Some Calculus Rules in KeY

http://www.key-project.org

by Christoph Gladisch

$$(R1) \ \, \text{notLeft} \quad (R7) \ \, \text{notRight} \quad (R2) \ \, \text{left} \qquad (R8) \ \, \text{andRight} \qquad (R3) \ \, \text{orLeft} \qquad (R9) \ \, \text{orRight}$$

$$\frac{\Rightarrow A}{\neg A} \qquad \frac{A \Rightarrow}{\Rightarrow \neg A} \qquad \frac{A,B\Rightarrow}{A \land B\Rightarrow} \qquad \frac{\Rightarrow A \Rightarrow B}{\Rightarrow A \land B} \qquad \frac{A\Rightarrow}{A \lor B\Rightarrow} \qquad \frac{\Rightarrow A,B}{\Rightarrow A \lor B}$$

$$(R4) \ \, \text{impLeft} \quad (R10) \ \, \text{impRight} \qquad (R11a) \ \, \text{close} \qquad (R11b) \ \, \text{close} \qquad (R11c) \ \, \text{close}$$

$$\frac{\Rightarrow A \qquad B\Rightarrow}{A \rightarrow B} \qquad \frac{A\Rightarrow B}{\Rightarrow A \rightarrow B} \qquad \frac{\Rightarrow}{A\Rightarrow A} \qquad \frac{\Rightarrow}{\Rightarrow \text{true}} \qquad \frac{\Rightarrow}{\text{false}\Rightarrow} \qquad (R11d) \ \, \text{replace}_{-} \qquad \text{known_right} \qquad (R5) \ \, \text{cut}$$

$$\frac{\Rightarrow}{A\Rightarrow} \qquad \frac{\Rightarrow}{\Rightarrow A} \qquad \frac{A\Rightarrow \text{true}}{A\Rightarrow A} \qquad \frac{\text{false}\Rightarrow A}{A\Rightarrow A} \qquad \frac{A\Rightarrow \Rightarrow A}{\Rightarrow} \qquad \frac{\Rightarrow}{\Rightarrow} \qquad \text{Click on },==>`` \qquad \text{Case distinction}$$

Table 1. Propositional Inference Rules

Generalisation of rules:

If
$$\frac{A_0 \Rightarrow B_0 \dots A_n \Rightarrow B_n}{A \Rightarrow B}$$
 is a rule, than also $\frac{\Gamma, A_0 \Rightarrow B_0, \Delta \dots \Gamma, A_n \Rightarrow B_n, \Delta}{\Gamma, A \Rightarrow B, \Delta}$ is a rule.

(R13) allLeft
$$\frac{A(t), \forall x A(x) \Rightarrow}{\forall x A(x) \Rightarrow} \qquad \qquad \Rightarrow A(x = 0) \\ \exists x A(x) \Rightarrow \qquad \qquad \Rightarrow \forall x A(x)$$
Instantiate quntifier by Drag'n'Drop of t
$$\frac{A(x = 0) \Rightarrow}{\exists x A(x) \Rightarrow} \qquad \qquad \Rightarrow \exists x A(x)$$
Skolmize x. Replace by constant x_0.

(R18) exRight
$$\Rightarrow A(x), \exists x A(x) \Rightarrow \Rightarrow \exists x A(x)$$
Instantiate quntifier by Drag'n'Drop of t
$$\frac{\exists x A(x) \Rightarrow}{\exists x A(x) \Rightarrow} \qquad \Rightarrow \exists x A(x)$$
Instantiate quntifier by Drag'n'Drop of t
$$\frac{\exists x A(x) \Rightarrow}{\exists x A(x) \Rightarrow} \qquad \Rightarrow \exists x A(x)$$
Click on ,==>". IH is Induction Hypothesis

Table 2. First-Order Inference Rules.

Table 3. First-Order with Equality. These rules are mostly symetric with respect to the sequent symbol.

