacts into the logical context of JavaDL. In the following, we will see how JML
contracts are translated into contracts on the level of JavaDL in such a fashion that
most of the clauses in a normalized JML contract have a direct counterpart on the
JavaDL side. Some of the clauses are contracted on the logical side, when they
express aspects of common concern. As with normalized JML contracts, there are
separate JavaDL contracts for the functionality of a method (describing the behavioral
effects of a method) and contracts for the dependency of a query method (describing
which part of the heap a computation may depend upon).

For the reader’s convenience we repeat Definition 3.22 of functional method
contracts here:

Definition 8.2 (Functional method contract). A functional JavaDL method con-
tract for a method or constructor R m(T1 p1, ..., Tn pn) declared in class C is a
quadruple

(pre,post,mod, term)

that consists of

• a precondition pre ∈ DLFml,
• a postcondition post ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING},
• and a termination witness term ∈ TrmAny∪{PARTIAL}.

All contract components may refer to the special program variables self (unless m is
static), heap and to the program variables pi (1≤ i≤ n) representing the method pa-
rameters. The postcondition may additionally refer to the program variables heappre,
exc and res (if the result type R of m is not void).

The postcondition can access more program variables, because it talks about two
program states (before and after the execution) while the other components of the
contract are all evaluated in a single program state—the state before the execution.

The modifier set mod deviates a little from the other components since it may
be either a term (describing the set of locations that may be changed) or the string
STRICTLYNOTHING which does not stand for a term but is an indicator subject to
special treatment when proving and applying the contract. The set mod denotes the
set of existing memory locations that m may modify; hence, the empty location

8.2. From JML Contract Annotations to JavaDL Contracts 269

set corresponds to assignable \nothing. A method with assignable STRICTLY-
NOTHING must not change any location, not even a freshly created one; this fact can
therefore not be expressed as a location set and requires the special indicator.

More on termination proofs for recursive methods can be found in Section 9.1.4,
specifically in the rule in Definition 9.14.

Ghostbusters

When we speak of a contract for a method then, more precisely, we mean the
complete program code consisting of the proper Java code and all JML annota-
tions. That is not necessarily the same as the original Java code. Ideally, program
code and its specification are strictly separated: only the proper program is
executable, while its specification states a property on these executions. Unfor-
tunately, that is not the case with specification and annotation languages like
JML. In addition to contracts and invariants, JML has annotations that are placed
as additional specification-only statements inside the code. These are assign-
ments to ghost variables (i.e., set statements) or assertions (see Sections 7.7.2
and 7.9.3, respectively).

If contracts refer to the annotated code, then how can they make statements
about the original program? The principal idea is that a program augmentation
with JML statements must be a conservative extension w.r.t. program semantics,
i.e., JML statements must not have effects on the part of the state space accessible
by the Java program. Otherwise, the program executions which are considered
during verification would be different from the ones actually run by a Java
virtual machine, and the proofs worthless. The JML language rules forbid set
statements to assign to regular Java locations. However, set statements (and
even assertions) may still alter the control flow by raising exceptions. The
absence of such exceptions—typically runtime exceptions—needs to be proven
separately, see [Filliâtre et al., 2014].18

A dependency contract has fewer items:

Definition 8.3 (Dependency contract). A JavaDL method dependency contract
(pre,var,dep) for a method consists of

• a precondition pre ∈ DLFml,
• a termination witness term ∈ TrmAny,
• and a dependency set dep ∈ TrmLocSet.

All components may refer to the program variables self (unless m is static), heap
and to the program variables pi representing the method parameters.

18 In KeY, not all checks have been implemented yet that are required to ensure JML statements are
conservative extension.

270 8 From Specification to Proof Obligations

The preprocessing of contracts within JML laid out in Section 8.2.1 was designed
to provide a quite direct translation into JavaDL contracts: Every normalized func-
tional JML contract that adheres to the template in Listing 8.1 becomes a functional
contract according to Definition 8.2, while every JML dependency contract adher-
ing to Listing 8.2 becomes a dependency contract according to Definition 8.3. The
elements of the contracts are extracted from their JML counterparts as follows:

• The precondition pre and the dependency set dep of a JavaDL contract are the
direct translation of their JML counterpart: pre := bPrec, dep := bAccc.

• The JavaDL postcondition combines the postcondition for normal termination
Post and the exceptional termination postcondition Signals into one formula:
post := (exc .

= null→ bPostc)∧ (exc 6 .= null→ bSignalsc)
• A special case exists for the modifier set. For most assignable clauses the mo-

difier set mod is the JavaDL correspondent to the location set Ass specified as
assignable clause. If the special symbol STRICTLYNOTHING has been used as
assignable clause, however, the modifier set keeps this special symbol:

mod :=

{
STRICTLYNOTHING if Ass = STRICTLYNOTHING

bAssc otherwise
In Definition 8.4 and in equation (8.4) we will see that this case is treated
specially in the construction of a proof obligation.

