
Formal Specification of Software

Steam Boiler Control
An Example in Z Formalisation

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

B. Beckert: Formal Specification of Software – p.1

Steam Boiler Control: Scenario

4

w

w

d

w

/ k

/ k

k k

l/ δ

δ

p1 / . . . / p4
v

a

z

p1 p4/ ... /

d

w

min

max

p

d System Components

steam boiler

water level measuring device

four pumps

four pump controlers

steam quantity measuring device

valve for emptying the boiler

B. Beckert: Formal Specification of Software – p.2

Steam Boiler Control: Scenario

4

w

w

d

w

/ k

/ k

k k

l/ δ

δ

p1 / . . . / p4
v

a

z

p1 p4/ ... /

d

w

min

max

p

d

Physical constants

wmin minimal water level

wmax maximal water level

l water amount per pump

dmax maximal quantity of steam

exiting the boiler

δp error in the value of l

δd error in steam

measurement

B. Beckert: Formal Specification of Software – p.3

Steam Boiler Control: Scenario

4

w

w

d

w

/ k

/ k

k k

l/ δ

δ

p1 / . . . / p4
v

a

z

p1 p4/ ... /

d

w

min

max

p

d

Measured values

w water level

d amount of steam exiting

the boiler

kp,i pump i works/broken

kw water level measuring device

works/broken

kd steam amount measuring

device works/broken

B. Beckert: Formal Specification of Software – p.4

Steam Boiler Control: Scenario

4

w

w

d

w

/ k

/ k

k k

l/ δ

δ

p1 / . . . / p4
v

a

z

p1 p4/ ... /

d

w

min

max

p

d

Control values

pi pump i on/off

v valve open/closed

a boiler on/off

z state init/norm/broken/stop

B. Beckert: Formal Specification of Software – p.5

Steam Boiler Control

Types

State ::= init | norm | broken | stop

OnOff ::= on | off

OpenClosed ::= open | closed

B. Beckert: Formal Specification of Software – p.6

Steam Boiler Control

Physical constants

wmin : N

wmax : N

l : N

dmax : N

δp : N

δd : N

wmin < wmax

Measured values

Input
w? : N

d? : N

B. Beckert: Formal Specification of Software – p.7

Steam Boiler Control

Physical constants

wmin : N

wmax : N

l : N

dmax : N

δp : N

δd : N

wmin < wmax

Measured values

Input
w? : N

d? : N

B. Beckert: Formal Specification of Software – p.7

Steam Boiler Control

Control values

Pumps
p1, p2, p3, p4 : OnOff

SteamBoiler0
Pumps
v : OpenClosed
a : OnOff
z : State

B. Beckert: Formal Specification of Software – p.8

Auxiliary Schemata

Auxiliary Schemata

PumpsOff
Pumps′

p′1 = off ∧ p′2 = off ∧ p′3 = off ∧ p′4 = off

PumpsOn
Pumps′

p′1 = on ∧ p′2 = on ∧ p′3 = on ∧ p′4 = on

B. Beckert: Formal Specification of Software – p.9

Steam Boiler Initial State

SteamBoilerInit0
SteamBoiler0′

a′ = off
z′ = init

B. Beckert: Formal Specification of Software – p.10

Operations for Initialisation

SInitNormal0
∆SteamBoiler0
Input

z = init
d? = 0
w? ≥ wmin + dmax
w? ≤ wmax

PumpsOff
z′ = norm
v′ = closed
a′ = on

B. Beckert: Formal Specification of Software – p.11

Operations for Initialisation

SInitStop0
∆SteamBoiler0
Input

z = init
d? > 0
z′ = stop

B. Beckert: Formal Specification of Software – p.12

Operations for Initialisation

SInitFill0
∆SteamBoiler0
Input

z = init
d? = 0
w? < wmin + dmax

PumpsOn
z′ = z
v′ = closed
a′ = off

B. Beckert: Formal Specification of Software – p.13

Operations for Initialisation

SInitEmpty0
∆SteamBoiler0
Input

z = init
d? = 0
w? > wmax

PumpsOff
z′ = z
v′ = open
a′ = off

B. Beckert: Formal Specification of Software – p.14

Operations for Initialisation

ControlInit0 =̂ SInitNormal0
∨ SInitStop0
∨ SInitFill0
∨ SInitEmpty0

B. Beckert: Formal Specification of Software – p.15

Operations for Normal State

SNormalFill0
∆SteamBoiler0
Input

z = norm
w? ≥ wmin
w? ≤ wopt − 3l
PumpsOn
v′ = closed ∧ a′ = on ∧ z′ = z

Note:
Simplified version where all four pumps are switched simultaneously

B. Beckert: Formal Specification of Software – p.16

Operations for Normal State

SNormalContinue0