(R30) polySimp_addComm0 switch_params $a + b \rightsquigarrow b + a$	$(R31)$ $polySimp_mulComm0$ mul_comm $a*b \sim b*a$	$(R32)$ $polySimp_elimSub$ $a-b \leadsto a+b*-1$	` ,
(R34) switch_brackets	$(R35)$ rotate_params	$(R36)$ add_literals	(R37) polySimp_pullOutFactor
$(a \circ b) \circ c \leadsto a \circ (b \circ c)$	$a\circ (b\circ c) \leadsto b\circ (a\circ c)$	$4+19 \!\rightsquigarrow\! 23$	$a + a \!\rightsquigarrow\! 2*a$
(R38) add equations	(R39) add eq	(R40) divide equation	(R41) multipy eq
$ \begin{array}{c} - \\ \Rightarrow a+c=b+d \\ \hline a=b\Rightarrow c=d \end{array} $	$a = b \rightsquigarrow a + x = b + x$		- · · - · ·
(R42) polySimp_homoEq	$\begin{array}{c} (R43) \\ polySimp_SepPosMonomial \end{array}$	$\begin{array}{c} (R44) \\ in Eq Simp_It To Leq \end{array}$	$(R45)$ in EqSimp_ContradIn
$a = t \rightsquigarrow a - t = 0$	$a+t=0 \leadsto a=-t$ inEqSimp_SepPosMonomial $a+t\leqslant 0 \leadsto a\leqslant -t$	$a < t \rightsquigarrow a - t - 1 \leqslant 0$	$\dfrac{x>0 o t_2\mathop{\leqslant} t_1\mathop{\Rightarrow}}{a\mathop{\leqslant} t_1,a\mathop{\geqslant} t_2\mathop{\Rightarrow}}$

Table 4. Some arithmetic rules for First-Order Logic with Integers. These rules are applicable on subformulas.

How to solve equations:

Apply $polySimp_homoEq$ (R42) to obtain equations of the "normal form" $\mathbf{term} = \mathbf{0}$. In order to group function symbols together (note that a, b, c... are function symbols with arity 0) apply rules like rule (R30) to (R37) manually on \mathbf{term} or right click on \mathbf{term} and choose "Apply rules automatically here" (e.g. $2\mathbf{a} + (3b - \mathbf{a}) \leadsto \mathbf{a} + 3b$). Then apply e.g. $polySimp_SepPosMonomial$ (R43) in order to solve the equation for one function symbol (e.g. $\mathbf{a} + 3b = 0 \leadsto \mathbf{a} = -3b$). Use the rules (R38) ... (R41) only if abolutely needed. Use the rules eqSymm (R20), $make_inserte_eq$ (R21), and applyEq or $insert_eq$ (R22) to replace the function symbol \mathbf{a} in other formulas.

How to solve inequations:

The idea is to move the inequation to the antecedent (left sides of the sequent symbol \Rightarrow), then to combine the inequations, and then to show a contradiction for the combined inequation in the antecedent.

In order to combine the inequations first use the rule $inEqSimp_ItToLeq$ (R44) in order to obtain inequations of the "normal form" $\mathbf{term} \leq \mathbf{0}$. "Solve" the inequations for a common function symbol using rules (R30)... (R37) and then the rule $inEqSimp_SepPosMonomial$ (R43). The antecedent should contain something like, e.g., $\mathbf{a} * x \leq t_1, \mathbf{a} * y \geq t_2 \Rightarrow$. Now combine the inequations using rule $inEqSimp_ContradIn$ R45 which restults in something like $x > 0 \land y > 0 \rightarrow t_2 * x \leq t_1 * y$. Try to derive false from the resulting inequation.

Generalization of Program rules:

Table 5. Global inference rules

If
$$A_0 \Rightarrow B_0 \dots A_n \Rightarrow B_n \\ A \Rightarrow B$$
 is a rule, than also $\{U\}A_0 \Rightarrow \{U\}B_0 \dots \{U\}A_n \Rightarrow \{U\}B_n \\ \{U\}A \Rightarrow \{U\}B$ is a rule, where $\{U\}$ is an update.