• The normalized JML contract allows only true or false as divergence clauses.
The termination indicator term can be directly taken from the JML specification:

term :=

{
PARTIAL if Diverges = true
bVarc if Diverges = false

The Use of Contracts

In this chapter, a correctness proof for a method contract stands on its own.
Whenever a contract has been proved sound, it has been ensured that the formal
requirement laid out in the specification is fully met by the implementation. The
use of method contracts as abstraction of method invocation has already been
briefly covered in Section 3.7.1, but it is only in the next chapter on modular
specification verification that we will learn how method contracts can be used to
reason about Java programs in a modular fashion. There, the contracts give rise
to new calculus rules applicable to method calls in programs. Those rules are
only sound if the corresponding proof obligations have been discharged. They go
hand in glove like lemmas in mathematical proof tradition: the claim of a lemma
corresponds to the specification, its proof corresponds to the proofs conducted in
this chapter, and using it within another proof corresponds to applying calculus
rules that will be introduced in the next chapter.

8.2. From JML Contract Annotations to JavaDL Contracts 271

8.2.5 Loop Specifications

Methods and model fields are not the only syntactical constructs that can be anno-
tated with a specification. Loops can also be furnished with a formal specification.
Definition 3.23 introduced loop specifications as a triple (inv,mod, term) of loop
invariant, modifier set and termination witness. Section 7.9.2 has already outlined
the syntax for loop specifications in JML:
/*@ maintaining maint;
@ decreasing decr;
@ assignable ass;
@*/

JML allows the annotation of several loop invariants in one loop specification. If
more than one loop invariant clause is given, the clauses are combined into one using
&&. Table 8.3 lists the clauses allowed in loop specifications and their default values
in case they are omitted. JML has synonyms for the loop specification keywords
which are also listed in the table.

Table 8.3 Clauses in JML loop specifications

JML keyword synonyms default value

maintaining maintains, true
loop_invariant

decreasing decreases PARTIAL

assignable \everything

The translation from a JML loop specification as above into a JavaDL loop
specification (inv,mod, term) is straightforward and works as follows:

inv = bmaintc
mod = bassc
term = bdecrc

The translation of JML expressions in loop invariants that make use of the \old
operator requires a little attention: The old state refers to the state in which the
enclosing method has been invoked; it does not refer to the state directly prior to
loop entry, and it does not refer to the state after the last iteration.

The translation of heap expressions in \old refers to the heap variable heappre

which has then been set to the according heap at method entry, a method parameter
p is mapped to special purpose program variable ppre in which p’s value at method
entry is stored. Local variables are not affected by \old.

272 8 From Specification to Proof Obligations

8.3 Proof Obligations for JavaDL Contracts

JML and JavaDL method contracts capture requirements on the behavior of Java
methods in a formal manner. For the verification of method implementations, for-
mulas will be introduced in the following that encode their correctness into JavaDL.
Their validity is equivalent19 to the correctness of the method implementation with re-
spect to the contract of the method. On the other hand, if the formula can be falsified,
the counterexample is a proof that the contract is not correct. Proof obligations thus
define a semantics for JavaDL contracts: A method implementation fulfills its formal
contract if and only if the corresponding JavaDL proof obligation is universally valid.

While proof obligations for methods can already be used to prove programs
correct, the specification and verification of individual methods of a Java program is
part of a greater task: the modularization of verification process. In Section 9.4.3 we
will encounter inference rules that replace method invocations by instances of their
JavaDL method contracts. These rules tie in with the proof obligations presented
here in the sense that the correctness of the latter imply the soundness of the former
rules presented in Chapter 9.

By the way: A method contract relevant for a method needs not be annotated
with the method implementation under verification: Recall that JML features in-
heritance of contracts in order to implement the concept of behavioral subtyping
(see Section 7.4.5). Therefore, if a method implementation overrides an implementa-
tion from a superclass or if it implements a signature declared in an interface, the
implementation inherits all (nonprivate) specifications from the supertype.

8.3.1 Proof Obligations for Functional Correctness

Below we define a JavaDL formula whose validity is equivalent to the correctness
of a function method contract. Unlike in other verification frameworks (e.g., earlier
versions of KeY [Beckert et al., 2007]), we do not encode the verification condition
into various assertions to be proved, but construct one single formula per contract.
The general idea of this proof obligation is to show that the precondition implies
that the postcondition holds after the execution of the method. But the postcondition
is not the only guarantee that we are interested in: the assignable clause specified
in JML (respectively the mod set in the JavaDL functional contract) states the
locations that may be modified by the method; and this also needs to be checked. If
Contract = (pre,post,mod, term) with term 6= PARTIAL is a functional contract for
total correctness of method m according to Definition 8.2, both proof objectives can
be expressed together as the formula

pre→ 〈res = self.m(p1,...,pn);〉post ∧ frame (8.1)

19 As a matter of fact, these formulas actually define the notion of correctness in KeY.

8.3. Proof Obligations for JavaDL Contracts 273

in JavaDL. The formula frame capturing the framing condition will be defined in (8.4)
and (8.5) below. In Section 9.5, a concrete example for a functional contract proof
obligation is examined more closely.

