
Formal Methods in Software Engineering

Modal Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ -LANDAU

B. Beckert: Formal Methods in Software Engineering – p.1

Modal Logic

In classical logic, it is only important whether a formula is true

In modal logic, it is also important in which

– way
– mode
– state

a formula is true

B. Beckert: Formal Methods in Software Engineering – p.2

Modal Logic

In classical logic, it is only important whether a formula is true

In modal logic, it is also important in which

– way
– mode
– state

a formula is true

A formula (a proposition) is

– necessarily / possibly true
– true today / tomorrow
– believed / known
– true before / after an action / the execution of a program

B. Beckert: Formal Methods in Software Engineering – p.2

Propositional Modal Logic: Formulas

The propositional variables p ∈ Var are modal formulas

If A, B are modal formulas, then

¬A (A ∧ B) (A ∨ B) (A → B) (A ↔ B)

2A (read “box A”, “necessarily A”)

3A (read “diamond A”, “possibly A”)

are modal formulas

B. Beckert: Formal Methods in Software Engineering – p.3

Informal Interpretations of 2

2F means

F is necessarily true

F is always true (in future states/words)

an agent a believes F

an agent a knows F

F is true after all possible executions of a program p

B. Beckert: Formal Methods in Software Engineering – p.4

Informal Interpretations of 2

2F means

F is necessarily true

F is always true (in future states/words)

an agent a believes F

an agent a knows F

F is true after all possible executions of a program p

Notation

If necessary write

2aF 2pF [a]F [p]F

instead of 2F
B. Beckert: Formal Methods in Software Engineering – p.4

Informal Interpretations of 3

2F 3F (the same as ¬2¬F)

F is necessarily true F is possibly true

F is always true F at least once true

agent a believes F F is consistent with a’s beliefs

agent a knows F a does not know ¬F

F is true after all possible F is true after at least one possible

executions of program p execution of program p

B. Beckert: Formal Methods in Software Engineering – p.5

Kripke Structures

Given: a propositional signature Var

Definition

A Kripke structure

K = (S, R, I)

consists of

a non-empty set S (of worlds / states)

an accessibility relation R ⊆ S × S

an interpretation I : Var × S → {true , false}

B. Beckert: Formal Methods in Software Engineering – p.6

Kripke Structures: Example

x2 p, q

p x1 x3 q

q x4 x5 x6 p

B. Beckert: Formal Methods in Software Engineering – p.7

Kripke Structures: Example

set of states

x2 p, q

p x1 x3 q

q x4 x5 x6 p

B. Beckert: Formal Methods in Software Engineering – p.7

Kripke Structures: Example

accessibility set of states
relation

x2 p, q

p x1 x3 q

q x4 x5 x6 p

B. Beckert: Formal Methods in Software Engineering – p.7

Kripke Structures: Example

accessibility set of states
relation

x2 p, q

p x1 x3 q

q x4 x5 x6 p

Interpretation I

B. Beckert: Formal Methods in Software Engineering – p.7

Modal Logic: Semantics

Given: Kripke structure K = (S, R, I)

Valuation

valK (p)(s) = I(p)(s) for p ∈ Var

valK defined for propositional operators in the same way as val I

valK (2A)(s) =



















true if valK (A)(s′) = true for

all s′ ∈ S with sRs′

false otherwise

valK (3A)(s) =



















true if valK (A)(s′) = true for

at least one s′ ∈ S with sRs′

false otherwise
B. Beckert: Formal Methods in Software Engineering – p.8

Saul Aaron Kripke

Born 1940 in Omaha (US)

First A Completeness Theorem in Modal Logic

publication: The Journal of Symbolic Logic, 1959

Studied at: Harvard, Princeton, Oxford

and Rockefeller University

Positions: Harvard, Rockefeller, Columbia,

Cornell, Berkeley, UCLA, Oxford

since 1977 Professor at Princeton University

since 1998 Emeritus at Princeton University

B. Beckert: Formal Methods in Software Engineering – p.9

Modal Logic: Example for Evaluation

P A B ¬P

¬P D C P

B. Beckert: Formal Methods in Software Engineering – p.10

Modal Logic: Example for Evaluation

P A B ¬P

¬P D C P

(K , A) |= P (K , B) |= ¬P (K , C) |= P (K , D) |= ¬P

(K , A) |= 2¬P (K , B) |= 2P (K , C) |= 2P (K , D) |= 2P

(K , A) |= 22P (K , B) |= 22P (K , C) |= 22¬P —

B. Beckert: Formal Methods in Software Engineering – p.10

Modal Logic: Valid Formulas

Valid

2(P → Q) → (2P → 2Q)