ΞSteamBoiler0
Input

z = norm
w? > wopt − 3l
w? ≤ wopt

B. Beckert: Formal Specification of Software – p.17

Operations for Normal State

SNormalNotFill0
∆SteamBoiler0
Input

z = norm
w? > wopt
w? ≤ wmax

PumpsOff
v′ = closed ∧ a′ = on ∧ z′ = z

B. Beckert: Formal Specification of Software – p.18

Operations for Normal State

SNormalStop0
∆SteamBoiler0
Input

z = norm
w? < wmin ∨ w? > wmax

a′ = off ∧ z′ = stop

B. Beckert: Formal Specification of Software – p.19

Complete Operation

ControlNormal0 =̂ SNormalFill0
∨ SNormalContinue0

∨ SNormalNotFill0
∨ SNormalStop0

Control0 =̂ ControlInit0
∨ ControlNormal0

B. Beckert: Formal Specification of Software – p.20

Extended Solution

Additional Type

WorksBroken ::= works | broken

Additional measured values

ControlInput
kw? : WorksBroken
kd? : WorksBroken
kp1? : WorksBroken
kp2? : WorksBroken
kp3? : WorksBroken
kp4? : WorksBroken

B. Beckert: Formal Specification of Software – p.21

Extended Solution

Additional Type

WorksBroken ::= works | broken

Additional measured values

ControlInput
kw? : WorksBroken
kd? : WorksBroken
kp1? : WorksBroken
kp2? : WorksBroken
kp3? : WorksBroken
kp4? : WorksBroken

B. Beckert: Formal Specification of Software – p.21

Extended Solution

Control values

SteamBoiler1
SteamBoiler0
s : N

δ : N

Initial State

SteamBoilerInit1
SteamBoiler1′

a′ = off
z′ = init

B. Beckert: Formal Specification of Software – p.22

Extended Solution

Control values

SteamBoiler1
SteamBoiler0
s : N

δ : N

Initial State

SteamBoilerInit1
SteamBoiler1′

a′ = off
z′ = init

B. Beckert: Formal Specification of Software – p.22

Extended Auxiliary Schemata

Auxiliary Functions

pswitch : (OnOff × WorksBroken) → OnOff

pswitch(on, works) = on
pswitch(on, broken) = off
pswitch(off , works) = off
pswitch(off , broken) = off

pamount : (OnOff ×WorksBroken) → N

∀x : OnOff , y : WorksBroken
| x = off ∨ y = broken • pamount(x, y) = 0

pamount(on, works) = 1

B. Beckert: Formal Specification of Software – p.23

Extended Auxiliary Schemata

Auxiliary Schemata

PumpsControlledOn
Pumps′
ControlInput

p′1 = pswitch(on, kp1?) ∧ p′2 = pswitch(on, kp2?)
p′3 = pswitch(on, kp3?) ∧ p′4 = pswitch(on, kp4?)

PumpsControlledOff
Pumps′
ControlInput

p′1 = pswitch(off , kp1?) ∧ p′2 = pswitch(off , kp2?)
p′3 = pswitch(off , kp3?) ∧ p′4 = pswitch(off , kp4?)

B. Beckert: Formal Specification of Software – p.24

Operations for Initialisation

SInitNormal1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
kw = works ∧ kd = works
w? ≥ wmin + dmax
w? ≤ wmax

z′ = norm
v′ = closed
a′ = on
s′ = w?
PumpsOff

B. Beckert: Formal Specification of Software – p.25

Operations for Initialisation

SInitFill1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
kw = works ∧ kd = works
w? < wmin + dmax

z′ = z
v′ = closed
a′ = off
PumpsOn

B. Beckert: Formal Specification of Software – p.26

Operations for Initialisation

SInitEmpty1
∆SteamBoiler1
Input
ControlInput

z = init
d? = 0
w? > wmax

z′ = z
v′ = open
a′ = off
PumpsOff

B. Beckert: Formal Specification of Software – p.27

Operations for Initialisation

SInitStop1
∆SteamBoiler1
Input
ControlInput

z = init
d? > 0 ∨ kw = broken ∨ kd = broken
z′ = stop

B. Beckert: Formal Specification of Software – p.28

Operations for Initialisation

ControlInit1 =̂ SInitNormal1
∨ SInitFill1
∨ SInitEmpty1

∨ SInitStop1

B. Beckert: Formal Specification of Software – p.29

Operations for Normal State

SNormalFill1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? ≥ wmin
w? ≤ wopt − 3l
s′ = w?
PumpsControlledOn
v′ = closed ∧ a′ = on ∧ z′ = z

B. Beckert: Formal Specification of Software – p.30

Operations for Normal State

SNormalContinue1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? > wopt − 3l
w? ≤ wopt

p′1 = pswitch(p1, kp1) ∧ p′2 = pswitch(p2, kp2)
p′3 = pswitch(p3, kp3) ∧ p′4 = pswitch(p4, kp4)
s′ = w?
v′ = v ∧ a′ = a ∧ z′ = z