Free Preconditions

Since Java is a real-world programming language whose rich feature set has to be
modeled logically in JavaDL, the above proof obligation is too simple. A number
of adaptations need to be made to the proof obligation (8.1) to accommodate the
idiosyncrasies of the Java language and its encoding in JavaDL. One point is that (8.1)
is too strong since the initial state is only constrained by the precondition. The state
space that JavaDL spans for all possibly definable interpretations of the logical
symbols contains a lot more states than are reachable by the execution of Java
programs. This includes the range of values that are admissible for programs. A
typical example is that the this pointer (i.e., the program variable self) must not
hold the null reference. From the logic’s perspective, nothing speaks against this
particular value; it must be ruled out explicitly: Additional assumptions must be
made that constrain the states to those that can actually be reached by a Java program,
thus weakening the proof obligation, e.g., by assuming self 6= null.

This weakening improves precision of the proof obligation, yet it does not com-
promise its correctness since we are only interested in proving the contract correct
w.r.t. all states reachable by a Java program. This additional assumption is called the
free precondition:

freePre := wellFormed(heap)

∧self 6 .= null

∧self.created .
= TRUE

∧ exactInstanceC(self)

∧paramsInRange

(8.2)

The free precondition contains the assumption that the heap is well-formed (e.g.,
there are no dangling references, see Figure 2.7 in Section 2.4.3 on page 42), that the
receiver object is of exact type C, and that the values of all parameters are within the
bounds defined by their type:

paramsInRange :=
n∧

i=1



pi
.
= null∨ pi.created .

= TRUE
if the parameter is of reference type

inInt(pi) if the parameter is declared int pi

inByte(pi) if the parameter is declared byte pi
... likewise for short, long, char

true otherwise

(8.3)

274 8 From Specification to Proof Obligations

The predicates inInt, etc., are true if the argument is within the bounds of that type
(int for inInt). See Section 5.4.3 for the semantics of the predicates in the various
integer semantics available in KeY.

Also method m(p1,...,pn) in (8.1) is subject to a change: The method call
needs to be wrapped in a try-catch statement to capture an exception that might
be thrown during the execution of m in the dedicated program variable exc—thus
making thrown exceptions accessible to the postcondition. In the method call, it
is also made specific which implementation of the method is to be used (dynamic
binding is switched off) by using the method body statement (see Section 3.6.5)
instead of the method call. Finally, an update is added to provide access to values
from before the method execution.

Definition 8.4 (Proof obligation for functional contracts). Consider a functional
method contract Contract = (pre,post,mod, term) for the method m(p1, ..., pn) de-
clared in class or interface C. The implementation of m in a class C′ vC is called
correct with respect to Contract if the following JavaDL formula, called the contract
proof obligation for Contract,

pre∧ freePre→{heappre := heap‖exc := null‖mby := term}
s
try { res=self.m(p1,...,pn)@C’; }
catch(Throwable e) { exc = e; }

{
(post ∧ frame)

is valid. The modality J·K is instantiated by [·] if term= PARTIAL and by 〈·〉 otherwise.
The assignment to res is omitted if m is declared void. The update mby := term is
left out if term = PARTIAL.

This definition makes use of a formula frame (called the framing condition)
encoding the proof obligation that the method does not change locations outside the
modifier set mod. If mod = STRICTLYNOTHING, then the framing condition is

frame := ∀o∀ f ; o. f .
= o. f @heappre (8.4)

requiring that every location on the heap that is reached after the method invocation
holds the same value as before that invocation. If mod differs from STRICTLYNOTH-
ING, the condition is more sophisticated and reads as follows:

frame := ∀o∀ f ; o.created@heappre .
= FALSE

∨o. f .
= o. f @heappre

∨ (o, f) ∈ {heap := heappre}mod
(8.5)

This condition states that any heap location (o, f) either

• belongs to an object o which has not (yet) been created before the method
invocation, or

• holds the same value after the invocation as before the invocation, or
• belongs to the modifier set described by mod (evaluated in the prestate).

8.3. Proof Obligations for JavaDL Contracts 275

The framing problem will be topic of a larger discussion in Section 9.3.
The modality in the contract proof obligation is prefixed with an update which

prepares a few program variables:

heappre := heap the heap state before the method execution is stored in the pro-
gram variable heappre to have it available for evaluation of the postcondition.

exc := null There is no exception observed initially. Unless an exception is
raised, this variable will remain null.

mby := term The value of the termination witness at the beginning of the method is
stored in mby. In Definition 9.18 in Section 9.4.3, we will see that when invoking
a method n, its variant expression termn must be proved smaller20 than mby to
guarantee that there is no infinite recursion.

‘Assignable’ Semantics Versus ‘Modifies’ Semantics

There is a subtle difference in the understanding of assignable clauses between
what JML defines and how KeY implements it in form of the proof obligation
from Definition 8.4. In standard JML, a heap location may only ever be assigned
to if it is contained in the assignable clause. That means that it must not occur
on the left hand side of any Java assignment operator unless included in the
assignable set (hence the name ‘assignable’).

KeY’s dialect of JML, however, sees this a little more liberal: The assignable
clause specifies the set of locations that may have a modified content after
the method has finished. This semantics considers a location unchanged if it
has the original value at the end of the method call. It may change its value
throughout the course of the method as long it regains the old value at the end of
the method. We called this set the ‘modifies’ set for that reason. It is evident that
the assignable semantics is stricter than the modifies semantics. Every program
that is correct with respect to former is correct with respect to the latter.

