Formal Specification of Software

Steam Boiler Control An Example in Z Formalisation

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

B. Beckert: Formal Specification of Software - p.1

System Components

- steam boiler
- water level measuring device
- four pumps
- four pump controlers
- steam quantity measuring device
- valve for emptying the boiler

Physical constants

 w_{min}

 w_{max}

 d_{max}

 δ_p

 δ_d

minimal water level maximal water level water amount per pi maximal quantity of exiting the boiler error in the value of error in steam

measurement

Measured values

- w water level
- *d* amount of steam exiting the boiler
- $k_{p,i}$ pump *i* works/broken
- *k*_w water level measuring device works/broken
- *k_d* steam amount measuring device works/broken

Control values

- p_i pump *i* on/off
- v valve open/closed
- *a* **boiler on/off**
- *z* state init/norm/broken/stop

Types

State ::= *init* | *norm* | *broken* | *stop*

 $OnOff ::= on \mid off$

OpenClosed ::= *open* | *closed*

Steam Boiler Control

Physical constants

 $w_{min} : \mathbb{N}$ $w_{max} : \mathbb{N}$ $l : \mathbb{N}$ $d_{max} : \mathbb{N}$ $\delta_{p} : \mathbb{N}$ $\delta_{d} : \mathbb{N}$ $w_{min} < w_{max}$

Physical constants

 $w_{min} : \mathbb{N}$ $w_{max} : \mathbb{N}$ $l : \mathbb{N}$ $d_{max} : \mathbb{N}$ $\delta_{p} : \mathbb{N}$ $\delta_{d} : \mathbb{N}$ $w_{min} < w_{max}$

Measured values

$$\begin{array}{c}
 Input \\
 w? : \mathbb{N} \\
 d? : \mathbb{N}
\end{array}$$

Control values

$$Pumps _ \\ p_1, p_2, p_3, p_4 : OnOff$$

_SteamBoiler0_____ Pumps v : OpenClosed a : OnOff z : State

Auxiliary Schemata

$$PumpsOff$$

$$Pumps'$$

$$p'_{1} = off \land p'_{2} = off \land p'_{3} = off \land p'_{4} = off$$

$$PumpsOn$$

$$Pumps'$$

$$p'_{1} = on \land p'_{2} = on \land p'_{3} = on \land p'_{4} = on$$

SteamBoilerInit0 SteamBoiler0' a' = off z' = init

SInitNormal0 $\Delta SteamBoiler0$ Input z = init d? = 0 $w? \ge w_{min} + d_{max}$ $w? \le w_{max}$ PumpsOff z' = norm v' = closed a' = on

$$SInitStop0$$

$$\Delta SteamBoiler0$$

$$Input$$

$$z = init$$

$$d? > 0$$

$$z' = stop$$

SInitFillo $\Delta SteamBoiler0$ Input z = init d? = 0 $w? < w_{min} + d_{max}$ PumpsOn z' = z v' = closed a' = off

$$SInitEmpty0$$

$$\Delta SteamBoiler0$$
Input
$$z = init$$

$$d? = 0$$

$$w? > w_{max}$$
PumpsOff
$$z' = z$$

$$v' = open$$

$$a' = off$$

ControlInit0 $\hat{=}$

- SInitNormal0
- ∨ *SInitStop*0
- ∨ SInitFill0
- \lor SInitEmpty0

Operations for Normal State

 $\begin{array}{c} SNormalFill0 \\ \Delta SteamBoiler0 \\ Input \\ \hline z = norm \\ w? \geq w_{min} \\ w? \leq w_{opt} - 3l \\ PumpsOn \\ v' = closed \land a' = on \land z' = z \end{array}$

Note:

Simplified version where all four pumps are switched simultaneously

SNormalContinue0 $\Xi SteamBoiler0$ Input z = norm $w? > w_{opt} - 3l$ $w? \le w_{opt}$ SNormalNotFillo $\Delta SteamBoiler0$ Input z = norm $w? > w_{opt}$ $w? \le w_{max}$ PumpsOff $v' = closed \land a' = on \land z' = z$

