Formal Specification of Software

Reviewing Basic Set Theory

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

B. Beckert: Formal Specification of Software - p.1

A *set* is the combination of certain well-distinguished objects taken from our visual or mental experience into one entity. The objects are called the elements of the set.

Notation

Let M denote a set, and m an object. The fact that m is an element of M is denoted by

 $m \in M$.

A *function* from a set M_1 in a set M_2 associates with an element

 $m_1 \in M_1$ a unique element $m_2 \in M_2$.

Notation

If f is used to denote a function this association is symbolically expressed as

 $f(m_1) = m_2.$

The element m_1 is called the argument and m_2 the value of the function application $f(m_1)$.

A *relation* describes properties of elements, pairs of elements or in general *n*-tupels of elements.

Notation

If *r* denotes a unary relation, and *a* is an object, then

r(*a*)

denotes the fact that the relation *a* is true of the object *a*.

For a binary relation r_2 and objects a_1, a_2 , the symbolic notation

 $r_2(a_1, a_1)$

expresses that the relation r_2 is true of the pairs a_1, a_2 .

A set N is called a subset of set M if every element of N is also an

element of M.

N is called a superset of M in that case.

Notation

In that case, we write

 $M \subseteq N$

Denoting Sets

- **●** Finite sets: $M = \{a_1, ..., a_n\}$
- Reserved symbols to denote frequently occuring sets:
 - $\ensuremath{\mathbb{N}}$ the natural numbers
 - $\mathbb Z$ the integers
 - \mathbb{Q} the rational numbers
 - \mathbb{R} the real numbers
- Definied subsets: $M = \{x \in N \mid \phi\}$

(where ϕ is a property)

• $\{x \in \mathbb{N} \mid x \text{ is prime}\}$

● $\{x^2 \mid x \in \mathbb{N} \text{ and } x \text{ is prime}\}$

▶ $\{x_1^2 + x_2^2 + x_3^2 + x_4^2 \mid x_i \in \mathbb{Z}\}$

• An *n*-ary function $f: M_1 \to M_2$ is called *total* if for every *n*-tupel (a_1, \ldots, a_n) of elements from M_1

 $f(a_1,\ldots,a_n)$ is defined.

Otherwise *f* is called *partial*.

- The *range* of f is the set $\{f(a_1, \ldots, a_n) \mid a_i \in M_1\}$
- The *domain* of f is the set $\{m \in M_1 \mid f(m) \text{ is definied}\}$

Operations on Sets

▶ The *intersection* $A \cap B$ is the set of elements occuring in both A and B, i.e.

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

✓ The union A ∪ B is the set of elements occurring ocurring in at least one of A, B, i.e.

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

A and B are called *disjoint* if they have no elements in common,
i.e., if A ∩ B = Ø

The set

$$Set(A) = \{B \mid B \subseteq A\}$$

of all subsets of A is denoted by Set(A)Set(A) is also called the *power set* of A

The set

 $\{B \mid B \subseteq A \text{ and } B \text{ is finite}\}$

of all finite subsets of A is denoted by $Set_{\omega}(A)$

✓ For each natural number $n \in \mathbb{N}$, the set of all subsets of A with exactly (resp. at most) n elements is denoted by

Set_n(A) resp. Set_{$$\leq n$$}(A).

A *bag* is a collection where multiple occurences of objects are possible. Bags are sometimes also called multisets.

If *B* is a bag and *e* an arbitrary object the function, then $count_B(e)$ denotes the number of occurrences of *e* in *B*.

Examples

 $\{a, b, a, c, b\}$ and $\{a, b, c\}$ are the same set, but they are different as bags

 $\{a, b, a, c, b\}$ and $\{c, b, a, b, a\}$ are identical bags.