The opposite direction does not hold. Listing 8.5 shows a small example
of a program that is correct w.r.t. modifies semantics, but not w.r.t. to the as-
signable semantics: The method must not ‘change’ any existing location on the
heap (assignable \nothing;). The value of this.f is temporarily changed
in line 9 but restored directly afterwards to the original value such that at the
end of the method, the original value is in this.f again (at least in sequential,
single-threaded programs). For sequential programs, in which only the initial and
terminal state are relevant, nothing speaks against the more liberal understanding
since intermediate violations cannot be observed. The ‘modifies’ semantics ad-
mits more programs in which locations may have their values changed during the
run. The choice of semantics does make a difference, however, for multithreaded

20 w.r.t. a well-founded ordering

276 8 From Specification to Proof Obligations

programs where threads may rely upon the fact that a parallelly executed thread
keeps the heap state untainted.

1 class Assignable {
2 int f;
3

4 /*@ normal_behavior
5 @ assignable \nothing;
6 @*/
7 void pureMethod() {
8 int old = this.f;
9 this.f = 0;

10 this.f = old;
11 }
12 }

Listing 8.5 The two semantics of assignable clauses

The general proof obligation as it has been introduced in Definition 8.4 applies to
normal Java methods. The general idea for the proof obligation applies as well to
special types of methods and to model methods. However, there are cases that differ
from the above pattern and we will in the following list the proof obligations for
constructors, abstract classes and model methods.

8.3.1.1 Constructors

The proof obligations for constructor contracts are a little different from the proof
obligations presented in Definition 8.4 for ordinary Java methods. It is the Java block
within the modality which has to be modified; for a constructor A(T1 p1, . . . ,Tn pn)
for a class A it reads:
try {
A self = A.<createObject>();
self.<init>(p1, ..., p_n);
self.<initialized> = true;

} catch(Throwable e) { exc = e; }
The Java code fragment makes use of the synthetic methods <createObject> and
<init> and the synthetic Boolean field <initialized> which are not part of the
Java language but additions introduced in the context of symbolic execution and
object creation in KeY. See Section 3.6.6.3 for an introduction to these synthetic
symbols and on how they are used during symbolic execution of object creation.

Note that the contract for a constructor does not only span over the initializing
code in the constructor’s body but also includes the creation of the object. This has

8.3. Proof Obligations for JavaDL Contracts 277

as an implication that the this reference (which points to a created object after the
constructor) is a not-yet-created object in the prestate: \fresh(this) is a valid
postcondition for any constructor.

8.3.1.2 Methods in Abstract Classes

If the class C is declared abstract, there cannot be objects that are exactly of that
type. The predicate exactInstanceC(self) can thus never hold, the free precondition
is always false, and the condition in Definition 8.4 is trivially valid. This seems
against the semantics of method contracts, but since proof obligations exist also for
inherited methods, it is ensured that every running implementation is verified against
their contracts.

The KeY system treats abstract classes specially in that it suppresses the creation
of the corresponding trivial proof obligations altogether to allow the user to focus on
the relevant proof obligations.

8.3.1.3 Model Methods

For a strictly pure model method with a single side-effect-free return statement, the
Java modality can be replaced by an update. Let the body of a model method be
return Expr for some JML expression Expr.

The proof obligation for a such model method is thus

pre∧ freePre→{exc := null‖mby := term}{res := bExprc}post .

in which a simple update takes the place of the Java modality.
Since Expr is side-effect-free, exceptions need not be considered here. An advan-

tage of this formulation of the model method proof obligation is that JML-expressions
(going beyond the Java language) can be used in the return statement as they need
not go through symbolic execution.

For model methods which are not strictly pure or which have a nontrivial method
body, a modality like in Definition 8.4 must be used. If the body additionally makes
use of JML-only expressions or statements, a more liberal modality operator which
allows for JML constructs in Java programs is needed. Currently, this is not supported
in the KeY system.

8.3.1.4 Static Methods

Static methods differ from instance methods essentially in one respect: They do not
have a “this” reference pointing to receiver object. For a static method the proof
obligation of Definition 8.4 therefore needs to be adapted by

278 8 From Specification to Proof Obligations

1. dropping the conjuncts in the free precondition freePre which refer to the pro-
gram variable self and by

2. changing the method body statement such that it refers to the class rather
than to the receiver object self. (The assignment in the modality then reads
res= C.m(p1, . . . ,pn)@C.)

8.3.2 Dependency Proof Obligations

We are not solely interested in verifying that the result of a method invocation adheres
to a given postcondition, but we are also interested in formalizing, specifying and
verifying that the result of a method depends at most on a given set of locations on
the heap.

This question is closely related to the noninterference problem examined in the
light of information flow properties in Chapter 13, and dependency checking can be
regarded as a special case of noninterference checking.

In Section 8.3.1, we discussed that for assignable clauses we do not check that ev-
ery write operation affects a location in the set of modifiable locations, but rather look
at the locations’ contents in the end. A similar situation arises now for checking read
accesses to heap locations. One approach would be to check (by adding assertions
during symbolic execution) that every read access is to an admissible location.

Like for checking assignable clauses, we take a more liberal approach that requires
checking an assertion only after the execution of the method has finished: We assert
that the result of the method is semantically independent from all locations from
which it must not read. This is more liberal than read access checking in that it
allows a location to be read as long as the value does not have any influence on the
method’s result. In the expression o.f*0, for instance, it not necessary that o.f is in
the dependency set since the result of the operation is constant and does not depend
on the location’s value though that occurs syntactically in the evaluation.