Operations for Normal State

__SNormalStop0_____ ∆SteamBoiler0 Input

z = norm $w? < w_{min} \lor w? > w_{max}$ $a' = off \land z' = stop$ ControlNormal0 $\hat{=}$ SNormalFill0

- ∨ SNormalContinue0
- ∨ SNormalNotFill0
- \lor SNormalStop0

Additional Type

WorksBroken ::= *works* | *broken*

Additional Type

WorksBroken ::= *works* | *broken*

Additional measured values

__ControlInput _____ k_w ? : WorksBroken k_d ? : WorksBroken k_{p1} ? : WorksBroken k_{p2} ? : WorksBroken k_{p3} ? : WorksBroken k_{p4} ? : WorksBroken

Extended Solution

Control values

Extended Solution

Control values

Initial State

$$SteamBoilerInit1$$

$$SteamBoiler1'$$

$$a' = off$$

$$z' = init$$

Extended Auxiliary Schemata

Auxiliary Functions

 $pswitch: (OnOff \times WorksBroken) \rightarrow OnOff$ pswitch(on, works) = on pswitch(on, broken) = off pswitch(off, works) = offpswitch(off, broken) = off

```
pamount : (OnOff \times WorksBroken) \rightarrow \mathbb{N}
\forall x : OnOff, y : WorksBroken
| x = off \lor y = broken \bullet pamount(x, y) = 0
pamount(on, works) = 1
```

Extended Auxiliary Schemata

Auxiliary Schemata

PumpsControlledOn Pumps' ControlInput $p'_{1} = pswitch(on, k_{p1}?) \land p'_{2} = pswitch(on, k_{p2}?)$ $p'_{3} = pswitch(on, k_{p3}?) \land p'_{4} = pswitch(on, k_{p4}?)$

 $\begin{array}{l} _PumpsControlledOff \\ Pumps' \\ ControlInput \end{array}$ $\begin{array}{l} p_{1}' = pswitch(off, k_{p1}?) \land p_{2}' = pswitch(off, k_{p2}?) \\ p_{3}' = pswitch(off, k_{p3}?) \land p_{4}' = pswitch(off, k_{p4}?) \end{array}$

SInitNormal1 $\Delta Steam Boiler 1$ Input ControlInput z = initd? = 0 $k_w = works \land k_d = works$ $w? \geq w_{min} + d_{max}$ $w? \leq w_{max}$ z' = normv' = closeda' = ons' = w?PumpsOff

SInitFill1 $\Delta Steam Boiler 1$ Input ControlInput z = initd? = 0 $k_w = works \land k_d = works$ $w? < w_{min} + d_{max}$ z' = zv' = closeda' = offPumpsOn

SInitEmpty1 $\Delta Steam Boiler 1$ Input ControlInput z = initd? = 0 $w? > w_{max}$ z' = zv' = opena' = offPumpsOff

SInitStop1 $\Delta SteamBoiler1$ Input ControlInput z = init $d? > 0 \lor k_w = broken \lor k_d = broken$ z' = stop

ControlInit1 $\hat{=}$

- SInitNormal1
- \lor SInitFill1
- \lor SInitEmpty1
- \lor SInitStop1

SNormalFill1 $\Delta SteamBoiler1$ Input ControlInput z = norm $k_w = works$ $w? \ge w_{min}$ $w? \le w_{opt} - 3l$ s' = w? PumpsControlledOn $v' = closed \land a' = on \land z' = z$

$$SNormalContinue1$$

$$\Delta SteamBoiler1$$

$$Input$$

$$ControlInput$$

$$z = norm$$

$$k_w = works$$

$$w? > w_{opt} - 3l$$

$$w? \le w_{opt}$$

$$p'_1 = pswitch(p_1, k_{p1}) \land p'_2 = pswitch(p_2, k_{p2})$$

$$p'_3 = pswitch(p_3, k_{p3}) \land p'_4 = pswitch(p_4, k_{p4})$$

$$s' = w?$$

$$v' = v \land a' = a \land z' = z$$

SNormalNotFill1 $\Delta SteamBoiler1$ Input ControlInput z = norm $k_w = works$ $w? > w_{opt}$ $w? \le w_{max}$ s' = w? PumpsControlledOff $v' = closed \land a' = on \land z' = z$

