Entwic klung objektorientier ter Software mit formalen Methoden

Design Patterns

Bernhar d Beckert

UNIVERSITAT KOBLENZ-LANDAU

KeY-Praktikum WS03/04 - p.1

Design Patterns: Libraries for design Kgy

Collection of solutions for common software design problems

KeY-Praktikum WS03/04 - p.2

Design Patterns: Libraries for design Kgy

Collection of solutions for common software design problems

Make experiences of designer s available to others

= better education

KeY-Praktikum WS03/04 - p.2

Design Patterns: Libraries for design Kgy

Collection of solutions for common software design problems

Make experiences of designer s available to others

= better education

Prevent software engineer s from searching for already found solutions

= Increase of effectiveness

KeY-Praktikum WS03/04 - p.2

Design Patterns: Libraries for design Kﬁy

Collection of solutions for common software design problems

Make experiences of designer s available to others

= better education

Prevent software engineer s from searching for already found solutions

= Increase of effectiveness

Suppor t comm unication between developer s

= easier orientation

KeY-Praktikum WS03/04 - p.2

Design Patterns: Libraries for design Kﬁy

Collection of solutions for common software design problems

Make experiences of designer s available to others

= better education

Prevent software engineer s from searching for already found solutions

= Increase of effectiveness

Suppor t comm unication between developer s

= easier orientation

Document design decisions of a software system

=> Increase of maintenance

KeY-Praktikum WS03/04 - p.2

Description scheme of design patterns Kﬁ}’

Motiv ation

Where does the need for this pattern come from?

KeY-Praktikum WS03/04 - p.3

Description scheme of design patterns Kﬁ}’

Motiv ation

Where does the need for this pattern come from?

Structure

What is the concrete (class) structure of the pattern?

KeY-Praktikum WS03/04 - p.3

Description scheme of design patterns Kﬁ}’

Motiv ation

Where does the need for this pattern come from?

Structure

What is the concrete (class) structure of the pattern?

Applicability

Under whic h circumstances is it applicab le?

Whic h are the forces it obeys?

KeY-Praktikum WS03/04 - p.3

Description scheme of design patterns

Motiv ation

Where does the need for this pattern come from?

Structure

What is the concrete (class) structure of the pattern?

Applicability

Under whic h circumstances is it applicab le?
Whic h are the forces it obeys?

Conseguences

What are the effects when using this pattern?

KRY

KeY-Praktikum WS03/04 - p.3

Improving Consistence and Reusability Kﬁy

Day View

Mo. 10. Nov.
8

Model View Contr oller

9
10

Organizer Data
Month View

Novembre 03
Mo |Tu |(We |Th |Fr

Mo |Tu |We |Th |Fr

Mo |Tu |We |Th |Fr

Mo |Tu |[We |Th |Fr

Keeping Model, View and Controller separate allows
e diff erent consistence views
e reuse of views in other conte xts

e dynamic chosen response

KeY-Praktikum WS03/04 - p.4

The »Observer«. Separates model and view Kﬁy

Purpose: Defines a 1-to-n dependance relationship between objects, so

that the state change of one object causes a notification of the

dependant objects.

KeY-Praktikum WS03/04 - p.5

The »Observer«. Separates model and view Kﬁy

Purpose: Defines a 1-to-n dependance relationship between objects, so

that the state change of one object causes a notification of the

dependant objects.

Applicability:

e If the state change of one object, requires to update several other

objects.

e If an object has to inform several other unkno wn objects.

KeY-Praktikum WS03/04 - p.5

The »Observer«. Separates model and view Kﬁy

Purpose: Defines a 1-to-n dependance relationship between objects, so

that the state change of one object causes a notification of the

dependant objects.

Applicability:

e If the state change of one object, requires to update several other

objects.

e If an object has to inform several other unkno wn objects.

Consequence:

e Independant reuse of subject and obser ver.

e Observers can be added without changing the obser ver or subject.