Now, the task is to come up with a JavaDL proof obligation for this independence.
One technique to formalize that the result of a method m depends at most on a set
of inputs specified in dep is to prove the following: Invoking the method in two
memory states that agree on memory locations in dep (but may disagree on all other
locations) must yield the same result. This formalization of noninterference is called
self-composition (see [Darvas et al., 2003, 2005]), and a variation of it is also used
for noninterference proofs with KeY, see Section 13.5.1 for details.

Definition 8.5 (Proof obligation for dependency contracts). Consider a method
dependency contract Contract = (pre, term,dep) for the method T m(p1, ...,pn) de-
clared in class C with T 6= void. The implementation is called correct with respect
to Contract if the following JavaDL formula, called the dependency contract proof
obligation,

8.3. Proof Obligations for JavaDL Contracts 279

pre∧ freePre∧wellFormed(h)∧mby .
= term

∧heap2
.
= anon(heap,setMinus(allLocs,dep),h)

∧ [res = self.m(p1, . . ., pn)@C;]res
.
= r1

∧{heap := heap2}[res = self.m(p1, . . ., pn)@C;]res
.
= r2

→ r1
.
= r2

is valid. In this formula additional constants h,heap2 : Heap and r1,r2 : bTc are
used.

The rule is implemented slightly differently (yet equivalently) in the KeY system
where the proof obligation coincides with the one for dependency contracts for
general observer symbols as introduced in Definition 9.12 in Section 9.3.3.

Our interpretation of accessible clauses requires only that the result value of a
method must depend at most on the locations in dep while any heap location may
be modified without restriction. This deviates from the semantics defined for JML
where every effect (on result or heap state) may depend at most on the part of the
heap specified in a accessible clause.

In the course of Chapter 9 we will see that dependency contracts play an important
role for modular reasoning within the KeY approach. Their primary use case is to
specify in which cases pure methods used within specifications return the same
result. For this purpose it is natural to only analyze dependency of the method return
value disregarding all effects on heap locations. The reader who is interested in more
accurate and general specification and more powerful verification of information
flow properties using KeY is referred to Chapter 13.

8.3.3 Well-Definedness Proof Obligations

Some operators of the expression language have a canonical semantics only for a
subset of possible inputs, and the meaning of expressions in which such operators
are applied outside this set—called the operator’s domain—is yet to be defined. As
an example, consider the following method specification

Java + JML
/*@ public normal_behavior
@ ensures \result >= 1000 / n;
@*/

int m(int n) { ... }

Java + JML

which postulates that 1000/n is a lower bound for the result value. If somewhere
in the program the method is invoked via m(0), the problem of the specification
becomes apparent: To evaluate the postcondition, the expression 1000/0 would also
have to be evaluated—but what is the result of this operation?

280 8 From Specification to Proof Obligations

Since the expression language of JML is an extension of the side effect-free
expressions in Java, it is desirable that the semantics of Java expressions should be
retained if they are used in JML context. This is problematic since evaluating 1/0
in Java does not give a value but raises a DivisionByZeroException. Exception
handling is a concept for managing program control flow and not for expression
evaluation: If an exception is raised during expression evaluation, control flow is
transferred abruptly and the according expression does not give any value.

In JavaDL, all functions and predicates are total such that every expression always
yields a value in its co-domain. The expression 1/0 evaluates to an integer value—
however, we cannot assume anything about this value, except that it is an integer. This
approach is called underspecification; see Section 2.3.2 and [Schmitt, 2011, Sect. 2]
for more details. It has the advantages of being easily definable and that axioms
of classical logic are still valid. If a function symbol is applied to argument values
which are not in its domain, then the function symbol is left uninterpreted for these
input values. For a formula to be valid, it is required to be satisfied for all possible
results in the undefined places; i.e., it must be valid in all structures which lift the
places of partiality with an arbitrary value. For example, two interpretations that
map 1/0 to 0 and 1/0 to 42, respectively, both need to be taken into consideration
when proving the validity of a formula. The property ∃int x; x .

= 1/0 is valid since
JavaDL’s division is a total function and in any model there is one integer (albeit
unknown) value which is equal to 1/0 . The equality 1/0 .

= 1/0 is also valid due to
the reflexivity of .

=. However, neither of the statements 1/0 > 0 nor ¬(1/0 > 0) is
valid since 1/0 is positive in some interpretations and is nonpositive in the others.
Likewise, the equality 1/0 .

= 2/0 is neither valid nor unsatisfiable; it also depends
on the semantics of the underspecified parts of integer division.

There are several concepts to model undefinedness logically. Besides underspecifi-
cation, the issue of undefined function applications can be modeled using a dedicated
error element, three-valued logics, dependent types, or partial functions to name a
few concepts. For an extensive comparison refer to [Hähnle, 2005].

In the following, proof obligations will be introduced that show that an expression
does not depend on the semantics of undefined function applications. Hence, the
concept by which function applications outside domains are modeled becomes
irrelevant since the valuation of expressions is guaranteed not to be influenced by
external valuations.

