
Formal Methods in Software Engineering

Dynamic Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ -LANDAU

Formal Methods in Software Engineering – p.1



WHILE: A Simple Programming Language

Logical basis

Typed first-order predicate logic

(Types, variables, terms, formulas, . . . )

Formal Methods in Software Engineering – p.2



WHILE: A Simple Programming Language

Logical basis

Typed first-order predicate logic

(Types, variables, terms, formulas, . . . )

Assumption for examples

The signature contains a type Nat and appropriate symbols:

function symbols 0, s,+,∗ (terms s(0), s(s(0)), . . . written as 1, 2, . . .)

predicate symbols
.
=, <, ≤, >, ≥

NOTE: This is a “convenient assumption” not a definition

Formal Methods in Software Engineering – p.2



WHILE: A Simple Programming Language

Programs

Assignments: X := t X: variable, t: term

Test: if B then α else β fi B: quantifier-free formula,
α, β: programs

Loop: while B do α od B: quantifier-free formula,
α: program

Composition: α; β α, β programs

WHILE is computationally complete

Formal Methods in Software Engineering – p.3



WHILE: Examples

Compute the square of X and store it in Y

Y := X ∗X

Formal Methods in Software Engineering – p.4



WHILE: Examples

Compute the square of X and store it in Y

Y := X ∗X

If X is positive then add one else subtract one

if X > 0 then X := X + 1 else X := X− 1 fi

Formal Methods in Software Engineering – p.4



WHILE: Example – Square of a Number

Compute the square of X (the complicated way)

Making use of: n2
= 1 + 3 + 5 + · · ·+ (2n− 1)

I := 0;

Y := 0;

while I < X do

Y := Y + 2 ∗ I + 1;

I := I + 1

od















































αsquare

Formal Methods in Software Engineering – p.5



WHILE: Example – Multiplication

Russian multiplication

Z := 0;

while ¬ (B
.
= 0) do

if ((B/2) ∗ 2
.
= B) then

A := 2 ∗A;

B := B/2

else

Z := Z + A;

A := 2 ∗A;

B := B/2

fi

od



































































































αmult

Formal Methods in Software Engineering – p.6



WHILE: Operational Semantics

Given

A (fixed) first-order structure A interpreting
the function and predicate symbols in the signature

State

s = (A , β) where

β a variable assignment (i.e. function interpreting the vari ables )

Formal Methods in Software Engineering – p.7



WHILE: Operational Semantics

State update

s[X/e] = (A , β[X/e])

with

β[X/e](Y) =











e if Y = X

β(Y) otherwise

Formal Methods in Software Engineering – p.8



WHILE: Operational Semantics

Define the relation s[[α]]s′ as follows

s[[X := t]]s′ iff s′ = s[X/s(t)]

s[[if B then α else β fi ]]s′ iff

s |= B and s[[α]]s′ or s |= ¬ B and s[[β]]s′

s[[while B do α od ]]s′ iff there are states s = s0, . . . , st = s′ s.t.

si |= B for 0 ≤ i ≤ t− 1 and st |= ¬ B and

s0[[α]]s1, s1[[α]]s2, . . . , st−1[[α]]st

s[[α; β]]s′ iff there is a state s′′ such that

s[[α]]s′′ and s′′[[β]]s′

[[α]] is a partial function
Formal Methods in Software Engineering – p.9



A Different Approach to WHILE

Programs

X := t (atomic program)

α; β (sequential composition)

α∪ β (non-deterministic choice)

α∗ (non-deterministic iteration, n times for some n ≥ 0)

F? (test)
remains in initial state if F is true, does not terminate if F is false

Formal Methods in Software Engineering – p.10



A Different Approach to WHILE

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if B then α else β fi ≡ (B?; α)∪ ((¬ B)?; β)

while B do α od ≡ (B?; α)∗; (¬ B)?

