Formal Methods in Software Engineering

Modal Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Modal Logic

In classical logic, it is only important whether a formula is true

In modal logic, it is also important in which

- way
- mode
- state

a formula is true

Modal Logic

In classical logic, it is only important whether a formula is true

In modal logic, it is also important in which

- way
- mode
- state

a formula is true

A formula (a proposition) is

- necessarily / possibly true
- true today / tomorrow
- believed / known
- true before / after an action / the execution of a program

Propositional Modal Logic: Formulas

- m extstyle extstyle
- ullet If A,B are modal formulas, then

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$ $(A \leftrightarrow B)$

$$\Box A$$
 (read "box A ", "necessarily A ")
$$\Diamond A$$
 (read "diamond A ", "possibly A ")

are modal formulas

Informal Interpretations of

$\Box F$ means

- F is necessarily true
- F is always true (in future states/words)
- an agent a believes F
- an agent a knows F
- F is true after all possible executions of a program p

Informal Interpretations of \square

$\Box F$ means

- F is necessarily true
- F is always true (in future states/words)
- an agent a believes F
- an agent a knows F
- m extstyle F is true after all possible executions of a program p

Notation

If necessary write

 $\Box_a F \qquad \Box_p F \qquad [a]F \qquad [p]F$

Informal Interpretations of \diamondsuit

$\Box F$	$\Diamond F$ (the same as $\neg \Box \neg F$)			
F is necessarily true	F is possibly true			
F is always true	F at least once true			
agent a believes F	F is consistent with a 's beliefs			
agent a knows F	a does not know $\neg F$			
$\it F$ is true after all possible executions of program $\it p$	$\it F$ is true after at least one possible execution of program $\it p$			

Kripke Structures

Given: a propositional signature Var

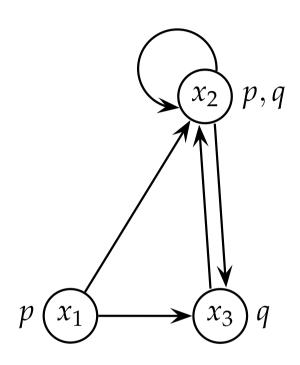
Definition

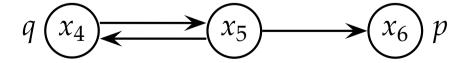
A Kripke structure

$$\mathcal{K} = (S, R, I)$$

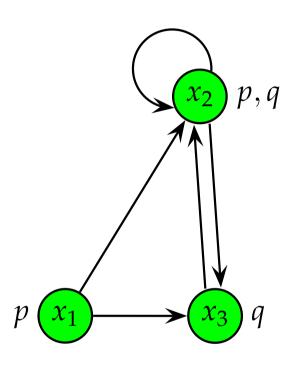
consists of

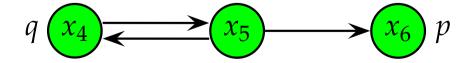
- ullet a non-empty set S (of worlds / states)
- ullet an accessibility relation $R \subseteq S \times S$
- an *interpretation* I : $Var \times S \rightarrow \{\underline{true}, \underline{false}\}$





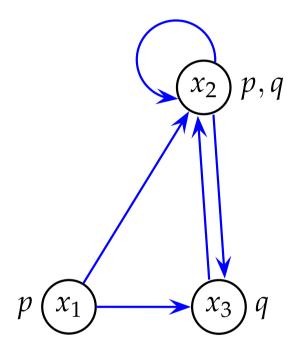
set of states

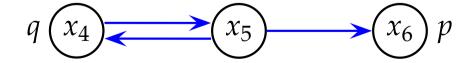




accessibility relation

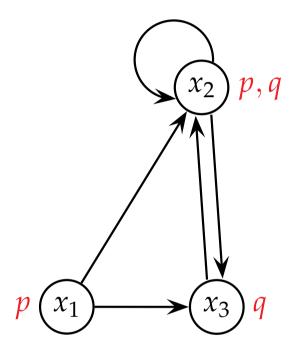
set of states

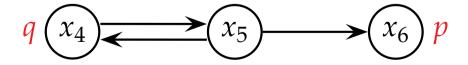




accessibility relation

set of states





Interpretation I

Modal Logic: Semantics

Given: Kripke structure $\mathcal{K} = (S, R, I)$

Valuation

$$val_{\mathcal{K}}(p)(s) = I(p)(s)$$
 for $p \in Var$

 $val_{\mathcal{K}}$ defined for propositional operators in the same way as val_I

$$val_{\mathcal{K}}(\diamondsuit A)(s) = \left\{ egin{array}{ll} rac{\mathsf{true}}{\mathsf{true}} & \mathsf{if} \ val_{\mathcal{K}}(A)(s') = \underline{\mathsf{true}} \ \mathsf{for} \ & \mathsf{at} \ \mathsf{least} \ \mathsf{one} \ s' \in S \ \mathsf{with} \ sRs' \ & \mathsf{false} \ & \mathsf{otherwise} \end{array}
ight.$$

Saul Aaron Kripke

Born 1940 in Omaha (US)