The analysis presented in the following is targeted at JML specifications. This
raises the question: What are the admissible argument values for the JML operators?
According to the JML reference manual [Leavens et al., 2013], a Boolean expression
is satisfied in a state if it has the truth value true and “does not cause an exception
to be raised.” Raising an exception is thus the Java/JML indication for applying a
function outside its domain. We capture this in the following definition which cannot
be entirely formal since we have not formally defined the concepts of memory state
(being program execution contexts with local variables, heap, method call stack, . . .).

Definition 8.6 (Well-definedness). Given a JML expression e and a memory state
s, the expression e is called well-behaving in s if the from-left-to-right short-circuit

8.3. Proof Obligations for JavaDL Contracts 281

evaluation of e in s does not raise an exception. The expression e is called well-defined
if it is well-behaving in all memory states.

A JML method contract is called well-defined if

1. its precondition is well-defined, and
2. all clauses evaluated in the prestate are well-behaving in all states that satisfy the

precondition, and
3. all clauses evaluated in the poststate (i.e., signals and ensures clauses) are

well-behaving in all states which are reachable by executing the method in a
state satisfying the precondition.

The intuition behind this exception-based definition becomes more natural when
considering another use case of JML specifications (besides deductive verification):
During runtime assertion checking, a specification is to be refused and to be consid-
ered ill-defined if its evaluation causes an exception.

When checking JML contracts, it is always the precondition which is checked
before anything else. Hence, all other specification elements are only ever evaluated
if the precondition holds (and is well-behaving). Hence for the well-definedness
of contracts, the fact that the precondition holds21 can be safely assumed when
investigating the well-definedness of other specification elements. We say that the
precondition guards the other specification elements. The idea of a conservative
formulation of specifications in which the precondition guards the postcondition has
been brought forward by Leavens and Wing [1998].

Example 8.7. The method contract for method m introduced at the beginning of the
section is not well-defined since there is a memory state (namely, if n = 0) in which
the postcondition is not well-behaving.

The situation can be remedied by adding the precondition requires n != 0;
to the contract. Under assumption of this precondition, the division 1000/x does not
raise an exception; the postcondition is well-defined.

It is not only the precondition that guards other parts of a specification. Since
expressions are evaluated from left to right in Java (and, hence, also in JML), it is
possible to guard subexpressions which occur ‘further to the right’ from within the
same specification element. As soon as the result of certain Boolean operations is
inevitable in the evaluation of a Java expression, the remainder of the expression is
no longer considered for evaluation. This is called short-circuit or lazy evaluation.
When the JVM computes the value of A && B for the short-circuited conjunction &&,
it first evaluates A and if that is false, the conjunction is falsified and B needs not be
evaluated for the result. In the logic we can formulate this as

val(bA && Bc) =

{
ff if val(bAc) = ff
val(bBc) if val(bAc) = tt

21 nota bene: we assume that the precondition holds, not that it is well-behaving or well-defined.

282 8 From Specification to Proof Obligations

The value val(bBc) is only referred to if A evaluates to true. Hence, It suffices when
B is well-behaving in states where A is satisfied. In classical (two-valued) logics, this
definition is not different from the usual definition of conjunction. It is different if
one allows val to fail, for instance, by giving a special error truth value different from
tt and ff .

Example 8.8. The class invariants of the following class are well-defined since all
possibly not well-behaving operations are guarded.

Java + JML
1 class GuardExample {
2 int[] values;
3 int length;
4 /*@ nullable @*/ GuardExample next;
5

6 //@ invariant next != null ==> length == next.length+1;
7 //@ invariant (\forall int i;
8 //@ 0<=i && i < values.length; values[i] > 0);
9 }

Java + JML

The first invariant in line 6 aligns the values of the length fields of nodes in a singly
linked list. In the expression next.length, the operand next may be null and the
field access locally ill-behaving. But when evaluating the entire invariant, it cannot
raise an exception since the implication operator ==> has short-circuit semantics.
If this.next is different from the null reference, the equality can be evaluated
without raising an exception; and if this.next is null, then the left hand side of the
implication evaluates to false and the expression is already true without evaluation of
the equality.

The second invariant in line 7 is also well-defined since for every possible
value for i, the range check 0<=i && i<values.length guards the array access
values[i] which can thus not cause an ArrayIndexOutOfBoundsException.

8.3.3.1 Well-Definedness of JML Expressions

In order to be able to describe the proof obligations which come up for JML expres-
sions, we introduce a new transformation function ω which takes a JML expression
and produces a JavaDL formula from it.

Definition 8.9. The well-definedness term transformation operator ω : JExp →
DLFml assigns to every JML expression a JavaDL formula. It is defined in Ap-
pendix A.3. For its evaluation, it makes use of the translation function b·c from
Definition 8.1.

The intention behind ω is that whenever ω(e) is true then e is well-behaving. This
logical notion of a well-definedness condition refines the informal Definition 8.6 and
leads to

8.3. Proof Obligations for JavaDL Contracts 283

Proposition 8.10. Let s be a memory state and bsc the corresponding JavaDL struc-
ture. and e ∈ JExp. If bsc |= ω(e), then e is well-behaving in s. If ω(e) is universally
valid, then e is well-defined.

