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Steam Boiler Control: Scenario
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steam boiler

water level measuring device

four pumps
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Physical constants

wmin minimal water level

wmax maximal water level

l water amount per pump

dmax maximal quantity of steam

exiting the boiler

δp error in the value of l

δd error in steam

measurement
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Measured values

w water level

d amount of steam exiting

the boiler

kp,i pump i works/broken

kw water level measuring device

works/broken

kd steam amount measuring

device works/broken
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Steam Boiler Control: Scenario
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Control values

pi pump i on/off

v valve open/closed

a boiler on/off

z state init/norm/broken/stop
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Steam Boiler Control

Types

State ::= init | norm | broken | stop

OnOff ::= on | off

OpenClosed ::= open | closed

B. Beckert: Formal Specification of Software – p.6



Steam Boiler Control

Physical constants

wmin : N

wmax : N

l : N

dmax : N

δp : N

δd : N

wmin < wmax

Measured values

Input
w? : N

d? : N
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Steam Boiler Control

Control values

Pumps
p1, p2, p3, p4 : OnOff

SteamBoiler0
Pumps
v : OpenClosed
a : OnOff
z : State
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Auxiliary Schemata

Auxiliary Schemata

PumpsOff
Pumps′

p′1 = off ∧ p′2 = off ∧ p′3 = off ∧ p′4 = off

PumpsOn
Pumps′

p′1 = on ∧ p′2 = on ∧ p′3 = on ∧ p′4 = on
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Steam Boiler Initial State

SteamBoilerInit0
SteamBoiler0′

a′ = off
z′ = init
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Operations for Initialisation

SInitNormal0
∆SteamBoiler0
Input

z = init
d? = 0
w? ≥ wmin + dmax
w? ≤ wmax

PumpsOff
z′ = norm
v′ = closed
a′ = on
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Operations for Initialisation

SInitStop0
∆SteamBoiler0
Input

z = init
d? > 0
z′ = stop
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Operations for Initialisation

SInitFill0
∆SteamBoiler0
Input

z = init
d? = 0
w? < wmin + dmax

PumpsOn
z′ = z
v′ = closed
a′ = off
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Operations for Initialisation

SInitEmpty0
∆SteamBoiler0
Input

z = init
d? = 0
w? > wmax

PumpsOff
z′ = z
v′ = open
a′ = off
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Operations for Initialisation

ControlInit0 =̂ SInitNormal0
∨ SInitStop0
∨ SInitFill0
∨ SInitEmpty0
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Operations for Normal State

SNormalFill0
∆SteamBoiler0
Input

z = norm
w? ≥ wmin
w? ≤ wopt − 3l
PumpsOn
v′ = closed ∧ a′ = on ∧ z′ = z

Note:
Simplified version where all four pumps are switched simultaneously
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Operations for Normal State

SNormalContinue0
ΞSteamBoiler0
Input

z = norm
w? > wopt − 3l
w? ≤ wopt
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Operations for Normal State

SNormalNotFill0
∆SteamBoiler0
Input

z = norm
w? > wopt
w? ≤ wmax

PumpsOff
v′ = closed ∧ a′ = on ∧ z′ = z
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Operations for Normal State

SNormalStop0
∆SteamBoiler0
Input

z = norm
w? < wmin ∨ w? > wmax

a′ = off ∧ z′ = stop
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Complete Operation

ControlNormal0 =̂ SNormalFill0
∨ SNormalContinue0

∨ SNormalNotFill0
∨ SNormalStop0

Control0 =̂ ControlInit0
∨ ControlNormal0
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Extended Solution

Additional Type

WorksBroken ::= works | broken

Additional measured values

ControlInput
kw? : WorksBroken
kd? : WorksBroken
kp1? : WorksBroken
kp2? : WorksBroken
kp3? : WorksBroken
kp4? : WorksBroken

B. Beckert: Formal Specification of Software – p.21



Extended Solution
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Extended Solution

Control values

SteamBoiler1
SteamBoiler0
s : N

δ : N

Initial State

SteamBoilerInit1
SteamBoiler1′

a′ = off
z′ = init
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Extended Solution

Control values

SteamBoiler1
SteamBoiler0
s : N

δ : N

Initial State

SteamBoilerInit1
SteamBoiler1′

a′ = off
z′ = init
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Extended Auxiliary Schemata

Auxiliary Functions

pswitch : (OnOff × WorksBroken) → OnOff

pswitch(on, works) = on
pswitch(on, broken) = off
pswitch(off , works) = off
pswitch(off , broken) = off

pamount : (OnOff ×WorksBroken) → N

∀x : OnOff , y : WorksBroken
| x = off ∨ y = broken • pamount(x, y) = 0

pamount(on, works) = 1
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Extended Auxiliary Schemata

Auxiliary Schemata

PumpsControlledOn
Pumps′
ControlInput

p′1 = pswitch(on, kp1?) ∧ p′2 = pswitch(on, kp2?)
p′3 = pswitch(on, kp3?) ∧ p′4 = pswitch(on, kp4?)