Formal Methods in Software Engineering – p.11



Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Formal Methods in Software Engineering – p.12



Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

{P} α {Q}

Meaning:

If α is started in a state satisfying P and terminates,
then its final state satisfies Q

Formally:

{P} α {Q} is valid iff
for all states s, s′, if s |= P and s[[α]]s′, then s′ |= Q

Formal Methods in Software Engineering – p.12



Expressing Program Properties: Examples

{true} X := X + 1 {X > 1}

{even(X)} X := X + 2 {even(X)} where even(X) ≡ ∃Z (X
.
= 2 ∗Z)

{true} αsquare {Y = X ∗X}

Formal Methods in Software Engineering – p.13



An Annotated Program

Z := 0;

assert X
.
= A ∧ Y

.
= B;

while ¬ (B
.
= 0) do

assert A ∗ B + Z
.
= X ∗Y;

if ((B/2) ∗ 2
.
= B) then

A := 2 ∗A;

B := B/2

else
Z := Z + A;

A := 2 ∗A;

B := B/2

fi
od
assert B

.
= 0

assert Z
.
= X ∗Y

Note

X, Y are “external” variables

Formal Methods in Software Engineering – p.14



Dynamic Logic

The idea of dynamic logic

Annotated programs use formulas within programs

Dynamic Logic uses programs within formulas

Instead of “assert F” after program segment α, write: [α] F

Formal Methods in Software Engineering – p.15



Dynamic Logic

The idea of dynamic logic

Annotated programs use formulas within programs

Dynamic Logic uses programs within formulas

Instead of “assert F” after program segment α, write: [α] F

A multi-modal logic

the states are the possible worlds

two modalities [α] and 〈α〉 for each program α

state s′ is α-reachable from state s iff s[[α]]s′

Formal Methods in Software Engineering – p.15



Dynamic Logic: Semantics

Semantics

[α] F true in a state s iff
F is true in all states that are α-reachable from s

(partial correctness)

〈α〉F true in a state s iff
F is true in some state that is α-reachable from s

(total correctness)

A formula is valid iff it is valid in all states

Formal Methods in Software Engineering – p.16



Dynamic Logic: Examples

Example formulas (validity depends on α,β)

(〈α〉X
.
= Y)↔ (〈β〉X

.
= Y)

∃X 〈α〉 true

Formal Methods in Software Engineering – p.17



Dynamic Logic: Examples

Example formulas (validity depends on α,β)

(〈α〉X
.
= Y)↔ (〈β〉X

.
= Y)

∃X 〈α〉 true

Valid formulas

[X := 1] X
.
= 1

[while true do X := X od ] false

〈α∗〉F→ (F ∨ 〈α∗〉(¬ F ∧ 〈α〉F))

Formal Methods in Software Engineering – p.17



Dynamic Logic: Examples

Example formulas (validity depends on α,β)

(〈α〉X
.
= Y)↔ (〈β〉X

.
= Y)

∃X 〈α〉 true

Valid formulas

[X := 1] X
.
= 1

[while true do X := X od ] false

〈α∗〉F→ (F ∨ 〈α∗〉(¬ F ∧ 〈α〉F))

Multiplication example

∀A, B, X, Y, Z(X
.
= A∧Y

.
= B→ [αmult] Z

.
= X ∗Y)

Formal Methods in Software Engineering – p.17



Dynamic Logic: More Examples

Hoare formulas

{P} α {Q} the same as P→ [α] Q

Formal Methods in Software Engineering – p.18



Dynamic Logic: More Examples

Hoare formulas

{P} α {Q} the same as P→ [α] Q

Duality of the modal operators

[α] P ↔ ¬ 〈α〉¬ P

Formal Methods in Software Engineering – p.18



Some DL-Tautologies

Assumption: X does not occur in π

(∃X 〈π〉F) ↔ (〈π〉∃X F)

(∀X [π]F) ↔ ([π]∀X F)

(∃X [π]F) → ([π]∃X F)

([π]∃X F) → (∃X [π]F) provided π is deterministic

(〈π〉∀X F) → (∀X 〈π〉F)