First A Completeness Theorem in Modal Logic

publication: The Journal of Symbolic Logic, 1959

Studied at: Harvard, Princeton, Oxford

and Rockefeller University

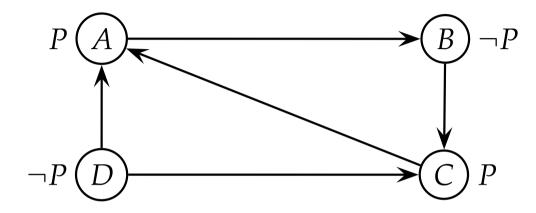
Positions: Harvard, Rockefeller, Columbia,

Cornell, Berkeley, UCLA, Oxford

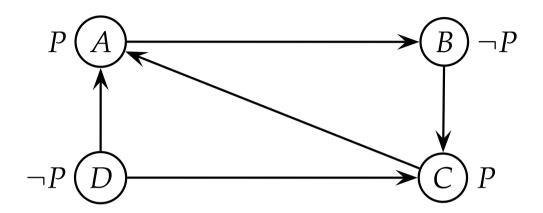
since 1977 Professor at Princeton University

since 1998 Emeritus at Princeton University

Modal Logic: Example for Evaluation



Modal Logic: Example for Evaluation



$$(\mathcal{K}, A) \models P \qquad (\mathcal{K}, B) \models \neg P \qquad (\mathcal{K}, C) \models P \qquad (\mathcal{K}, D) \models \neg P$$
$$(\mathcal{K}, A) \models \Box \neg P \quad (\mathcal{K}, B) \models \Box P \qquad (\mathcal{K}, C) \models \Box P \qquad (\mathcal{K}, D) \models \Box P$$
$$(\mathcal{K}, A) \models \Box \Box P \quad (\mathcal{K}, B) \models \Box \Box P \quad (\mathcal{K}, C) \models \Box \Box \neg P \qquad -$$

Modal Logic: Valid Formulas

Valid

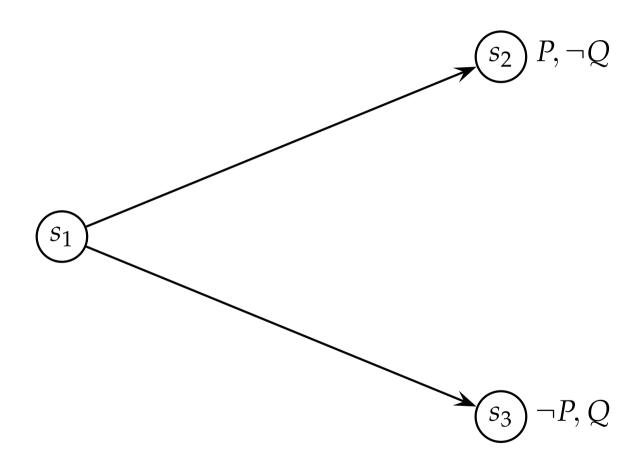
$$\square P \leftrightarrow \neg \Diamond \neg P$$

