Formal Specification of Software

The Z Specification Language

Bernhard Beckert
要番
Universität Koblenz-Landau

The Z Specification Language

Based on

- Typed first-order predicate logic
, Zermelo-Fraenkel set theory
- Rich notation

The Z Specification Language

Based on

- Typed first-order predicate logic
- Zermelo-Fraenkel set theory
- Rich notation

Invented/developed by
J.-R. Abrial, Oxford University Computing Laboratory

International standard
ISO/IEC JTC1/SC22

The Z Specification Language

Tools

- IATEX style
- Type checker
. $Z /$ Eves deduction system

But

No tools for simulation/execution/testing

Built-in Operators

Logical operators

\neg negation
\wedge conjunction
\checkmark disjunction
\Rightarrow implication (note: not \rightarrow)
\Leftrightarrow equivalence \quad (note: not \leftrightarrow)

Equality

$=$ equality
On all types (but not predicates)

Built-in Operators

Quantification

$$
Q x_{1}: S_{1} ; \ldots ; x_{n}: S_{n} \mid p \bullet q
$$

where Q is one of $\quad \forall \exists \exists_{1}$

Meaning

$$
\begin{aligned}
& \forall x_{1}: S_{1} ; \ldots ; x_{n}: S_{n}(p \Rightarrow q) \\
& \exists x_{1}: S_{1} ; \ldots ; x_{n}: S_{n}(p \wedge q)
\end{aligned}
$$

Abbreviation

$$
\forall x: T \bullet q \text { for } \quad \forall x: T \mid \text { true } \bullet q
$$

Notation for Sets

Enumeration

$$
\left\{e_{1}, \ldots, e_{n}\right\}
$$

The set of type-compatible elements e_{1}, \ldots, e_{n}

Example

$\{3,5,8,4\}$

Notation for Sets

Set comprehension

$$
\{x: T \mid \operatorname{pred}(x) \bullet \operatorname{expr}(x)\}
$$

The set of all elements that result from evaluating $\operatorname{expr}(x)$ for all x of type T for which $\operatorname{pred}(x)$ holds

Example

$$
\{x: \mathbb{Z} \mid \operatorname{prime}(x) \bullet x * x\}
$$

The set of all squares of prime numbers

Notation for Sets

Abbreviation
$\{x: T \mid \operatorname{pred}(x)\} \quad$ for $\quad\{x: T \mid \operatorname{pred}(x) \bullet x\}$

Example

$$
\mathbb{N}=\{x: \mathbb{Z} \mid x \geq 0\}
$$

The empty set

$$
\varnothing=\{x: T \mid \text { false }\}
$$

Note:
$\varnothing=\varnothing[T] \quad$ is typed

Set Operations

\in element-of relation

\subseteq subset relation
S_{1} and S_{2} must have the same type

$$
S_{1} \subseteq S_{2} \Leftrightarrow\left(\forall x: S_{1} \mid x \in S_{2}\right)
$$

\mathbb{P} power set operator

$$
S^{\prime} \in \mathbb{P} S \Leftrightarrow S^{\prime} \subseteq S
$$

\times cartesian product

$$
\left(x_{1}, \ldots, x_{n}\right) \in S_{1} \times \ldots \times S_{n} \Leftrightarrow\left(x_{1} \in S_{1} \wedge \ldots \wedge x_{n} \in S_{n}\right)
$$

Set Operations

\cup, \cup union

Involved sets must have the same type T

$$
\begin{aligned}
& x \in S_{1} \cup S_{2} \Leftrightarrow\left(x \in S_{1} \vee x \in S_{2}\right) \\
& x \in \cup S \Leftrightarrow\left(\exists S^{\prime}: T \bullet x \in S^{\prime}\right)
\end{aligned}
$$

\cap, \cap intersection
\backslash set difference

Types

Pre-defined types

\mathbb{Z} with constants: $0,1,2,3,4, \ldots$ functions: $+,-, *, /$ predicates: $<, \leq,>, \geq$

Sets
Every set can be used as a type

Basic types (given sets)
Example
[Person]