 $SNormalWaterStop1 _____ \Delta SteamBoiler1 \\ Input \\ ControlInput \\ z = norm \lor z = broken \\ k_w = works \\ w? < w_{min} \lor w? > w_{max} \\ a' = off \land z' = stop \\ \end{cases}$

__SNormalControlStop1_____ ΔSteamBoiler1 Input ControlInput

$$z = norm$$

 $k_w = broken \land k_d = broken$
 $a' = off \land z' = stop$

 $\begin{array}{l} AmountComputation \\ SteamBoiler1 \\ ControlInput \\ amount : \mathbb{N} \\ \delta_{pumps} : \mathbb{N} \\ \end{array} \\ amount = l * (pamount(p_1, k_{p1}?) + pamount(p_2, k_{p2}?) + \\ pamount(p_3, k_{p3}?) + pamount(p_4, k_{p4}?)) \\ \delta_{pumps} = \delta_p * (pamount(p_1, works) + pamount(p_2, works) + \\ pamount(p_3, works) + pamount(p_4, works)) \\ \end{array}$

SNormalBroken1 $\Delta Steam Boiler 1$ Input ControlInput AmountComputation z = norm $k_w = broken$ $k_d = works$ s' = s + amount - d? $\delta' = \delta_{pumps} + \delta_d$ $s' > w_{min} + \delta'$ $s' < w_{max} - \delta'$ $s' < (w_{min} + w_{max})/2 \rightarrow PumpsControlledOn$ $s' \ge (w_{min} + w_{max})/2 \rightarrow PumpsControlledOff$ $v' = closed \land a' = on$ z' = broken

ControlNormal1 $\hat{=}$

- SNormalFill1
- ∨ SNormalContinue1
- ∨ SNormalNotFill1
- ∨ *SNormalWaterStop1*
- ∨ *SNormalControlStop*1
- ∨ SNormalBroken1

SBrokenContinue1 ASteamBoiler1 Input ControlInput AmountComputation z = broken $k_w = broken$ $k_d = works$ s' = s + amount - d? $\delta' = \delta + \delta_{pumps} + \delta_d$ $s' > w_{min} + \delta'$ $s' < w_{max} - \delta'$ $s' < (w_{min} + w_{max})/2 \rightarrow PumpsControlledOn$ $s' \ge (w_{min} + w_{max})/2 \rightarrow PumpsControlledOff$ $v' = closed \land a' = on$ z' = broken

SBrokenNormal1_ $\Delta Steam Boiler 1$ Input ControlInput AmountComputation z = broken $k_w = works$ $w? \geq w_{min}$ $w? \leq w_{max}$ $w? < (w_{min} + w_{max})/2 \rightarrow PumpsControlledOn$ $w? \geq (w_{min} + w_{max})/2 \rightarrow PumpsControlledOff$ s' = w? $v' = closed \land a' = on$ z' = norm

 $SBrokenControlStop1 _$ $\Delta SteamBoiler1$ Input ControlInput z = broken $k_w = broken$ $k_d = broken$ $a' = off \land z' = stop$

SBrokenWaterStop1_ $\Delta Steam Boiler 1$ Input ControlInput AmountComputation $z = broken \lor z = norm$ $k_w = broken$ $k_d = works$ s' = s + amount - d? $z = broken \rightarrow \delta' = \delta + \delta_{pumps} + \delta_d$ $z = norm \rightarrow \delta' = \delta_{pumps} + \delta_d$ $s' < w_{min} + \delta' \lor s' > w_{max} - \delta'$ $a' = off \land z' = stop$

ControlBroken1 $\hat{=}$ SBrokenContinue1

- ∨ SBrokenNormal1
- ∨ SBrokenControlStop1
- ∨ *SBrokenWaterStop*1

Control1 $\hat{=}$ ControlInit1

- \lor ControlNormal1
- \lor ControlBroken1