Formal Specification of Software

Modal Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

B. Beckert: Formal Specification of Software – p.1

In classical logic, it is only important whether a formula is true

In modal logic, it is also important in which

- way
- mode
- state
- a formula is true
- A formula (a proposition) is
- necessarily / possibly true
- true today / tomorrow
- believed / known
- true before / after an action / the execution of a program

Propositional Modal Logic: Formulas

- \checkmark The propositional variables $p \in Var$ are modal formulas
- **J** If A, B are modal formulas, then

$$\neg A \quad (A \land B) \quad (A \lor B) \quad (A \to B) \quad (A \leftrightarrow B)$$

- $\Box A$ (read "box A", "necessarily A")
- $\diamond A$ (read "diamond A", "possibly A")

are modal formulas

Informal Interpretations of \Box

$\Box F$ means

- *F* is necessarily true
- F is always true (in future states/words)
- an agent a believes F
- an agent a knows F
- *F* is true after all possible executions of a program *p*

Notation

If necessary write

$\Box_a F \qquad \Box_p F \qquad [a] F \qquad [p] F$

instead of $\Box F$

$\Box F$	$\Diamond F$ (the same as $\neg \Box \neg F$)		
F is necessarily true	F is possibly true		
<i>F</i> is always true	F at least once true		
agent <i>a</i> believes <i>F</i>	<i>F</i> is consistent with <i>a</i> 's beliefs		
agent <i>a</i> knows <i>F</i>	a does not know $\neg F$		
F is true after all possible executions of program p	<i>F</i> is true after at least one possible execution of program p		

Kripke Structures

Given: a propositional signature Var

Definition

A Kripke structure

$$\mathcal{K} = (S, R, I)$$

consists of

- a non-empty set S (of worlds / states)
- an accessibility relation $R \subseteq S \times S$
- an *interpretation* $I : Var \times S \rightarrow \{\underline{true}, \underline{false}\}$

Kripke Structures: Example

Modal Logic: Semantics

Given: Kripke structure $\mathcal{K} = (S, R, I)$

Valuation

 $val_{\mathcal{K}}(p)(s) = I(p)(s)$ for $p \in Var$

 $val_{\mathcal{K}}$ defined for propositional operators in the same way as val_I

$$val_{\mathcal{K}}(\Box A)(s) = \begin{cases} \underline{true} & \text{if } val_{\mathcal{K}}(A)(s') = \underline{true} \text{ for} \\ & \text{all } s' \in S \text{ with } sRs' \end{cases}$$
$$\frac{false}{false} & \text{otherwise} \end{cases}$$
$$val_{\mathcal{K}}(\Diamond A)(s) = \begin{cases} \underline{true} & \text{if } val_{\mathcal{K}}(A)(s') = \underline{true} \text{ for} \\ & \text{at least one } s' \in S \text{ with } sRs' \end{cases}$$
$$\frac{false}{false} & \text{otherwise} \end{cases}$$

Saul Aaron Kripke

Born 1940 in Omaha (US)

First	A Completeness Theorem in Modal Logic				
publication:	The Journal of Symbolic Logic, 1959				
Studied at:	Harvard, Princeton, Oxford				
	and Rockefeller University				
Positions:	Harvard, Rockefeller, Columbia,				
	Cornell, Berkeley, UCLA, Oxford				
since 1977	Professor at Princeton University				
since 1998	Emeritus at Princeton University				

Modal Logic: Example for Evaluation

 $(\mathcal{K}, A) \models P \qquad (\mathcal{K}, B) \models \neg P \qquad (\mathcal{K}, C) \models P \qquad (\mathcal{K}, D) \models \neg P$ $(\mathcal{K}, A) \models \Box \neg P \qquad (\mathcal{K}, B) \models \Box P \qquad (\mathcal{K}, C) \models \Box P \qquad (\mathcal{K}, D) \models \Box P$ $(\mathcal{K}, A) \models \Box \Box P \qquad (\mathcal{K}, B) \models \Box \Box P \qquad (\mathcal{K}, C) \models \Box \Box \neg P \qquad -$

Valid

- $(\Box P \land \Box (P \to Q)) \to \Box Q$
- $(\Box P \lor \Box Q) \to \Box (P \lor Q)$
- $(\Box P \land \Box Q) \leftrightarrow \Box (P \land Q)$
- $\square P \leftrightarrow \neg \Diamond \neg P$

Not valid:

- $(\Diamond P \land \Diamond Q) \to \Diamond (P \land Q)$

Not Valid: $\Box(P \lor Q) \rightarrow (\Box P \lor \Box Q)$

 $\Box(P \lor Q) \rightarrow (\Box P \lor \Box Q)$ not true in state s_1

Formulas Characterising Properties of *R*

Formula	Property of <i>R</i>	Formula	Property of <i>R</i>	
$\Box p \rightarrow p$	reflexive	$\Box p \to \Box \Box p$	transitive	
$p \rightarrow \diamondsuit p$	reflexive	$p ightarrow \Box \diamondsuit p$	symmetrical	
$\Box\Box p \to \Box p$	reflexive	$\Box \Box p \leftrightarrow \Box p$	reflexive, transitive	
$\Box \diamondsuit p \to \diamondsuit p$	reflexive	$\Diamond \Diamond p \leftrightarrow \Diamond p$	reflexive, transitive	
$\Box p \to \Diamond \Box p$	reflexive	$\Diamond \Box p \leftrightarrow \Box p$	equivalence relation	
$\Diamond \Diamond p \to \Diamond p$	reflexive	$\Box \diamondsuit p \leftrightarrow \diamondsuit p$	equivalence relation	

$\Box F$	$\Box F \to F$	$\Box F \to \Box \Box F$	$\Box F \to \diamondsuit F$	$(\Box(F \to G) \land \Box F) \to \Box G$	\$true
<i>F</i> is necessarily true	yes	yes	yes	yes	yes
agent <i>a</i> knows <i>F</i>	yes	yes	yes	yes	yes
agent a believes F	no	yes	yes	yes	yes
F holds after executing program p	no	no	no	yes	no