(2P ∧2(P → Q)) → 2Q

(2P ∨2Q) → 2(P ∨ Q)

(2P ∧2Q) ↔ 2(P ∧ Q)

2P ↔¬3¬P

3(P ∨ Q) ↔ (3P ∨3Q)

3(P ∧ Q) → (3P ∧3Q)

B. Beckert: Formal Methods in Software Engineering – p.11

Modal Logic: Valid Formulas

Valid

2(P → Q) → (2P → 2Q)

(2P ∧2(P → Q)) → 2Q

(2P ∨2Q) → 2(P ∨ Q)

(2P ∧2Q) ↔ 2(P ∧ Q)

2P ↔¬3¬P

3(P ∨ Q) ↔ (3P ∨3Q)

3(P ∧ Q) → (3P ∧3Q)

Not valid:

2(P ∨ Q) → (2P ∨2Q)

(3P ∧3Q) → 3(P ∧ Q)

B. Beckert: Formal Methods in Software Engineering – p.11

Not Valid: 2(P ∨ Q) → (2P ∨2Q)

s2 P,¬Q

s1

s3 ¬P, Q

B. Beckert: Formal Methods in Software Engineering – p.12

Not Valid: 2(P ∨ Q) → (2P ∨2Q)

2(P ∨ Q)

s2 P,¬Q

s1

s3 ¬P, Q

B. Beckert: Formal Methods in Software Engineering – p.12

Not Valid: 2(P ∨ Q) → (2P ∨2Q)

2(P ∨ Q)

¬2P
¬2Q

s2 P,¬Q

s1

s3 ¬P, Q

B. Beckert: Formal Methods in Software Engineering – p.12

Not Valid: 2(P ∨ Q) → (2P ∨2Q)

2(P ∨ Q)

¬2P
¬2Q
¬(2P ∨2Q)

s2 P,¬Q

s1

s3 ¬P, Q

B. Beckert: Formal Methods in Software Engineering – p.12

Not Valid: 2(P ∨ Q) → (2P ∨2Q)

2(P ∨ Q)

¬2P
¬2Q
¬(2P ∨2Q)

s2 P,¬Q

s1

s3 ¬P, Q

2(P ∨ Q) → (2P ∨2Q) not true in state s1

B. Beckert: Formal Methods in Software Engineering – p.12

Formulas Characterising Properties of R

Formula Property of R

2p → p reflexive

p → 3p reflexive

22p → 2p reflexive

23p → 3p reflexive

2p → 32p reflexive

33p → 3p reflexive

B. Beckert: Formal Methods in Software Engineering – p.13

Formulas Characterising Properties of R

Formula Property of R

2p → p reflexive

p → 3p reflexive

22p → 2p reflexive

23p → 3p reflexive

2p → 32p reflexive

33p → 3p reflexive

Formula Property of R

2p → 22p transitive

p → 23p symmetrical

22p ↔ 2p reflexive, transitive

33p ↔ 3p reflexive, transitive

32p ↔ 2p equivalence relation

23p ↔ 3p equivalence relation

B. Beckert: Formal Methods in Software Engineering – p.13

Modal Logic: Valid Formulas

2F 2
F
→

F

2
F
→

2
2

F

2
F
→

3
F

(2
(F

→
G

)
∧

2
F

)
→

2
G

3
tr

u
e

F is necessarily true

agent a knows F

agent a believes F

F holds after executing program p

B. Beckert: Formal Methods in Software Engineering – p.14

Modal Logic: Valid Formulas

2F 2
F
→

F

2
F
→

2
2

F

2
F
→

3
F

(2
(F

→
G

)
∧

2
F

)
→

2
G

3
tr

u
e

F is necessarily true yes yes yes yes yes

agent a knows F yes yes yes yes yes

agent a believes F no yes yes yes yes

F holds after executing program p no no no yes no

B. Beckert: Formal Methods in Software Engineering – p.14

	
	Modal Logic
	Propositional Modal Logic: Formulas
	Informal Interpretations of $Box $
	Informal Interpretations of $Diamond $
	Kripke Structures
	Kripke Structures: Example
	Modal Logic: Semantics
	Saul Aaron Kripke
	Modal Logic: Example for Evaluation
	Modal Logic: Valid Formulas
	Not Valid: $Box (P vee Q)

ightarrow (Box P vee Box Q)$
	Formulas Characterising Properties of R
	Modal Logic: Valid Formulas