Free Type Definitions

Example

weekDay $::=$ mon \mid tue \mid wed \mid thu \mid fri \mid sat \mid sun

Example

$$
\text { Tree }::=\text { leaf }\langle\langle\mathbb{Z}\rangle\rangle \mid \text { node }\langle\langle\text { Tree } \times \text { Tree }\rangle\rangle
$$

Meaning

[Tree] generated by leaf, node
$\forall x_{1}, y_{1}, x_{2}, y_{2}: \operatorname{Tree} \mid \operatorname{node}\left(x_{1}, y_{1}\right)=\operatorname{node}\left(x_{2}, y_{2}\right) \bullet\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right)$
$\forall x_{1}, x_{2}: \mathbb{Z} \mid \operatorname{leaf}\left(x_{1}\right)=\operatorname{leaf}\left(x_{2}\right) \bullet x_{1}=x_{2}$
$\forall x: \mathbb{Z} ; y, z:$ Tree $\bullet \operatorname{leaf}(x) \neq \operatorname{node}(y, z)$
Note: Generatedness is not expressible in first-order logic

Compound Types

Set type: $\mathbb{P} T$
The type of sets of elements of type T

Cartesian product type: $T_{1} \times \cdots \times T_{n}$
The type of tuples $\left(t_{1}, \ldots, t_{n}\right)$ with $t_{i} \in T_{i}$

Types: Overview

Possible type definitions

- $T=\mathbb{Z}$
- $T=$ [Type $]$
- $T::=\ldots$ (free type)
- $T=\mathbb{P} T^{\prime}$
- $T=T_{1} \times \cdots \times T_{n}$

Types: Overview

Possible type definitions

- $T=\mathbb{Z}$
- $T=$ [Type]
- $T::=\ldots$ (free type)
- $T=\mathbb{P} T^{\prime}$
- $T=T_{1} \times \cdots \times T_{n}$

Note
All types are disjoint
All terms have a unique type

Variables

Variable declarations

Example

$x: \mathbb{Z}$
sold $: \mathbb{P}$ Seat

Variables can range over types and over sets

Syntactical Abbreviations

Abbreviations

- must not be recursive
- can be generic

Examples

$$
\begin{aligned}
& \text { numberPairs }==\mathbb{Z} \times \mathbb{Z} \\
& \text { pairWithNumber }[S]==\mathbb{Z} \times S
\end{aligned}
$$

Note
Type variables are "meta-variables"
(cannot be quantified)

Abbreviations vs. Generated Types

$$
\text { weekDay } 1==\{\text { mon }, \text { tue, wed }, \text { thu }, \text { fri, sat, sun }\}
$$

vs.
WeekDay2 $::=$ mon \mid tue \mid wed \mid thu \mid fri \mid sat \mid sun

Abbreviations vs. Generated Types

$$
\text { weekDay } 1==\{\text { mon,tue }, \text { wed }, \text { thu }, \text { fri }, \text { sat }, \text { sun }\}
$$

vs.

$$
\text { WeekDay2 }::=\text { mon } \mid \text { tue } \mid \text { wed } \mid \text { thu } \mid \text { fri } \mid \text { sat } \mid \text { sun }
$$

Not the same
Type definition implies elements to be different

Axiomatic Definitions

Form of an axiomatic definition
SymbolDeclarations
ConstrainingPredicates

Example

$$
\left.\frac{\mathbb{N}_{1}: \mathbb{P} \mathbb{Z}}{\forall z: \mathbb{Z} \bullet\left(z \in \mathbb{N}_{1}\right.} \leftrightarrow z \geq 1\right)
$$

Relations

Relation types/sets

$S \leftrightarrow T$ is the type/set of relations between types/sets S and T

$$
S \leftrightarrow T=\mathbb{P}(S \times T)
$$

Notation

$a \mapsto b \quad$ for $\quad(a, b) \quad$ if $\quad(a, b) \in S \leftrightarrow T$