(∀X 〈π〉F) → (〈π〉∀X F) provided π is deterministic

(〈π〉(F ∧ G)) → ((〈π〉F) ∧ 〈π〉G)

((〈π〉F) ∧ 〈π〉G) → (〈π〉(F ∧ G)) provided π is deterministic

Formal Methods in Software Engineering – p.19



A Sequent Calculus for Dynamic Logic

Sequent

Γ ∆

Meaning
V

Γ logically implies
W

∆

(for all variable assignments, i.e.,
free variables in the sequent are implicitly universally qu antified)

Formal Methods in Software Engineering – p.20



Sequent Rules

Form of sequent rules

Γ1 ∆1

Γ2 ∆2

or
Γ1 ∆1 Γ′1 ∆′1

Γ2 ∆2

(rules can also have more than two premisses)

Formal Methods in Software Engineering – p.21



Sequent Rules

Form of sequent rules

Γ1 ∆1

Γ2 ∆2

or
Γ1 ∆1 Γ′1 ∆′1

Γ2 ∆2

(rules can also have more than two premisses)

Meaning

The conclusion is true in a state
whenever all premisses are true in that state

In particular:

The conclusion is valid whenever all premisses are valid

Formal Methods in Software Engineering – p.21



Sequent Calculus for First-order Logic

Axioms

F, Γ F, ∆ false , Γ ∆ Γ true , ∆

Formal Methods in Software Engineering – p.22



Sequent Calculus for First-order Logic

Axioms

F, Γ F, ∆ false , Γ ∆ Γ true , ∆

Negation Γ F, ∆

Γ, ¬ F ∆

Γ, F ∆

Γ ¬ F, ∆

Formal Methods in Software Engineering – p.22



Sequent Calculus for First-order Logic

Axioms

F, Γ F, ∆ false , Γ ∆ Γ true , ∆

Negation Γ F, ∆

Γ, ¬ F ∆

Γ, F ∆

Γ ¬ F, ∆

Implication Γ F, ∆ Γ, G ∆

Γ, F→ G ∆

Γ, F G, ∆

Γ F→ G, ∆

Formal Methods in Software Engineering – p.22



Sequent Calculus for First-order Logic

Conjunction Γ, F, G ∆

Γ, F∧G ∆

Γ F, ∆ Γ G, ∆

Γ F∧G, ∆

Formal Methods in Software Engineering – p.23



Sequent Calculus for First-order Logic

Conjunction Γ, F, G ∆

Γ, F∧G ∆

Γ F, ∆ Γ G, ∆

Γ F∧G, ∆

Disjunction Γ, F ∆ Γ, G ∆

Γ, F∨G ∆

Γ F, G, ∆

Γ F∨G, ∆

Formal Methods in Software Engineering – p.23



Sequent Calculus for First-order Logic

Universal quantification

Γ, ∀X F, F{X← t} ∆

Γ, ∀X F ∆

t an arbitrary term,

{X← t} admissible for F

Γ F{X← Z}, ∆

Γ ∀X F, ∆

Z a new variable

Formal Methods in Software Engineering – p.24



Sequent Calculus for First-order Logic

Universal quantification

Γ, ∀X F, F{X← t} ∆

Γ, ∀X F ∆

t an arbitrary term,

{X← t} admissible for F

Γ F{X← Z}, ∆

Γ ∀X F, ∆

Z a new variable

Existential quantification

Γ ∃X F, F{X← t}, ∆

Γ ∃X F, ∆

t an arbitrary term,

{X← t} admissible for F

Γ, F{X← Z} ∆

Γ, ∃X F ∆

Z a new variable

Formal Methods in Software Engineering – p.24



Example Proof

axiom
6 p(V), p(U) p(U), ∀Y p(Y)

5 p(V) p(U), p(U)→ ∀Y p(Y)

4 p(V) p(U), ∃X(p(X)→ ∀Y p(Y))