B. Beckert: Formal Specification of Software – p.31

Operations for Normal State

SNormalNotFill1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = works
w? > wopt
w? ≤ wmax

s′ = w?
PumpsControlledOff
v′ = closed ∧ a′ = on ∧ z′ = z

B. Beckert: Formal Specification of Software – p.32

Operations for Normal State

SNormalWaterStop1
∆SteamBoiler1
Input
ControlInput

z = norm ∨ z = broken
kw = works
w? < wmin ∨ w? > wmax
a′ = off ∧ z′ = stop

B. Beckert: Formal Specification of Software – p.33

Operations for Normal State

SNormalControlStop1
∆SteamBoiler1
Input
ControlInput

z = norm
kw = broken ∧ kd = broken
a′ = off ∧ z′ = stop

B. Beckert: Formal Specification of Software – p.34

Schema AmountComputation

AmountComputation
SteamBoiler1
ControlInput
amount : N

δpumps : N

amount = l ∗ (pamount(p1, kp1?) + pamount(p2, kp2?) +

pamount(p3, kp3?) + pamount(p4, kp4?))
δpumps = δp ∗ (pamount(p1, works) + pamount(p2, works) +

pamount(p3, works) + pamount(p4, works))

B. Beckert: Formal Specification of Software – p.35

Operations for Normal State

SNormalBroken1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = norm
kw = broken
kd = works
s′ = s + amount − d?
δ ′ = δpumps + δd
s′ ≥ wmin + δ ′

s′ ≤ wmax − δ ′

s′ < (wmin + wmax)/2 → PumpsControlledOn
s′ ≥ (wmin + wmax)/2 → PumpsControlledOff
v′ = closed ∧ a′ = on
z′ = broken

Note:
Simple strategy because number of workin pumps is unknown

B. Beckert: Formal Specification of Software – p.36

Complete Operation

ControlNormal1 =̂ SNormalFill1
∨ SNormalContinue1

∨ SNormalNotFill1
∨ SNormalWaterStop1

∨ SNormalControlStop1

∨ SNormalBroken1

B. Beckert: Formal Specification of Software – p.37

Operations for Broken State

SBrokenContinue1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken
kw = broken
kd = works
s′ = s + amount − d?
δ ′ = δ + δpumps + δd
s′ ≥ wmin + δ ′

s′ ≤ wmax − δ ′

s′ < (wmin + wmax)/2 → PumpsControlledOn
s′ ≥ (wmin + wmax)/2 → PumpsControlledOff
v′ = closed ∧ a′ = on
z′ = broken

B. Beckert: Formal Specification of Software – p.38

Operations for Broken State

SBrokenNormal1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken
kw = works
w? ≥ wmin
w? ≤ wmax
w? < (wmin + wmax)/2 → PumpsControlledOn
w? ≥ (wmin + wmax)/2 → PumpsControlledOff
s′ = w?
v′ = closed ∧ a′ = on
z′ = norm

B. Beckert: Formal Specification of Software – p.39

Operations for Broken State

SBrokenControlStop1
∆SteamBoiler1
Input
ControlInput

z = broken
kw = broken
kd = broken
a′ = off ∧ z′ = stop

B. Beckert: Formal Specification of Software – p.40

Operations for Broken State

SBrokenWaterStop1
∆SteamBoiler1
Input
ControlInput
AmountComputation

z = broken ∨ z = norm
kw = broken
kd = works
s′ = s + amount − d?
z = broken → δ ′ = δ + δpumps + δd
z = norm → δ ′ = δpumps + δd
s′ < wmin + δ ′ ∨ s′ > wmax − δ ′

a′ = off ∧ z′ = stop

B. Beckert: Formal Specification of Software – p.41

Operations for Broken State

ControlBroken1 =̂ SBrokenContinue1

∨ SBrokenNormal1
∨ SBrokenControlStop1

∨ SBrokenWaterStop1

B. Beckert: Formal Specification of Software – p.42

Complete Operation

Control1 =̂ ControlInit1
∨ ControlNormal1
∨ ControlBroken1

B. Beckert: Formal Specification of Software – p.43

	
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler Control
	Steam Boiler Control
	Steam Boiler Control
	Auxiliary Schemata
	Steam Boiler Initial State
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Normal State
	Operations for Normal State
	Operations for Normal State
	Operations for Normal State
	Complete Operation
	Extended Solution
	Extended Solution
	Extended Auxiliary Schemata
	Extended Auxiliary Schemata
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Initialisation
	Operations for Normal State
	Operations for Normal State
	Operations for Normal State
	Operations for Normal State
	Operations for Normal State
	Schema 	extit {AmountComputation}
	Operations for Normal State
	Complete Operation
	Operations for Broken State
	Operations for Broken State
	Operations for Broken State
	Operations for Broken State
	Operations for Broken State
	Complete Operation