Operations on Relations

Domain $\operatorname{dom} R$

$$
\operatorname{dom} R=\{a: S, b: T \mid a \mapsto b \in R \bullet a\}
$$

Range $\operatorname{ran} R$

$$
\operatorname{ran} R=\{a: S ; b: T \mid a \mapsto b \in R \bullet b\}
$$

Operations on Relations

Domain $\operatorname{dom} R$

$$
\operatorname{dom} R=\{a: S, b: T \mid a \mapsto b \in R \bullet a\}
$$

Range $\operatorname{ran} R$

$$
\operatorname{ran} R=\{a: S ; b: T \mid a \mapsto b \in R \bullet b\}
$$

Restrictions of relations

$$
\begin{aligned}
& S^{\prime} \triangleleft R=\left\{a: S ; b: T \mid a \mapsto b \in R \wedge a \in S^{\prime} \bullet a \mapsto b\right\} \\
& R \triangleright T^{\prime}=\left\{a: S ; b: T \mid a \mapsto b \in R \wedge b \in T^{\prime} \bullet a \mapsto b\right\} \\
& S^{\prime} \triangleleft R=\left\{a: S ; b: T \mid a \mapsto b \in R \wedge a \notin S^{\prime} \bullet a \mapsto b\right\} \\
& R \triangleright T^{\prime}=\left\{a: S ; b: T \mid a \mapsto b \in R \wedge b \notin T^{\prime} \bullet a \mapsto b\right\}
\end{aligned}
$$

Operations on Relations

Inverse relation R^{-1}

$$
R^{-1}=\{a: S ; b: T \mid a \mapsto b \in R \bullet b \mapsto a\}
$$

Operations on Relations

Inverse relation R^{-1}

$$
R^{-1}=\{a: S ; b: T \mid a \mapsto b \in R \bullet b \mapsto a\}
$$

Composition $\quad R_{9}^{\circ} R^{\prime} \quad R: S \leftrightarrow T$ and $R^{\prime}: T \leftrightarrow U$

$$
R_{9}^{\circ} R^{\prime}=\left\{a: S ; b: T ; c: U \mid a \mapsto b \in R \wedge b \mapsto c \in R^{\prime} \bullet a \mapsto c\right\}
$$

Operations on Relations

Inverse relation R^{-1}

$$
R^{-1}=\{a: S ; b: T \mid a \mapsto b \in R \bullet b \mapsto a\}
$$

Composition $\quad R_{9}^{\circ} R^{\prime} \quad R: S \leftrightarrow T$ and $R^{\prime}: T \leftrightarrow U$

$$
R_{9}^{9} R^{\prime}=\left\{a: S ; b: T ; c: U \mid a \mapsto b \in R \wedge b \mapsto c \in R^{\prime} \bullet a \mapsto c\right\}
$$

Closures $\quad R: S \leftrightarrow S$

$$
\begin{array}{ll}
\text { iteration } & R^{n}=R_{9} R^{n-1} \\
\text { identity } & R^{0}=\{a: S \mid \text { true } \bullet a \mapsto a\} \\
\text { refl./trans. } & R^{*}=\bigcup\left\{n: \mathbb{N} \mid \text { true } \bullet R^{n}\right\} \\
\text { transitive } & R^{+}=\bigcup\left\{n: \mathbb{N} \mid n \geq 1 \bullet R^{n}\right\} \\
\text { symetric } & R^{s}=R \cup R^{-1} \\
\text { reflexive } & R^{r}=R \cup R^{0}
\end{array}
$$

Functions

Special relations

Functions are special relations

Notation
Instead of

$\rightarrow \quad$ total function
\rightarrow partial function

Functions

Partial functions

$$
\begin{aligned}
& f \in S \rightarrow T \Leftrightarrow \\
& \quad f \in S \leftrightarrow T \wedge \\
& \quad \forall a: S, b: T, b^{\prime}: T \mid\left(a \mapsto b \in f \wedge a \mapsto b^{\prime} \in f\right) \bullet b=b^{\prime}
\end{aligned}
$$

Functions

Partial functions

$$
\begin{aligned}
f \in & S \mapsto T \Leftrightarrow \\
& f \in S \leftrightarrow T \wedge \\
& \forall a: S, b: T, b^{\prime}: T \mid\left(a \mapsto b \in f \wedge a \mapsto b^{\prime} \in f\right) \bullet b=b^{\prime}
\end{aligned}
$$

Total functions

$$
\begin{aligned}
& f \in S \rightarrow T \Leftrightarrow \\
& \quad f \in S \rightarrow T \wedge \\
& \quad \forall a: S \bullet \exists b: T \bullet a \mapsto b \in f
\end{aligned}
$$