KeY-Praktikum WS03/04 - p.5

The class structure of the obser ver pattern Kﬁy

Subject
regtster (Observer)

*

Observer

remove (Observer)
nottfy() S

A i

for all observers o
send o.update()

]

ConcreteSubject
getState()

observer

setState()

update ()

A

ConcreteObserver

update ()

KeY-Praktikum WS03/04 - p.6

The class structure of the obser ver pattern Kﬁy

Subject
regtster (Observer)

*

Observer

remove (Qbserver)

observer

nottfy() S
for all observers o
send o.update()
ConcreteSubject
getState()
setState ()
Two modes:

update ()

A

ConcreteObserver

update ()

e pull: the obser ver has to ask for the new subject state (getState)

KeY-Praktikum WS03/04 - p.6

The class structure of the obser ver pattern Kﬁy

Subject
regtster (Observer) * Observer
remove (Observer) observer” | update()
notzfy() e
Iy ™ i A
|
for all observers o
send o.update()
Sonenetespblieot ConcreteObserver
getState() update ()
setState() P
Two modes:

e pull: the obser ver has to ask for the new subject state (getState)

e push : change information is handed over to the obser ver when

notifying

KeY-Praktikum WS03/04 - p.6

Update of views implementing an obser ver Kﬁ}’

change

E 3 :aConcreteSubject | :aConcreteObserverl I | :aConcreteObserver2 I
:anActor
>

| |
| |
i |
| |
l |
I |
! j notify() :
| l
| | |
I I update() |
	>	
' l<		
'	etState I I	
: : g 0 update() '		
' '):	
I		
:(
:	getState() :	

| | l

KeY-Praktikum WS03/04 —p.7

Update of views implementing an obser ver Kﬁ}’

change

E 3 | :aConcreteSubject I | :aConcreteObserverl I | :aConcreteObserver2 I
:anActor
>

| |
| |
i |
| |
l |
I |
! ::| notify() :
| l
| | |
I I update() |
	>	
' l<		
'	etState I I	
: : g 0 update() '		
' '):	
I		
:(
:	getState() :	

| | l

KeY-Praktikum WS03/04 —p.7

Update of views implementing an obser ver Kﬁ}’

change

E 3 | :aConcreteSubject I | :aConcreteObserverl I | :aConcreteObserver2 I
:anActor
>

| |
| |
i |
| |
l |
I |
! j notify() :
| l
| | |
I I update() |
	3>	
' l<		
'	etState I I	
: : g 0 update() '		
' '):	
I		
:(
:	getState() :	

| | l

KeY-Praktikum WS03/04 —p.7

Update of views implementing an obser ver Kﬁy

change

E 3 | :aConcreteSubject I | :aConcreteObserverl I | :aConcreteObserver2 I
:anActor
>

| |
| |
i |
| |
l |
I |
! j notify() :
| l
| | |
I I update() |
	>	
' l<		
'	etState I I	
: : g 0 update() '		
' '):	
I		
:(
:	getState() :	

| | l

KeY-Praktikum WS03/04 —p.7

Example: Views of an organizer Kﬁ}’

Subject
register(0bserver) * Observer
remove (Observer) observer update()
notify() A
A Day View
Mo. 10. Nov.
8
9
10
Organizer Data 17
Month View
Novembre 03
Mo |Tu |We |Th |Fr
Mo |Tu |We |Th |Fr
Mo |Tu |We |Th |Fr
Mo |Tu |We |Th |Fr
O izerDB : :
rgamizer : DayView MonthView
addEntry(Date date, String descr) date () date ()
getEntries(Date from, Date to) P D

N

KeY-Praktikum WS03/04 - p.8

Updating the organizer's views Kﬁ}’

addEntry(neWDate, “Lab coursé”)

| officeCal:Organizer I | day1011:DayView I | november:MonthView I
Karl:Person
|
|

e |

|
|
|
|
|
|
|
| |
|
| |
| [notify() |
| |

|

|

|

|

|

: update()
i >
!

|

|
|
getEntries(’10.11°, ’10.11’) :

update()

Y

i

|

|
getEntries(’01.117, ’30.11")

KeY-Praktikum WS03/04 - p.9

The »Command«. Actions as objects Kgy

Purpose: Encapsulate a command as an object. Allows to keep track of

actions (transactions).

KeY-Praktikum WS03/04 - p.10

The »Command«. Actions as objects Kgy

Purpose: Encapsulate a command as an object. Allows to keep track of

actions (transactions).

Applicability:

e parameterise clients,

KeY-Praktikum WS03/04 - p.10

The »Command«. Actions as objects Kgy

Purpose: Encapsulate a command as an object. Allows to keep track of

actions (transactions).

Applicability:

e parameterise clients,

e log commands,

KeY-Praktikum WS03/04 - p.10

The »Command«. Actions as objects Kgy

Purpose: Encapsulate a command as an object. Allows to keep track of

actions (transactions).

Applicability:

e parameterise clients,
e log commands,

e realise undo functionality or

KeY-Praktikum WS03/04 - p.10

The »Command«. Actions as objects Kgy

Purpose: Encapsulate a command as an object. Allows to keep track of

actions (transactions).