3 p(V) ∀Y p(Y), ∃X (p(X)→ ∀Y p(Y))

2 p(V)→ ∀Y p(Y), ∃X (p(X)→ ∀Y p(Y))

1 ∃X (p(X)→ ∀Y p(Y))

ex-right

impl-right

all-right

ex-right

impl-right

Formal Methods in Software Engineering – p.25



Admissibility of Substitutions

Motivation

We want to have that

∀X F → Fσ

Fσ → ∃X F

is valid for all formulas F and substitutions σ

Formal Methods in Software Engineering – p.26



Admissibility of Substitutions

Definition

A substitution

{X← t}

is admissible for a formula F iff

there is no variable Y such that

Y occurs in t

there is a quantification ∀Y or ∃Y in F

there is a free occurrencence of X in the scope of that quantification

Formal Methods in Software Engineering – p.27



Sequent Calculus for Dynamic Logic

Cut rule Γ F, ∆ F, Γ ∆

Γ ∆

Formal Methods in Software Engineering – p.28



Sequent Calculus for Dynamic Logic

Cut rule Γ F, ∆ F, Γ ∆

Γ ∆

Equality rules

Γ t
.
= t, ∆

s
.
= t, Γ{s← t} ∆{s← t}

s
.
= t, Γ ∆

t
.
= s, Γ{s← t} ∆{s← t}

t
.
= s, Γ ∆

Formal Methods in Software Engineering – p.28



Sequent Calculus for Dynamic Logic

Oracle for first-order logic

Γ ∆
if no programs occur in Γ, ∆ and A |=

V

Γ→
W

∆

Only of theoretical use! Not computable!

Formal Methods in Software Engineering – p.29



A Sequent Calculus for Dynamic Logic

Composition rule

Γ [α][β] F, ∆

Γ [α; β] F, ∆

Formal Methods in Software Engineering – p.30



A Sequent Calculus for Dynamic Logic

Composition rule

Γ [α][β] F, ∆

Γ [α; β] F, ∆

Assignment rule

Γ{X← X′}, X
.
= t{X← X′} F, ∆{X← X′}

Γ [X := t] F, ∆
X′ a new variable

Example:

even(X′), X
.
= X′+ 2 even(X)

even(X) [X := X + 2] even(X)