λ Notation for Functions

General form

$$
\lambda a: S \mid p \bullet e
$$

Example

$$
\begin{aligned}
& \text { double }: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \text { double }=\lambda n: \mathbb{Z} \mid n \geq 0 \bullet n+n
\end{aligned}
$$

Equivalent to

$$
\begin{array}{|l}
\text { double }: \mathbb{Z} \rightarrow \mathbb{Z} \\
\hline \text { double }=\{n: \mathbb{N} \mid \text { true } \bullet n \mapsto n+n\}
\end{array}
$$

Prefix and Infix Notation

Notation

Relations and functions can be declared prefix and infix
Parameter positions are indicated with "_"

Example

$$
\left.\frac{\text { even } \quad: \mathbb{P} \mathbb{Z}}{\forall x: \mathbb{Z} \bullet(\text { even } x} \Leftrightarrow(\exists y: \mathbb{Z} \bullet x=y+y)\right)
$$

Equivalent to

$$
\begin{aligned}
& \text { even }_{-}: \mathbb{P} \mathbb{Z} \\
& \text { even }=\{x: \mathbb{Z} \mid(\exists y: \mathbb{Z} \bullet x=y+y)\}
\end{aligned}
$$

More Notation for Functions

Notation

\rightarrow partial injective function
$\longmapsto \quad$ total injective function
\rightarrow partial surjective function
$\rightarrow \quad$ total surjective function
\longmapsto total bijective function

Three Definitions of $a b s$

Relation (in infix notation)

$$
\frac{-a b s_{-}: \mathbb{Z} \leftrightarrow \mathbb{N}}{\forall m: \mathbb{Z}, n: \mathbb{N} \bullet(m \text { abs } n) \leftrightarrow(m=n \vee-m=n)}
$$

Three Definitions of $a b s$

Relation (in infix notation)

$$
\frac{-a b s_{-}: \mathbb{Z} \leftrightarrow \mathbb{N}}{\forall m: \mathbb{Z}, n: \mathbb{N} \bullet(m \text { abs } n) \leftrightarrow(m=n \vee-m=n)}
$$

Function

$$
\begin{aligned}
& a b s: \mathbb{Z} \rightarrow \mathbb{Z} \\
& a b s=(\lambda m: \mathbb{Z} \mid m \leq 0 \bullet-m) \cup(\lambda m: \mathbb{Z} \mid m \geq 0 \bullet m)
\end{aligned}
$$

Three Definitions of $a b s$

Relation (in infix notation)

$$
\frac{-a b s_{-}: \mathbb{Z} \leftrightarrow \mathbb{N}}{\forall m: \mathbb{Z}, n: \mathbb{N} \bullet(m a b s n) \leftrightarrow(m=n \vee-m=n)}
$$

Function

$$
\left.\begin{array}{|l}
\text { abs }: \mathbb{Z} \rightarrow \mathbb{Z} \\
\mid a b s=(\lambda m: \mathbb{Z}
\end{array} m \leq 0 \bullet-m\right) \cup(\lambda m: \mathbb{Z} \mid m \geq 0 \bullet m)
$$

Function (in prefix notation)

$$
\begin{aligned}
& \frac{a b s_{-}: \mathbb{Z} \rightarrow \mathbb{Z}}{\forall x: \mathbb{Z} \mid x \leq 0 \bullet x=-(a b s x)} \\
& \forall x: \mathbb{Z} \mid x \geq 0 \bullet x=a b s x
\end{aligned}
$$

Finite Constructs

Finite subsets of \mathbb{Z}

$$
m . . n=\left\{n^{\prime}: \mathbb{N} \mid m \leq n^{\prime} \wedge n^{\prime} \leq n\right\}
$$

Finite Constructs

Finite subsets of \mathbb{Z}

$$
m . . n=\left\{n^{\prime}: \mathbb{N} \mid m \leq n^{\prime} \wedge n^{\prime} \leq n\right\}
$$