Applicability:

e parameterise clients,
e log commands,
e realise undo functionality or

e cache commands Iin a queue In order to execute them at a certain

time in the future

KeY-Praktikum WS03/04 - p.10

The class structure of the command pattern Kﬁy

Client

Caller

Command

Receiver

actzion()

_recelver

execute()

A

ConcreteCommand<1>

receiver

execute()

ConcreteCommand<n>

execute()

KeY-Praktikum WS03/04 - p.11

The class structure of the command pattern Kﬁy

Client

Caller

Command

Receiver

actzion()

_recelver

execute()

A

ConcreteCommand<1>

receiver

execute()

ConcreteCommand<n>

execute()

Call of execute() on Command invokes the receiver' s action() operation.

KeY-Praktikum WS03/04 - p.11

The class structure of the command pattern Kﬁy

Client

Caller

Command

Receiver

actzion()

_recelver

execute()

A

ConcreteCommand<1>

receiver

execute()

ConcreteCommand<n>

execute()

Different Command subc lasses may invokes diff erent action() operations.

KeY-Praktikum WS03/04 - p.11

The class structure of the command pattern Kﬁy

Client

Caller

Command

Receiver

actzion()

_recelver

execute()

A

ConcreteCommand<1>

receiver

execute()

ConcreteCommand<n>

execute()

How could the pattern be altered to avoid encoding the receiver associ-

ation as attrib ute?

KeY-Praktikum WS03/04 - p.11

General

E 3 :ConcreteCommand I :Receiver I
:Caller

execute() :
>

action()

Y

KeY-Praktikum WS03/04 - p.12

Example: Timer trig gered actions Kﬁ}’

One feature of the organizer in the former examples is to execute

actions, when a certain date (time) has been reached.

For example:
e beep 5 minutes before a meeting

e send to all participants of a meeting an invitation e-mail a week

before it is scheduled

e record aTV film

KeY-Praktikum WS03/04 - p.13

Example (cont’d): Timer trig gered actions

N7

Organizer

Timer

Concrete Commands

Recelvers

Command

execute()

A

Beep

execute ()

recelver

Speaker

beep ()

SendMail RecordFilm
execute () execute ()
receiver receiver
MailServer VCR
sendMail(...) play ()
record ()

KeY-Praktikum WS03/04 - p.14

Literature Kﬁl

e »Design Patterns: Elements of Reusable Object-Oriented Software,
by E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Addison-W esley (1995)

e Lecture Notes »Softwaretec hnik,
W.F. Tichy and G. Goos (WS 1998/99)

e Lecture Notes »Design Patterns Overviews,
Rob Kremer (2002),

http://sern.ucalgary.ca/courses/SENG/443/W02/patterns/index.html

KeY-Praktikum WS03/04 - p.15

http://sern.ucalgary.ca/courses/SENG/443/W02/patterns/index.html

Libraries For Designing System

KeY-Praktikum WS03/04 - p.16

Design Patterns ... Kg}’

Libraries For Designing System

» document design solutions on an abstract level

KeY-Praktikum WS03/04 - p.16

Design Patterns ... Kg}’

Libraries For Designing System

» document design solutions on an abstract level

» prevent reinvention of the wheel

KeY-Praktikum WS03/04 - p.16

Design Patterns ... Kg}’

Libraries For Designing System

» document design solutions on an abstract level
» prevent reinvention of the wheel

» suppor t comm unication between developer s

KeY-Praktikum WS03/04 - p.16

Design Patterns ... Kg}’

Libraries For Designing System

» document design solutions on an abstract level
» prevent reinvention of the wheel
» suppor t comm unication between developer s

» make expert knowledg e usable for beginner s

KeY-Praktikum WS03/04 - p.16

Design Patterns

Libraries For Designing System

» document design solutions on an abstract level
» prevent reinvention of the wheel
» suppor t comm unication between developer s

» make expert knowledg e usable for beginner s

but:

They don’t make your design decisions.

KRY

KeY-Praktikum WS03/04 - p.16

	
	Design Patterns: Libraries for design
	Description scheme of design patterns
	Improving Consistence and Reusability
	The >>Observer<<: Separates model and view
	The class structure of the observer pattern
	Update of views implementing an observer
	Example: Views of an organizer
	Updating the organizer's views
	The >>Command<<: Actions as objects
	The class structure of the command pattern
	Execution of a command
	Example: Timer triggered actions
	Example (cont'd):
Timer triggered actions
	Literature
	Design Patterns ...