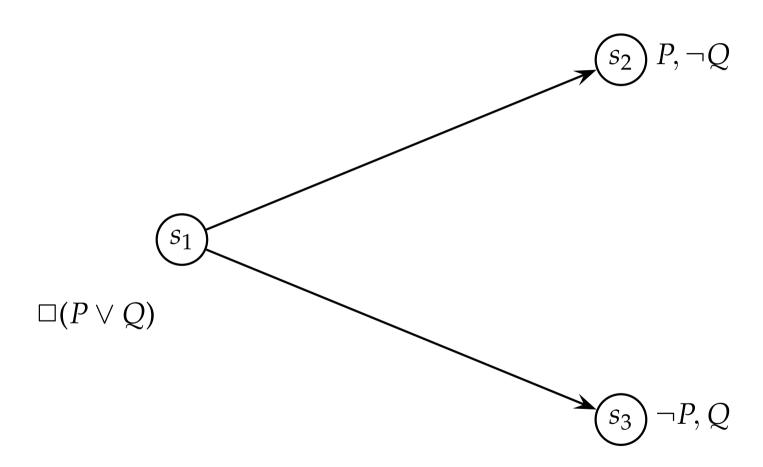
Modal Logic: Valid Formulas

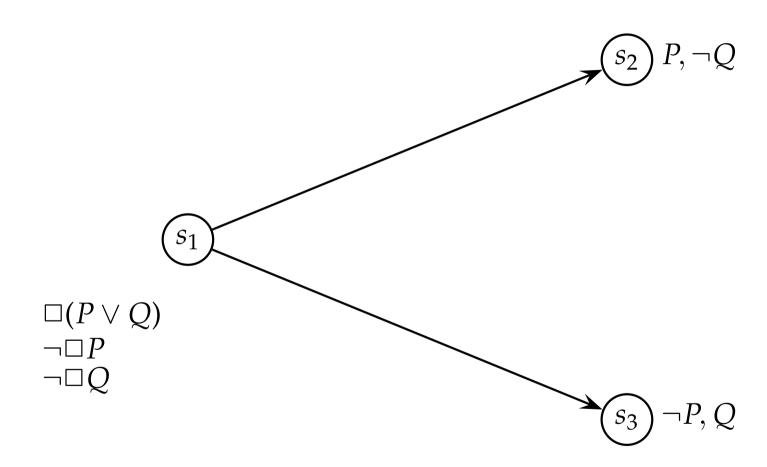
Valid

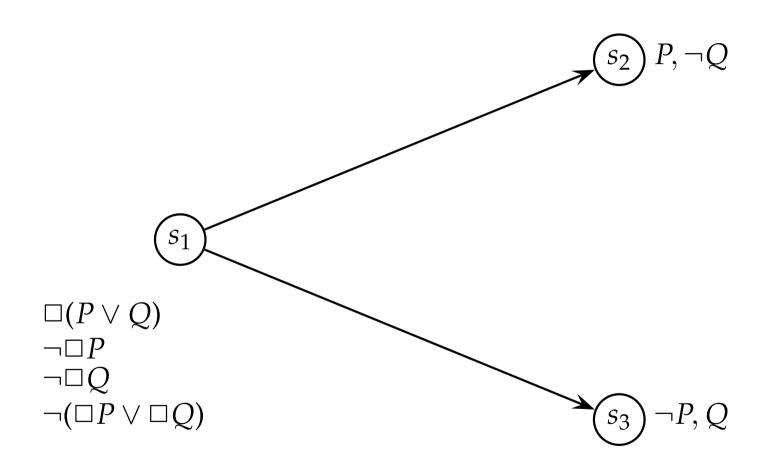
$$P \leftrightarrow \neg \Diamond \neg P$$

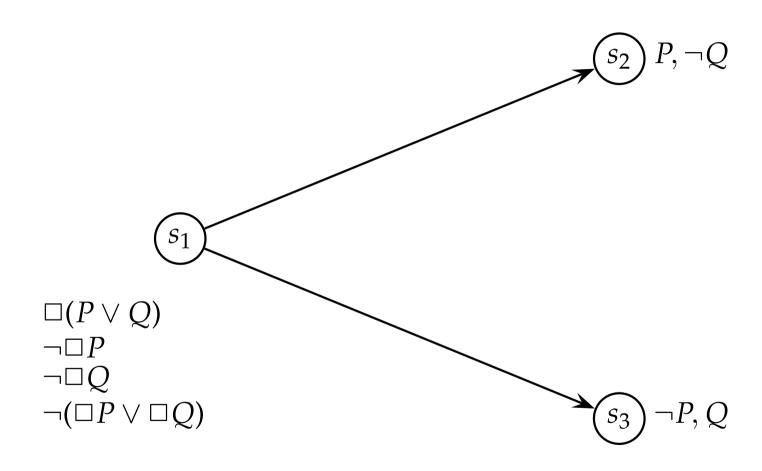
Not valid:











 $\Box(P \lor Q) \to (\Box P \lor \Box Q)$ not true in state s_1

Formulas Characterising Properties of ${\cal R}$

Formula	Property of R
$\Box p \rightarrow p$	reflexive
$p \rightarrow \Diamond p$	reflexive
$\Box\Box p \to \Box p$	reflexive
$\Box \Diamond p \to \Diamond p$	reflexive
$\Box p \to \Diamond \Box p$	reflexive
$\Diamond \Diamond p \rightarrow \Diamond p$	reflexive

Formulas Characterising Properties of R

Formula	Property of R	Formula	Property of R
$\Box p \to p$	reflexive	$\Box p o \Box \Box p$	transitive
$p \rightarrow \Diamond p$	reflexive	$p \to \Box \Diamond p$	symmetrical
$\Box\Box p \to \Box p$	reflexive	$\Box\Box p \leftrightarrow \Box p$	reflexive, transitive
$\Box \Diamond p \to \Diamond p$	reflexive	$\Diamond \Diamond p \leftrightarrow \Diamond p$	reflexive, transitive
$\Box p \to \Diamond \Box p$	reflexive	$\Diamond \Box p \leftrightarrow \Box p$	equivalence relation
$\Diamond \Diamond p \rightarrow \Diamond p$	reflexive	$\Box \Diamond p \leftrightarrow \Diamond p$	equivalence relation

Modal Logic: Valid Formulas

$\Box F$	$\Box F \to F$	$\Box F \to \Box \Box F$	$\Box F \to \diamondsuit F$	$(\Box(F \to G) \land \Box F) \to \Box G$	\$true
F is necessarily true					
agent a knows F					
agent a believes F					
$\it F$ holds after executing program $\it p$					

Modal Logic: Valid Formulas

$\Box F$	$\Box F \to F$	$\Box F \to \Box \Box F$	$\Box F \to \diamondsuit F$	$(\Box(F \to G) \land \Box F) \to \Box G$	$\diamond true$
F is necessarily true	yes	yes	yes	yes	yes
agent a knows F	yes	yes	yes	yes	yes
agent a believes F	no	yes	yes	yes	yes
F holds after executing program p	no	no	no	yes	no