Finite sets
$\mathbb{F} T$ consists of the finite sets in $\mathbb{P} T$

$$
\begin{aligned}
& {[[S] \overline{\bar{F}: \mathbb{P}(\mathbb{P} S)}} \\
& \mathbb{F}=\{s: \mathbb{P} S \mid(\exists n: \mathbb{N} \bullet(\exists f: 1 . . n \longrightarrow s \bullet \text { true }))\}
\end{aligned}
$$

Finite Sets: Cardinality

Cardinality operator \#

$$
\begin{aligned}
& =[S] \overline{\overline{\#} S \rightarrow \mathbb{N}} \\
& \quad \forall: \mathbb{F}: \mathbb{F} S ; n: \mathbb{N} \bullet(n=\# s \leftrightarrow(\exists f: 1 . . n \mapsto s \bullet \text { true }))
\end{aligned}
$$

Finite Functions

Notation

\# finite (partial) functions (e.g. arrays)

$$
S \boxplus T=\{f: S \rightarrow T \mid \operatorname{dom} f \in \mathbb{F} S\}
$$

州 \rightarrow finite (partial) injective functions
(e.g. duplicate-free arrays)
$S \nrightarrow T=\{f: S \rightarrow T \mid \operatorname{dom} f \in \mathbb{F} S\}$

Sequences

Definition

$$
\operatorname{seq} T==\{s: \mathbb{Z} \Pi T \mid \operatorname{dom} s=1 . . \# s\}
$$

Note

- sequences are functions, which are relations, which are sets
- the length of s is \#s

Sequences

Definition

$$
\operatorname{seq} T==\{s: \mathbb{Z} \Pi T \mid \operatorname{dom} s=1 . . \# s\}
$$

Note

- sequences are functions, which are relations, which are sets
- the length of s is \#s

Notation

The sequence

$$
\left\{1 \mapsto x_{1}, 2 \mapsto x_{2}, \ldots, n \mapsto x_{n}\right\}
$$

is written as

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

Example: Concatenation of Sequences

$$
\begin{aligned}
& s \frown t== \\
& \quad s \cup \\
& \quad(\lambda n: \mathbb{Z} \mid n \in \# s+1 . . \# s+\# t \bullet n-\# s){ }_{9}^{o} t
\end{aligned}
$$

Schemata

General form

Name \qquad
SymbolDeclarations
ConstrainingPredicates

Linear notation

Name $\widehat{=}$ [SymbolDeclarations | ConstrainingPredicates]

Schemata

With empty predicate part

> Name
> SymbolDeclarations

Linear notation
Name $\widehat{=}$ [SymbolDeclarations]

Schemata: Example

Theater tickets

[Seat]
[Person]

TicketsForPerformance0
seating : \mathbb{P} Seat
sold : Seat \rightarrow Person
dom sold \subseteq seating

Schemata as Sets/Types

Schema

> | Name |
| :--- |
| $x_{1}: T_{1}$ |
| \ldots |
| $x_{n}: T_{n}$ |
| ConstrainingPredicates |

can be seen as the following set (type) of tuples:
Name $=$

$$
\left\{x_{1}: T_{1} ; \ldots ; x_{n}: T_{n} \mid \text { ConstrainingPredicates } \bullet\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

Schema Inclusion

Inclusion

Schemata can be used (included) in

- schema
- set comprehension
- quantification
by adding the schema name to the declaration part

Meaning

- declarations
- constraining predicates
are added to the corresponding parts of the including
schema / set comprehension / quantification
Note: Matching names merge and must be type compatible

Schema Inclusion

Example

_NumberInSet
$a: \mathbb{Z}$
$c: \mathbb{P} \mathbb{Z}$
$a \in c$
$\{$ NumberInSet $\mid a=0 \bullet c\}$
is the same as

$$
\{a: \mathbb{Z}, c: \mathbb{P} \mathbb{Z} \mid a \in c \wedge a=0 \bullet c\}
$$

(the set of all integer sets containing 0)

Schemata as Predicates

Schemata can be used as predicates in

- schema
- set comprehension
- quantification
by adding the schema name to the predicate part (occurring variables must already be declared)

Meaning
The constraining predicates (not: the declaration part) are added to the corresponding part of the
schema / set comprehension / quantification