PumpsControlledOff
Pumps′
ControlInput

p′1 = pswitch(off , kp1?) ∧ p′2 = pswitch(off , kp2?)
p′3 = pswitch(off , kp3?) ∧ p′4 = pswitch(off , kp4?)
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Operations for Initialisation

SInitNormal1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
kw = works ∧ kd = works
w? ≥ wmin + dmax
w? ≤ wmax

z′ = norm
v′ = closed
a′ = on
s′ = w?
PumpsOff
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Operations for Initialisation

SInitFill1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
kw = works ∧ kd = works
w? < wmin + dmax

z′ = z
v′ = closed
a′ = off
PumpsOn
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Operations for Initialisation

SInitEmpty1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
w? > wmax

z′ = z
v′ = open
a′ = off
PumpsOff
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Operations for Initialisation

SInitStop1
∆SteamBoiler1
Input
ControlInput

z = init
d? > 0 ∨ kw = broken ∨ kd = broken
z′ = stop
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Operations for Initialisation

ControlInit1 =̂ SInitNormal1
∨ SInitFill1
∨ SInitEmpty1

∨ SInitStop1
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Operations for Normal State

SNormalFill1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? ≥ wmin
w? ≤ wopt − 3l
s′ = w?
PumpsControlledOn
v′ = closed ∧ a′ = on ∧ z′ = z
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Operations for Normal State

SNormalContinue1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? > wopt − 3l
w? ≤ wopt

p′1 = pswitch(p1, kp1) ∧ p′2 = pswitch(p2, kp2)
p′3 = pswitch(p3, kp3) ∧ p′4 = pswitch(p4, kp4)
s′ = w?
v′ = v ∧ a′ = a ∧ z′ = z
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Operations for Normal State

SNormalNotFill1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? > wopt
w? ≤ wmax

s′ = w?
PumpsControlledOff
v′ = closed ∧ a′ = on ∧ z′ = z
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Operations for Normal State

SNormalWaterStop1
∆SteamBoiler1
Input
ControlInput

z = norm ∨ z = broken
kw = works
w? < wmin ∨ w? > wmax
a′ = off ∧ z′ = stop
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Operations for Normal State

SNormalControlStop1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = broken ∧ kd = broken
a′ = off ∧ z′ = stop
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Schema AmountComputation

AmountComputation
SteamBoiler1
ControlInput
amount : N

δpumps : N

amount = l ∗ (pamount(p1, kp1?) + pamount(p2, kp2?) +

pamount(p3, kp3?) + pamount(p4, kp4?))
δpumps = δp ∗ (pamount(p1, works) + pamount(p2, works) +

pamount(p3, works) + pamount(p4, works))
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Operations for Normal State

SNormalBroken1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = norm
kw = broken
kd = works
s′ = s + amount − d?
δ ′ = δpumps + δd
s′ ≥ wmin + δ ′

s′ ≤ wmax − δ ′

s′ < (wmin + wmax)/2 → PumpsControlledOn
s′ ≥ (wmin + wmax)/2 → PumpsControlledOff
v′ = closed ∧ a′ = on
z′ = broken

Note:
Simple strategy because number of workin pumps is unknown
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Complete Operation

ControlNormal1 =̂ SNormalFill1
∨ SNormalContinue1

∨ SNormalNotFill1
∨ SNormalWaterStop1

∨ SNormalControlStop1

∨ SNormalBroken1
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Operations for Broken State

SBrokenContinue1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken
kw = broken
kd = works
s′ = s + amount − d?
δ ′ = δ + δpumps + δd
s′ ≥ wmin + δ ′

s′ ≤ wmax − δ ′

s′ < (wmin + wmax)/2 → PumpsControlledOn
s′ ≥ (wmin + wmax)/2 → PumpsControlledOff
v′ = closed ∧ a′ = on
z′ = broken
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Operations for Broken State

SBrokenNormal1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken
kw = works
w? ≥ wmin
w? ≤ wmax
w? < (wmin + wmax)/2 → PumpsControlledOn
w? ≥ (wmin + wmax)/2 → PumpsControlledOff
s′ = w?
v′ = closed ∧ a′ = on
z′ = norm
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Operations for Broken State

SBrokenControlStop1
∆SteamBoiler1
Input
ControlInput

z = broken
kw = broken
kd = broken
a′ = off ∧ z′ = stop
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Operations for Broken State

SBrokenWaterStop1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken ∨ z = norm
kw = broken
kd = works
s′ = s + amount − d?
z = broken → δ ′ = δ + δpumps + δd
z = norm → δ ′ = δpumps + δd
s′ < wmin + δ ′ ∨ s′ > wmax − δ ′

a′ = off ∧ z′ = stop
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Operations for Broken State

ControlBroken1 =̂ SBrokenContinue1

∨ SBrokenNormal1
∨ SBrokenControlStop1

∨ SBrokenWaterStop1
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Complete Operation

Control1 =̂ ControlInit1
∨ ControlNormal1
∨ ControlBroken1
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