Formal Methods in Software Engineering – p.30



A Sequent Calculus for Dynamic Logic

Conditional rule

Γ, B [α] F, ∆ Γ,¬ B [β] F, ∆

Γ [if B then α else β fi ] F, ∆

Formal Methods in Software Engineering – p.31



Reasoning about Loops

To prove

[while B do body od ] F

find an (arbitrary) formula Inv such that

1. Inv is true before execution of the loop

2. Inv∧ B→ [body]Inv is true

3. Inv∧¬ B→ F is true

Note

Inv is a loop invariant

Formal Methods in Software Engineering – p.32



Sequent Calculus for Dynamic Logic

Loop rule

Γ Inv, ∆ Inv, B [α] Inv Inv,¬ B F

Γ [while B do α od ] F, ∆

Formal Methods in Software Engineering – p.33



Example

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

[I := 0; Y := 0; while B do α od ] Y
.
= X ∗X

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

[I := 0] [Y := 0] [while B do α od ] Y
.
= X ∗X

[I := 0; Y := 0; while B do α od ] Y
.
= X ∗X

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

I
.
= 0 [Y := 0] [while B do α od ] Y

.
= X ∗X

[I := 0] [Y := 0] [while B do α od ] Y
.
= X ∗X

[I := 0; Y := 0; while B do α od ] Y
.
= X ∗X

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

I
.
= 0, Y

.
= 0 [while B do α od ] Y

.
= X ∗X

I
.
= 0 [Y := 0] [while B do α od ] Y

.
= X ∗X

[I := 0] [Y := 0] [while B do α od ] Y
.
= X ∗X

[I := 0; Y := 0; while B do α od ] Y
.
= X ∗X

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

Invariant Inv: I ≤ X ∧ Y
.
= I ∗ I

I
.
= 0, Y

.
= 0 Inv Inv, B [α] Inv Inv, ¬ B Y

.
= X ∗X

I
.
= 0, Y

.
= 0 [while B do α od ] Y

.
= X ∗X

I
.
= 0 [Y := 0] [while B do α od ] Y

.
= X ∗X

[I := 0] [Y := 0] [while B do α od ] Y
.
= X ∗X

[I := 0; Y := 0; while B do α od ] Y
.
= X ∗X

[αsquare] Y
.
= X ∗X

B: I < X

α: Y := Y + 2 ∗ I + 1; I := I + 1

Formal Methods in Software Engineering – p.34



Example

Left branch (pre-condition implies invariant)

I
.
= 0, Y

.
= 0 I ≤ X ∧ Y

.
= I ∗ I

Formal Methods in Software Engineering – p.35



Example

Left branch (pre-condition implies invariant)

I
.
= 0, Y

.
= 0 0 ≤ X ∧ Y

.
= 0 ∗ 0

I
.
= 0, Y

.
= 0 I ≤ X ∧ Y

.
= I ∗ I

Formal Methods in Software Engineering – p.35



Example

Left branch (pre-condition implies invariant)

I
.
= 0, Y

.
= 0 0 ≤ X I

.
= 0, Y

.
= 0 Y

.
= 0 ∗ 0

I
.
= 0, Y

.
= 0 0 ≤ X ∧ Y

.
= 0 ∗ 0

I
.
= 0, Y

.
= 0 I ≤ X ∧ Y

.
= I ∗ I

Formal Methods in Software Engineering – p.35



Example

Middle branch (invariant is indeed invariant)

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Middle branch (invariant is indeed invariant)

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1; I := I + 1] Inv

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Middle branch (invariant is indeed invariant)

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1] [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1; I := I + 1] Inv

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Middle branch (invariant is indeed invariant)

I ≤ X, Y′
.
= I ∗ I, I < X, Y := Y′+ 2 ∗ I + 1 [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1] [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1; I := I + 1] Inv

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Middle branch (invariant is indeed invariant)

I′ ≤ X, Y′
.
= I′ ∗ I′, I′ < X, Y

.
= Y′+ 2 ∗ I′+ 1, I

.
= I′+ 1 Inv

I ≤ X, Y′
.
= I ∗ I, I < X, Y := Y′ + 2 ∗ I + 1 [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1] [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1; I := I + 1] Inv

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Middle branch (invariant is indeed invariant)

I′ < X, I
.
= I′+ 1 I ≤ X

Y′
.
= I′ ∗ I′, Y

.
= Y′+ 2 ∗ I′+ 1, I

.
= I′+ 1 Y

.
= I ∗ I

I′ ≤ X, Y′
.
= I′ ∗ I′, I′ < X, Y

.
= Y′+ 2 ∗ I′+ 1, I

.
= I′+ 1 Inv

I ≤ X, Y′
.
= I ∗ I, I < X, Y := Y′ + 2 ∗ I + 1 [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1] [I := I + 1] Inv

I ≤ X, Y
.
= I ∗ I, I < X [Y := Y + 2 ∗ I + 1; I := I + 1] Inv

Inv, B [α] Inv

Formal Methods in Software Engineering – p.36



Example

Right branch
(invariant and negated loop condition imply post-conditio n)

Inv ∧ ¬ B Q

Formal Methods in Software Engineering – p.37



Example

Right branch
(invariant and negated loop condition imply post-conditio n)

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) Y

.
= X ∗X

Inv ∧ ¬ B Q

Formal Methods in Software Engineering – p.37



Example

Right branch
(invariant and negated loop condition imply post-conditio n)

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) I

.
= X, Y

.
= X ∗X

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) Y

.
= X ∗X

Inv ∧ ¬ B Q

Formal Methods in Software Engineering – p.37



Example

Right branch
(invariant and negated loop condition imply post-conditio n)