Schemata as Predicates

Example

NumberIn01

$$
\begin{aligned}
& a: \mathbb{Z} \\
& c: \mathbb{P} \mathbb{Z} \\
& \hline a \in c \\
& c \subseteq\{0,1\}
\end{aligned}
$$

$\forall a: \mathbb{Z} ; c: \mathbb{P} \mathbb{Z} \mid$ NumberIn $01 \bullet$ NumberInSet
is the same as

$$
\forall a: \mathbb{Z} ; c: \mathbb{P} \mathbb{Z} \mid a \in c \wedge c \subseteq\{0,1\} \bullet a \in c
$$

Generic Schemata

Type/set variables can be used in schema definitions

Example

NumberInSetGeneric $[X]$
$a: X$
$c: \mathbb{P} X$
:---

Then
NumberInSetGeneric $[\mathbb{Z}]=$ NumberInSet

Variable Renaming in Schemata

Variables in schemata can be renamed

Example

$$
\text { NumberInSet }[a / q, c / s]
$$

is equal to

$$
\begin{aligned}
& q: \mathbb{Z} \\
& s: \mathbb{P} \mathbb{Z} \\
& q \in s
\end{aligned}
$$

Conjunctions of Schemata

Schemata can be composed conjunctively

Example

Given

$$
\begin{aligned}
& - \text { ConDis2 } \\
& \frac{b: B ; c: C}{Q}
\end{aligned}
$$

Then the following are equivalent
ConDis1 \wedge ConDis2

$$
\begin{array}{|l}
\hline a: A ; b: B ; c: C \\
\hline P \\
Q
\end{array}
$$

Disjunctions of Schemata

Schemata can be composed disjunctively

Example

Given

$$
\begin{aligned}
& - \text { ConDis2 } \\
& b: B ; c: C \\
& Q
\end{aligned}
$$

Then the following are equivalent
ConDis1 \vee ConDis2

$$
\frac{a: A ; b: B ; c: C}{P \vee Q}
$$

Example

Informal specification
Theater: Tickets for first night are only sold to friends

Specification in Z

$$
\text { Status }::=\text { standard } \mid \text { firstNight }
$$

Friends
friends: \mathbb{P} Person
status: Status
sold: Seat \rightarrow Person
status $=$ firstNight $\Rightarrow \mathbf{r a n}$ sold \subseteq friends

Example

$$
\text { TicketsForPerformance } 1 \text { = TicketsForPerformance } 0 \wedge \text { Friends }
$$

and
TicketsForPerformance1
Friends
TicketsForPerformance0

Example

TicketsForPerformance 1 = TicketsForPerformance $0 \wedge$ Friends

and
TicketsForPerformance1
Friends
TicketsForPerformance0
are the same as

> -TicketsForPerformance 1
> friends $: \mathbb{P}$ Person; status $:$ Status
> sold $:$ Seat \rightarrow Person; seating $: \mathbb{P}$ Seat
> status $=$ firstNight \Rightarrow ran sold \subseteq friends dom sold \subseteq seating

Normalisation of Schemata

Normalisation
A schema is normalised if in the declaration part

- Variables are typed
- but not restricted to subsets of types

Normalisation of Schemata

Normalisation

A schema is normalised if in the declaration part

- Variables are typed
- but not restricted to subsets of types

Example

The normalisation of
$\frac{x: \mathbb{N}}{P}$
is

$$
\begin{aligned}
& x: \mathbb{Z} \\
& x \geq 0 \\
& P
\end{aligned}
$$

Negation of Schemata

A schema is negated by negating the predicate part in its normalised form

Example

The negation of

```
x:\mathbb{N}
P
```

which is

$$
\frac{x: \mathbb{Z}}{\neg(x \in \mathbb{N} \wedge P)}
$$

is the negation of

```
x:\mathbb{Z}
x\in\mathbb{N}
P
```


Schemata as Operations

States
A state is a variable assignment
A schema describes a set of states

Operations

To describe an operation, a schema must describe pairs of states (pre/post)

Schemata as Operations

States
A state is a variable assignment
A schema describes a set of states

Operations
To describe an operation, a schema must describe pairs of states (pre/post)

Notation
Variables are decorated with ' to refer to their value in the post state
Whole schemata can be decorated

