
Formal Specification and Verification

Bernhard Beckert

Adaptation of slides by
Wolfgang Ahrendt

Chalmers University, Gothenburg, Sweden

Formal Specification and Verification: 1 / 23

Part I

Formal Specification

Formal Specification and Verification: 2 / 23

Motivation

As motivating examples, let’s consider two programs.

Formal Specification and Verification: 3 / 23

Example 1: method alwaysTrue()

// should always return true
public s ta t i c boolean alwaysTrue(int i) {

// Just ’return true;’ is all too boring.
// Instead:
return (Math.abs(i) >= 0);

}

Formal Specification and Verification: 5 / 23

Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while (true) {

// read an integer from System.in
int i = sc.nextInt ();

// this will print "true"
System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Formal Specification and Verification: 7 / 23

Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while (true) {

// read an integer from System.in
int i = sc.nextInt ();

// this will print "true"
System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Formal Specification and Verification: 7 / 23

Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while (true) {

// read an integer from System.in
int i = sc.nextInt ();

// this will print "true"
System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Surprise: with input -2147483648, the program prints false!

Formal Specification and Verification: 7 / 23

We want to understand the problem

Another test:
System.out.println(Math.abs(-2147483648))
prints
-2147483648

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 8 / 23

We want to understand the problem

Another test:
System.out.println(Math.abs(-2147483648))
prints
-2147483648

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 8 / 23

We want to understand the problem

Another test:
System.out.println(Math.abs(-2147483648))
prints
-2147483648

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 8 / 23

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Formal Specification and Verification: 9 / 23

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Formal Specification and Verification: 9 / 23

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Formal Specification and Verification: 9 / 23

Caller and Callee disagree

The problem was:

Caller (here alwaysTrue())

had unfulfilled expectations about

Callee (here Math.abs()).

Formal Specification and Verification: 10 / 23

Example 2: equal Objects in Sets?

public c la s s Book {

private String title;
private String author;
private long isbn;

public Book (...) { ... }
}

public boolean equals(Object other) {
Book otherBook = (Book) other;
return (isbn == otherBook.isbn);

}

public String toString () { ... }
}

(From W. Ahrendt’s first-year course in OO Programming.)

Formal Specification and Verification: 12 / 23

Example 2: equal Objects in Sets?

From the Java API Specification, Interface Set:

public interface Set

extends Collection

Sets contain no pair of elements e1, e2 such that e1.equals(e2) ...
...

boolean add(E e)

Adds e to this set if the set contains no element e2 such that
e.equals(e2) ...

Formal Specification and Verification: 13 / 23

Example 2: equal Objects in Sets?

From the Java API Specification, Interface Set:

public interface Set

extends Collection

Sets contain no pair of elements e1, e2 such that e1.equals(e2) ...
...

boolean add(E e)

Adds e to this set if the set contains no element e2 such that
e.equals(e2) ...

Formal Specification and Verification: 13 / 23

Example 2: equal Objects in Sets?

Adding two equal books to a set:

Set catalogue = new HashSet ();

Book b1 = new Book("Effective Java",
"Joshua Bloch",
201310058);

Book b2 = new Book("Effective Java",
"J. Bloch",
201310058);

catalogue.add(b1);
catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

Formal Specification and Verification: 15 / 23

Example 2: equal Objects in Sets?

Adding two equal books to a set:

Set catalogue = new HashSet ();

Book b1 = new Book("Effective Java",
"Joshua Bloch",
201310058);

Book b2 = new Book("Effective Java",
"J. Bloch",
201310058);

catalogue.add(b1);
catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

Formal Specification and Verification: 15 / 23

Example 2: equal Objects in Sets?

Adding two equal books to a set:

Set catalogue = new HashSet ();

Book b1 = new Book("Effective Java",
"Joshua Bloch",
201310058);

Book b2 = new Book("Effective Java",
"J. Bloch",
201310058);

catalogue.add(b1);
catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

two!(?)

Formal Specification and Verification: 15 / 23

We want to understand the problem also

But again:

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 16 / 23

We want to understand the problem also

But again:

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 16 / 23

We want to understand the problem also

But again:

We cannot come any closer to the problem by testing/debugging.

So how can we?

Formal Specification and Verification: 16 / 23

Again: Specification is the Answer!

here, specification of Set or HashSet does not reveal problem

Instead: check the specification of Book!

Is there any?

Yes, because Book extends Object, and inherits the specifications
from there!

Formal Specification and Verification: 17 / 23

Again: Specification is the Answer!

here, specification of Set or HashSet does not reveal problem

Instead: check the specification of Book!

Is there any?

Yes, because Book extends Object, and inherits the specifications
from there!

Formal Specification and Verification: 17 / 23

Again: Specification is the Answer!

here, specification of Set or HashSet does not reveal problem

Instead: check the specification of Book!

Is there any?

Yes, because Book extends Object, and inherits the specifications
from there!

Formal Specification and Verification: 17 / 23

Again: Specification is the Answer!

here, specification of Set or HashSet does not reveal problem

Instead: check the specification of Book!

Is there any?

Yes, because Book extends Object, and inherits the specifications
from there!