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) I

.
= X, Y

.
= I ∗ I

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) I

.
= X, Y

.
= X ∗X

I ≤ X, Y
.
= I ∗ I, ¬ (I < X) Y

.
= X ∗X

Inv ∧ ¬ B Q

Formal Methods in Software Engineering – p.37



Example II: Multiplication

X
.
= A, Y

.
= B [αmult] Z

.
= X ∗Y

Formal Methods in Software Engineering – p.38



Example II: Multiplication

X
.
= A, Y

.
= B [Z := 0; αwhile] Z

.
= X ∗Y

X
.
= A, Y

.
= B [αmult] Z

.
= X ∗Y

Formal Methods in Software Engineering – p.38



Example II: Multiplication

X
.
= A, Y

.
= B, Z

.
= 0 [αwhile] Z

.
= X ∗Y

X
.
= A, Y

.
= B [Z := 0; αwhile] Z

.
= X ∗Y

X
.
= A, Y

.
= B [αmult] Z

.
= X ∗Y

Formal Methods in Software Engineering – p.38



Example II: Multiplication

Invariant Inv: A ∗ B + Z
.
= X ∗Y

X
.
= A, Y

.
= B, Z

.
= 0 Inv
Inv, ¬ B

.
= 0 [αbody] Inv

Inv, B
.
= 0 Z

.
= X

X
.
= A, Y

.
= B, Z

.
= 0 [αwhile] Z

.
= X ∗Y

X
.
= A, Y

.
= B [Z := 0; αwhile] Z

.
= X ∗Y

X
.
= A, Y

.
= B [αmult] Z

.
= X ∗Y

Formal Methods in Software Engineering – p.38



Example II: Multiplication

Left branch (pre-condition implies invariant)

X
.
= A, Y

.
= B, Z

.
= 0 A ∗ B + Z

.
= X ∗Y

Formal Methods in Software Engineering – p.39



Example II: Multiplication

Left branch (pre-condition implies invariant)

X
.
= A, Y

.
= B, Z

.
= 0 A ∗ B + Z

.
= X ∗Y

Middle branch (invariant is indeed invariant)

A ∗ B + Z
.
= X ∗Y, ¬ B

.
= 0 [αbody] A ∗ B + Z

.
= X ∗Y

Formal Methods in Software Engineering – p.39



Example II: Multiplication

Left branch (pre-condition implies invariant)

X
.
= A, Y

.
= B, Z

.
= 0 A ∗ B + Z

.
= X ∗Y

Middle branch (invariant is indeed invariant)

A ∗ B + Z
.
= X ∗Y, ¬ B

.
= 0 [αbody] A ∗ B + Z

.
= X ∗Y

Right branch
(invariant and negated loop condition imply post-conditio n)

A ∗ B + Z
.
= X ∗Y, B

.
= 0 Z

.
= X ∗Y

Formal Methods in Software Engineering – p.39



Induction Rule

Purpose

Needed to prove first-order theorems on natural numbers
(oracle not available in practice)

Handling loops in 〈·〉 modality

Formal Methods in Software Engineering – p.40



Induction Rule

Purpose

Needed to prove first-order theorems on natural numbers
(oracle not available in practice)

Handling loops in 〈·〉 modality

Γ F{N← 0}, ∆ Γ, F F{N← N + 1}, ∆ Γ, ∀N F ∆

Γ ∆

N not occurring in Γ, ∆
N not occurring in any program in F

Formal Methods in Software Engineering – p.40



Induction Rule: Example

even(2 ∗ 0), even(2 ∗ 3)

even(2 ∗N) even(2 ∗ (N + 1)), even(2 ∗ 3)

∀N (even(2 ∗N)) even(2 ∗ 3)

even(2 ∗ 3)