Schemata as Operations

Example

NumberInSet ${ }^{\prime}$
is the same as

> | -NumberInSet' |
| :--- |
| $a^{\prime}: \mathbb{Z}$ |
| $c^{\prime}: \mathbb{P} \mathbb{Z}$ |
| $a^{\prime} \in c^{\prime}$ |

Schemata as Operations

Example

NumberInSet ${ }^{\prime}$
is the same as

> | -NumberInSet' |
| :--- |
| $a^{\prime}: \mathbb{Z}$ |
| $c^{\prime}: \mathbb{P} \mathbb{Z}$ |
| $a^{\prime} \in c^{\prime}$ |

Further decorations

- input variables are decorated with "?"
s output variables are decorated with "!"

Example

Theater: Selling tickets

```
Purchase0
    TicketsForPerformance0
    TicketsForPerformance0'
    s?:Seat
    p?: Person
    s? \in seating\dom sold
    sold' = sold \cup{s?\mapstop?}
    seating' = seating
```

(no output variables in this schema)

Example

$$
\begin{aligned}
& \text { Response }::=\text { okay } \mid \text { sorry } \\
& \text { Success } \\
& \begin{array}{r}
r!: \text { Response } \\
\hline r!=\text { okay }
\end{array}
\end{aligned}
$$

Then
Purchase0 \wedge Success
is a schema that reports successful ticket sale

Schemata as Operations: General Form

StateSpace \qquad

$$
\frac{x_{1}: T_{1} ; \ldots ; x_{n}: T_{n}}{\operatorname{inv}\left(x_{1}, \ldots, x_{n}\right)}
$$

Operation
StateSpace
StateSpcae'
$i_{1} ?: U_{1} ; \ldots ; i_{m}$?: U_{m}
$o_{1}!: V_{1} ; \ldots ; o_{p}!: V_{p}$
$\operatorname{pre}\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}\right)$
op $\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}, o_{1}!, \ldots, o_{p}!\right)$

The Δ Operator

Definition

Δ Schema abbreviates Schema \wedge Schema'

General form of operation schema using Δ

$$
\begin{aligned}
& \text { _Operation } \\
& \text { sStateSpace } \\
& i_{1} ?: U_{1} ; \ldots ; i_{m} ?: U_{m} \\
& o_{1}!: V_{1} ; \ldots ; o_{p}!: V_{p} \\
& \operatorname{pre}\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}\right) \\
& o p\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}, o_{1}!, \ldots, o_{p}!\right)
\end{aligned}
$$

The Ξ Operator

Definition

ESchema abbreviates Δ Schema $\wedge\left(x_{1}=x_{1}^{\prime} \wedge \ldots \wedge x_{n}=x_{n}^{\prime}\right)$
where $x_{1}, \ldots x_{n}$ are the variables declared in Schema

General form of operation schema using Ξ

$$
\begin{aligned}
& \text { Operation } \\
& \Xi \text { StateSpace } \\
& i_{1} ?: U_{1} ; \ldots ; i_{m} ?: U_{m} \\
& o_{1}!: V_{1} ; \ldots ; o_{p}!: V_{p} \\
& \operatorname{pre}\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}\right) \\
& \text { op }\left(i_{1} ?, \ldots, i_{m} ?, x_{1}, \ldots, x_{n}, o_{1}!, \ldots, o_{p}!\right)
\end{aligned}
$$

Using Ξ indicates that the operation does not change the state

The Operators Δ and Ξ : Example

The following schemata are equivalent

ENumberInSet
Δ NumberInSet

$$
\begin{aligned}
& a=a^{\prime} \\
& c=c^{\prime}
\end{aligned}
$$

```
NumberInSet NumberInSet \({ }^{\prime}\)
a= a
c=c
```


Example

Theater: Selling tickets, but only to friends if first night performance

```
    Purchase1
    \DeltaTicketsForPerformance1
    s?:Seat
    p?: Person
    s? \in seating\dom sold
    status = firstNight }=>\mathrm{ ( p? f friends)
    sold}\mp@subsup{}{}{\prime}=sold \cup{s?\mapstop?
    seating' = seating
    status' = status
    friends' = friends
```