Formal Specification and Verification: 17 / 23

Checking the API of Object

public int hashCode()

...
If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce
the same integer result.
...

By overriding equals only, and not hashCode, we broke the
specification of Book::hashCode().

Formal Specification and Verification: 18 / 23

Checking the API of Object

public int hashCode()

...
If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce
the same integer result.
...

By overriding equals only, and not hashCode, we broke the
specification of Book::hashCode().

Formal Specification and Verification: 18 / 23

Caller and Callee disagree

The problem was:

Caller (here HashSet::add())

had unfulfilled expectations about

Callee (here Book::hashCode()).

Here:
The caller is library code, the callee is a method from our own class!

⇒ Call Back Mechanism in OO Programming

Formal Specification and Verification: 19 / 23

Caller and Callee disagree

The problem was:

Caller (here HashSet::add())

had unfulfilled expectations about

Callee (here Book::hashCode()).

Here:
The caller is library code, the callee is a method from our own class!

⇒ Call Back Mechanism in OO Programming

Formal Specification and Verification: 19 / 23

Caller and Callee disagree

The problem was:

Caller (here HashSet::add())

had unfulfilled expectations about

Callee (here Book::hashCode()).

Here:
The caller is library code, the callee is a method from our own class!

⇒ Call Back Mechanism in OO Programming

Formal Specification and Verification: 19 / 23

Is this nasty?

How could the implementer of Book foresee whether some class
implementing Set would call Book::hashCode()?

He/she cannot!

No alternative to fulfilling the inherited specification of Object, as
potential callers might rely on it in unforeseeable ways!

Demo: fixing AddTwoBooks.java

Formal Specification and Verification: 20 / 23

Is this nasty?

How could the implementer of Book foresee whether some class
implementing Set would call Book::hashCode()?

He/she cannot!

No alternative to fulfilling the inherited specification of Object, as
potential callers might rely on it in unforeseeable ways!

Demo: fixing AddTwoBooks.java

Formal Specification and Verification: 20 / 23

Is this nasty?

How could the implementer of Book foresee whether some class
implementing Set would call Book::hashCode()?

He/she cannot!

No alternative to fulfilling the inherited specification of Object, as
potential callers might rely on it in unforeseeable ways!

Demo: fixing AddTwoBooks.java

Formal Specification and Verification: 20 / 23

Example1/2: Similarities and Differences

In both cases:
Caller had unfulfilled expectations about callee.

Difference: who is to blame?

Example 1: the caller (alwaysTrue())

Example 2: the callee (Book::hashCode())

We will focus on a crystal clear distinction

of these different roles, and

the different obligations attached to either of the roles.

Formal Specification and Verification: 21 / 23

Example1/2: Similarities and Differences

In both cases:
Caller had unfulfilled expectations about callee.

Difference: who is to blame?

Example 1: the caller (alwaysTrue())

Example 2: the callee (Book::hashCode())

We will focus on a crystal clear distinction

of these different roles, and

the different obligations attached to either of the roles.

Formal Specification and Verification: 21 / 23

Example1/2: Similarities and Differences

In both cases:
Caller had unfulfilled expectations about callee.

Difference: who is to blame?

Example 1: the caller (alwaysTrue())

Example 2: the callee (Book::hashCode())

We will focus on a crystal clear distinction

of these different roles, and

the different obligations attached to either of the roles.

Formal Specification and Verification: 21 / 23

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology

Formal Specification and Verification: 22 / 23

What kind of Specifications

System level specifications (requirements analysis, GUI, use cases,
performance) important, but not subject of this course.

instead:

unit specification—contracts among implementers on various levels:

application level ↔ application level

application level ↔ library level

library level ↔ library level

Formal Specification and Verification: 23 / 23

What kind of Specifications

System level specifications (requirements analysis, GUI, use cases,
performance) important, but not subject of this course.

instead:

unit specification—contracts among implementers on various levels:

application level ↔ application level

application level ↔ library level

library level ↔ library level

Formal Specification and Verification: 23 / 23

What kind of Specifications

System level specifications (requirements analysis, GUI, use cases,
performance) important, but not subject of this course.

instead:

unit specification—contracts among implementers on various levels:

application level ↔ application level

application level ↔ library level

library level ↔ library level

Formal Specification and Verification: 23 / 23

What kind of Specifications

Natural language specs are very important(see the examples above).

Still:
we focus on

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

higher degree of precision.

eventually: automation of program analysis of various kinds:

static checking
program verification

Formal Specification and Verification: 24 / 23

What kind of Specifications

Natural language specs are very important(see the examples above).

Still:
we focus on

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

higher degree of precision.

eventually: automation of program analysis of various kinds:

static checking
program verification

Formal Specification and Verification: 24 / 23

What kind of Specifications

Natural language specs are very important(see the examples above).

Still:
we focus on

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

higher degree of precision.

eventually: automation of program analysis of various kinds:

static checking
program verification

Formal Specification and Verification: 24 / 23

What kind of Specifications

Natural language specs are very important(see the examples above).

Still:
we focus on

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

higher degree of precision.

eventually: automation of program analysis of various kinds:

static checking
program verification

Formal Specification and Verification: 24 / 23

	Motivation