A formal proof is omitted mainly since it would require the formalization of
left-to-right short-circuit evaluation for the entire JML language, which we do not
want to provide here.

Instead, we focus on central items of ω’s definition, the full definition can be
found in Appendix A.3. For many JML function and operator applications, well-
definedness of the application reduces to well-definedness of all arguments. Only if
the function’s domain is restricted, additional requirements are to be met. For the
arithmetic expressions we have, for instance,

ω(A + B) = ω(A)∧ω(B) (accordingly for *, +, -, <, ==, . . .)
but ω(A / B) = ω(A)∧ω(B)∧bBc 6 .= 0 (accordingly for %) .

Note that the well-definedness transformation ω refers to the evaluation transforma-
tion b·c. Boolean expressions support short-circuit evaluation as mentioned above:

ω(A && B) = ω(A)∧ (bAc → ω(B))

ω(A ==> B) = ω(A)∧ (bAc → ω(B))

ω(A || B) = ω(A)∧ (¬bAc → ω(B))

but ω(A & B) = ω(A)∧ω(B)

An interesting question for short-circuit evaluation is the extension of the
concept to quantifiers. One can argue that the existentially quantified formula
(\exists int x; 1/(x+1) == 1) is well-defined since there exists a witness
(the value 0) that makes the statement true such that all other evaluations are irrele-
vant and can be omitted due to short-circuit evaluation. That would require, however,
that in a left-to-right evaluation the matrix of the quantifier is evaluated at 0 before
it is evaluated at −1 (which would raise an exception). To do so, a (well-)ordering
of the values of the quantified domain must be fixed such that in the sequence of
valuations those coming later are guarded by those ordered before. In the case of
integers, a natural order might be suggested, but for other domains (like Object), no
canonical, intuitive order comes to mind. For that reason, we opt for a conservative
approach for the well-definedness of quantifiers: The valuation of one instantiation
cannot guard another instantiation, and we have

ω((\Q T v; A; B)) = ∀bTc v;
(
ω(A)∧ (bAc → ω(B))

)
for a generalized quantifier Q ∈ {forall,exists,sum,infinte_union,product,
min,max}, where a missing guard A defaults to true as usual.

Another important issue of well-definedness is null dereferencing. The operator
o.f for a field access is only well-behaving if the receiver object is different form the
null reference. The same applies to array accesses, where the index must additionally
lie within the array bounds such that we have

284 8 From Specification to Proof Obligations

ω(A.f) = ω(A)∧bAc 6 .= null for a field access
and ω(A[B]) = ω(A)∧ω(B)∧bAc 6 .= null∧0≤ bBc∧bBc< length(bAc)

for an array access.
For references to method invocations within specifications, the design-by-contract

principle persists: A method invocation must satisfy the precondition of the contract.
Let Prem be the functional precondition22 of method m (compare Listing 8.1). The
precondition refers to the formal receiver this and parameters p1, . . . ,pn which have
to be replaced by the concrete receiver o and the arguments ai:

ω(o.m(a1, . . . ,an)) = ω(o)∧boc 6 .= null∧
n∧

i=1

ω(ai)∧⌊
Prem[p1/a1, . . . ,pn/an,this/o]

⌋

8.3.3.2 Well-Definedness of Method Contracts

Using the well-definedness term transformation ω , we can now also define a con-
dition for the well-definedness of method contracts. According to Definition 8.6,
well-definedness of contract clauses other than the precondition is only required
conditionally under assumption of the precondition being satisfied (the precondition
guards the other clauses).

Definition 8.11 (Method contract well-definedness). Let the normalized method
contract according to Listing 8.1 for method m be given. The well-definedness proof
obligation for the contract for m is

ω(m) = ω(Pre)∧
(bPrec → ω(Var)∧ω(Ass)∧

{heap := anon(heap,bAssc,heap′)‖heappre := heap}
(ω(Post)∧ (bec 6 .= null→ ω(ExPost))))

and the well-definedness proof obligation for the dependency contract in Listing 8.2
reads

ω(m) = ω(Pre)∧ (bPrec → ω(Var)∧ω(Acc)) .

While the precondition Pre, the variant Var, the accessible clause Acc, and the
assignable clause Ass are all evaluated in the prestate of the method invocation, the
postcondition Post and the exceptional postcondition ExPost are evaluated in the
poststate. Since the specification should be consistent in itself without reference
to the implementation, the poststate should not be considered as the state after the

22 If m has more than one contract, it suffices to satisfy one of the preconditions. Then Prem refers
to the disjunction of the preconditions of all functional method contracts which guarantee absence
of exceptions (e.g., by being annotated normal_behavior).

8.3. Proof Obligations for JavaDL Contracts 285

execution of the implementation. Instead a most general poststate is assumed in
which all assignable locations on the heap are assigned an unknown value using the
anonymizing function anon (see Figure 2.11 in Section 2.4.5).

For well-definedness, the order of clauses is important. During normalization, if
several clauses of a kind are present, they are combined into one (see Section 8.2.1.5).
Two preconditions are conjoined into one using the short-circuit conjunction &&
such that preconditions mentioned earlier in a contract guard preconditions which
are mentioned afterwards. Nonnullness among other implicit assumptions is made
explicit during normalization (see Section 8.2.1.2). The explicit clauses which result
from this normalization are added before the explicit preconditions such that they
can guard them.