Example

NotAvailable
ETicketsForPerformance1
s? : Seat
p?: Person
$s ? \in \operatorname{dom}$ sold $\vee($ status $=$ firstNight $\wedge \neg p ? \in$ friends $)$

Failure \qquad
r ! : Response
$r!=s o r r y$

TicketServiceForPerformance $\widehat{=}$
(Purchase $1 \wedge$ Success) \vee
(NotAvailable \wedge Failure)

Quantifying (Hiding) Variables in Schemata

Schema quantification

$$
\begin{aligned}
& \forall x: S \bullet \text { Schema resp. } \\
& \exists x: S \bullet \text { Schema }
\end{aligned}
$$

(existential quantification is also called "variable hiding")

Quantifying (Hiding) Variables in Schemata

Schema quantification

$$
\begin{aligned}
& \forall x: S \bullet \text { Schema resp. } \\
& \exists x: S \bullet \text { Schema }
\end{aligned}
$$

(existential quantification is also called "variable hiding")

Example

$$
\exists a: \mathbb{Z} \bullet \text { NumberInSet }
$$

is the same as

$$
\frac{c: \mathbb{P} \mathbb{Z}}{\exists a: \mathbb{Z} \bullet a \in c}
$$

Composition of Operation Schemata

Definition

Operation schemata can be composed using ${ }_{9}$, where

- every variable with ' in the first schema must occur without ${ }^{\prime}$ in the second schema
- these variables are identified and
- hidden from the outside

Composition: General form

$$
\left[\begin{array}{l}
O p 1 \\
x_{1}: T_{1} ; \ldots ; x_{p}: T_{p} \\
z_{1}: V_{1} ; \ldots ; z_{n}: V_{n} \\
z_{1}^{\prime}: V_{1} ; \ldots ; z_{n}^{\prime}: V_{n} \\
\hline \operatorname{op} 1\left(x_{1}, \ldots, x_{p},\right. \\
\left.\quad z_{1}, \ldots, z_{n}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \\
\hline
\end{array}\right.
$$

Op 2

$$
\begin{aligned}
& y_{1}: U_{1} ; \ldots ; y_{q}: U_{q} \\
& z_{1}: V_{1} ; \ldots ; z_{n}: V_{n} \\
& z_{1}^{\prime}: V_{1} ; \ldots ; z_{n}^{\prime}: V_{n} \\
& \text { op } 2\left(y_{1}, \ldots, y_{q},\right. \\
& \left.\quad z_{1}, \ldots, z_{n}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& -O p 1 ; O p 2 \\
& x_{1}: T_{1} ; \ldots ; x_{p}: T_{p} \\
& y_{1}: U_{1} ; \ldots ; y_{q}: U_{q} \\
& z_{1}: V_{1} ; \ldots ; z_{n}: V_{n} \\
& z_{1}^{\prime}: V_{1} ; \ldots ; z_{n}^{\prime}: V_{n} \\
& \exists z_{1}^{\prime \prime}: V_{1} ; \ldots ; z_{n}^{\prime \prime}: V_{n} \bullet \\
& \quad \text { op } 1\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{n}, z_{1}^{\prime \prime}, \ldots, z_{n}^{\prime \prime}\right) \\
& \quad \text { op } 2\left(y_{1}, \ldots, y_{q}, z_{1}^{\prime \prime}, \ldots, z_{n}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)
\end{aligned}
$$

Example

Purchase1 ${ }_{9}^{\circ}$ Purchase1[s?/s2?]

is equivalent to

```
\(\Delta\) TicketsForPerformance1
\(s\) ? : Seat; s2? : Seat; p? : Person
    \(s ? \in\) seating \(\backslash\) dom sold
    \(s 2 ? \in\) seating \(\backslash \operatorname{dom}(\) sold \(\cup\{s ? \mapsto p ?\})\)
    status \(=\) firstNight \(\Rightarrow(p ? \in\) friends \()\)
    sold' \(=\) sold \(\cup\{s ? \mapsto p ?, s 2 ? \mapsto p ?\}\)
    seating \({ }^{\prime}=\) seating
    status \({ }^{\prime}=\) status
    friends \({ }^{\prime}=\) friends
```