Formal Methods in Software Engineering – p.41



Loop Unwind Rule

Rule

Γ,¬ B F, ∆ Γ, B 〈α〉〈while B do α od〉F, ∆

Γ 〈while B do α od〉F, ∆

Formal Methods in Software Engineering – p.42



Loop Unwind Rule

Rule

Γ,¬ B F, ∆ Γ, B 〈α〉〈while B do α od〉F, ∆

Γ 〈while B do α od〉F, ∆

Note

Only useful

in connection with induction rule, or

if number of loop iterations has a (small) known upper bound

Formal Methods in Software Engineering – p.42



Loop Unwind Rule / Induction Rule: Example

Proof goal

〈while I > 0 do I := I− 1 od〉 I
.
= 0

Induction hypothesis

F(N) ≡ ∀ I (I ≤ N → 〈while I > 0 do I := I− 1 od〉 I
.
= 0)

Formal Methods in Software Engineering – p.43



Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
is not sufficient if formulas contain programs

Example

F ≡ J
.
= K→ [I := 0] (J

.
= K) valid

Formal Methods in Software Engineering – p.44



Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
is not sufficient if formulas contain programs

Example

F ≡ J
.
= K→ [I := 0] (J

.
= K) valid

F{I← J} ≡ J
.
= K→ [J := 0] (J

.
= K) not valid

Formal Methods in Software Engineering – p.44



Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
is not sufficient if formulas contain programs

Example

F ≡ J
.
= K→ [I := 0] (J

.
= K) valid

F{I← J} ≡ J
.
= K→ [J := 0] (J

.
= K) not valid

F{J← I} ≡ I
.
= K→ [I := 0] (I

.
= K) not valid

Formal Methods in Software Engineering – p.44



Admissibility of Substitutions Revisited

Problem

Previous definition of admissibility
is not sufficient if formulas contain programs

Example

F ≡ J
.
= K→ [I := 0] (J

.
= K) valid

F{I← J} ≡ J
.
= K→ [J := 0] (J

.
= K) not valid

F{J← I} ≡ I
.
= K→ [I := 0] (I

.
= K) not valid

F{I← 1} ≡ J
.
= K→ [1 := 0] (J

.
= K) not a formula

Formal Methods in Software Engineering – p.44



Admissibility of Substitutions Revisited

Revised definition

A substitution {X← t} is admissible for a formula F iff

1. t = X, or

2. t is a variable not occurring in F, or

3. there is no variable Y in t such that
a free occurrence of X in F is in the scope of

(a) a quantification ∀Y or ∃Y, or

(b) a modality containing an assignment of the form Y := s

Formal Methods in Software Engineering – p.45


	
	WHILE: A Simple Programming Language
	WHILE: A Simple Programming Language
	WHILE: Examples
	WHILE: Example -- Square of a Number
	WHILE: Example -- Multiplication
	WHILE: Operational Semantics
	WHILE: Operational Semantics
	WHILE: Operational Semantics
	A Different Approach to WHILE
	A Different Approach to WHILE
	Expressing Program Properties
	Expressing Program Properties: Examples
	An Annotated Program
	Dynamic Logic
	Dynamic Logic: Semantics
	Dynamic Logic: Examples
	Dynamic Logic: More Examples
	Some DL-Tautologies
	A Sequent Calculus for Dynamic Logic
	Sequent Rules
	Sequent Calculus for First-order Logic
	Sequent Calculus for First-order Logic
	Sequent Calculus for First-order Logic
	Example Proof
	Admissibility of Substitutions
	Admissibility of Substitutions
	Sequent Calculus for Dynamic Logic
	Sequent Calculus for Dynamic Logic
	A Sequent Calculus for Dynamic Logic
	A Sequent Calculus for Dynamic Logic
	Reasoning about Loops
	Sequent Calculus for Dynamic Logic
	Example
	Example
	Example
	Example
	Example II: Multiplication
	Example II: Multiplication
	Induction Rule
	Induction Rule: Example
	Loop Unwind Rule
	Loop Unwind Rule / Induction Rule: Example
	Admissibility of Substitutions Revisited
	Admissibility of Substitutions Revisited