Example 8.12. Consider the following method contract with two preconditions.

Java + JML
//@ requires a.length > 0;
//@ requires a[0] == 0;
void m(/*@non_null*/ int[] a);

Java + JML

A desugaring normalization of this contract results in the following contract with a
single precondition

Java + JML
//@ requires a != null && a.length > 0 && a[0] == 0;
void m(/*@nullable*/ int[] a);

Java + JML

in which a!=null and a.length > 0 together guard the array access a[0] such
that this contract is well-defined.

8.3.3.3 Observations Concerning Well-Definedness

Modularity of Well-Definedness Proof Obligations

A remark on the precision of well-definedness for well-behaving specifications:
It may be that a specification behaves well for all runs of a program, but that
expressions—when inspected in isolation—are not well-defined. If x is a variable
whose value is set to 1 initially, and never changed later, then the expression 1/x
is well-behaving within the context of this program. However, if the context (i.e.,
the concrete program) is removed and the expression is considered in isolation, 1/x
needs to be considered ill-defined. This is the view that KeY takes.

It is a deliberate choice: Specifications should be checked modularly for well-
definedness ignoring the concrete program which they annotate. Well-definedness
should not be a property depending on the behavior of the program. This has the

286 8 From Specification to Proof Obligations

benefit that if the program context changes (modification or extension of the program
text), the well-definedness of the specification is not compromised.

Method contracts can always be made well-defined by adding the necessary
assumptions guaranteed by the code explicitly to the specification. Making the
guards explicit also clarifies specifications since it explicitly points out corner cases
which are often the reason behind misunderstood specifications.

On The Evaluation Of Ill-Behaving Contracts

Up to this point, we have defined when a contract is or is not well-defined and found
proof obligations to show its well-definedness. But, what happens if a clause of a
contract is evaluated despite being ill-defined?

JML answers this by saying that any ill-behaving Boolean expression evaluates to
false. This is called strong validity by Chalin and Rioux [2008]. It can be rephrased as
‘an expression in which undefined subexpressions occur syntactically is not satisfied.’
This is a very restrictive definition; occurrences of undefined expressions have an
effect on satisfiability even if they do not matter in the classical logic sense.

Originally, JML propagated underspecification for the semantics of ill-defined
expressions; the JML expression 1/0 == 1/0 would have been evaluated to true,
now it evaluates to false. Chalin [2007] demonstrated through empirical studies that
this semantics for function application outside of definition domain operations did
not match programmers’ expectations. For a software engineer, the expression 1/0
does not have a value but raises an exception which has to be dealt with.

Left-to-Right Versus Bidirectional Evaluation

JML defines the evaluation of expressions from left to right with short-circuiting as
shown above. This is owed to the fact that JML semantics is based on the semantics
of the Java programming language.

However, when discussing the issue of well-definedness of logical formulas, there
is no reason why the formula x 6= 0∧1/x > 0 should be treated any differently from
1/x > 0∧ x 6= 0—the conjunction is commutative after all.

And it is possible to define well-definedness symmetrically such that both con-
juncts guard each other and the order of arguments to connectives does not play a
role for their semantics. If done naively, the bi-directional guarding produces well-
definedness proof obligations which are exponential in the length of the original
formula. However, Darvas et al. [2008] proposed an efficient encoding that produces
well-defined conditions with bidirectional guarding with linear effort.

However, it was not the complexity of the proof-obligation that was the rationale
for the choice of JML semantics, but its heritage from Java semantics. The expression
1/x > 0 && x != 0 may throw an exception in Java even if its truth value does
not depend on the value of 1/x.

8.3. Proof Obligations for JavaDL Contracts 287

The well-definedness proof mechanism implemented in KeY (see [Kirsten, 2013])
supports both left-to-right and efficient bidirectional short-circuiting semantics.

Well-Definedness Is An Issue Of Pragmatics

Is well-definedness an issue of the syntax or the semantics of the specification
language? There are aspects of well-formedness at the syntactic level: the adherence
of programs and specifications to the languages’ grammars and their well-typedness.
The syntax and type checking for JML and JavaDL can be done efficiently on
a syntactical level. However, well-definedness following Definition 8.6 is not a
syntactic property that can be checked automatically by an efficient static analysis
in all cases; it is not decidable. At the same time, it is wise to separate the concerns
of well-definedness of a specification from its meaning. From a language designer’s
point of view, well-definedness is neither a syntactic nor a semantic problem but
answers to the question whether a statement is sensible (in its context). Linguists
call the field of interpretation of statements beyond that of its bare (model-theoretic)
evaluation the pragmatics of a language. The statement 1/x > 0, for instance, might
invoke in the reader the implicature “x cannot be 0 since it occurs as denominator in
a division.” Doing well-definedness checking ensures that pragmatic issues outside
the semantic truth value evaluation do not arise.

Auxiliary JML statements that may occur within the code (such as the set statement
to assign to ghost variables/fields or loop invariants) have not been considered here,
and neither have been class or loop invariants. For details on their treatment in KeY,
see [Kirsten, 2013]. The implementation in KeY is slightly different from the current
presententation, because it operates on JavaDL, where well-definedness of heap and
field expressions is checked in addition.

