Introduction to Artificial Intelligence

Learning from Oberservations

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Winter Term 2004/2005

Outline

- Learning agents
- Inductive learning
- Decision tree learning

Learning

Reasons for learning

- Learning is essential for unknown environments,
 - when designer lacks omniscience -

Learning

Reasons for learning

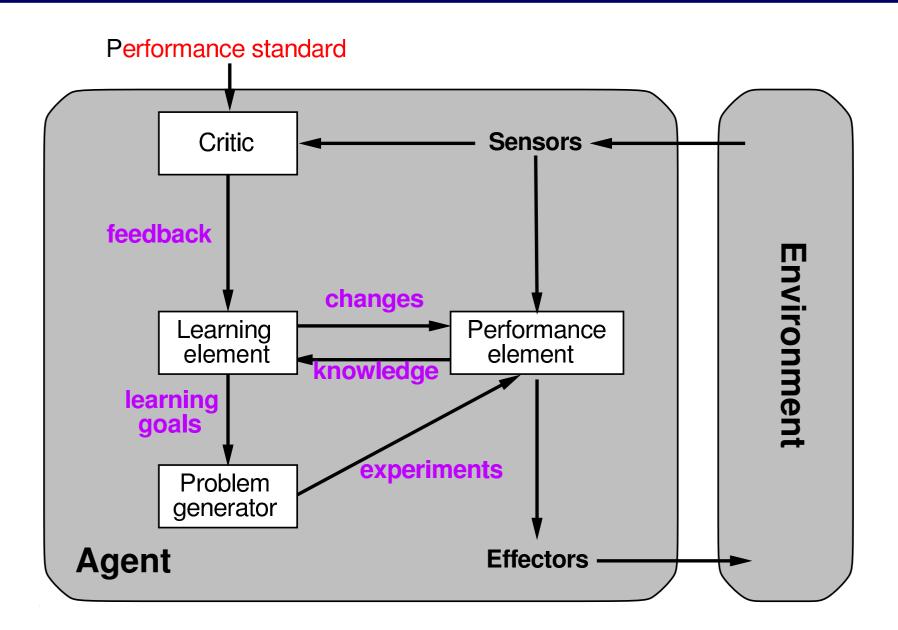
- Learning is essential for unknown environments,
 - when designer lacks omniscience -
- Learning is useful as a system construction method,
 - expose the agent to reality rather than trying to write it down -

Learning

Reasons for learning

- Learning is essential for unknown environments,
 - when designer lacks omniscience –
- Learning is useful as a system construction method,
 - expose the agent to reality rather than trying to write it down -
- ▶ Learning modifies the agent's decision mechanisms to improve performance

Learning Agents



Learning Element

Design of learning element is dictated by

- what type of performance element is used
- which functional component is to be learned
- how that functional component is represented
- what kind of feedback is available

Types of Learning

Supervised learning

Correct answers for each example instance known

Requires "teacher"

Types of Learning

Supervised learning

Correct answers for each example instance known

Requires "teacher"

Reinforcement learning

Occasional rewards

Learning is harder

Requires no teacher

Inductive Learning (a.k.a. Science)

Simplest form

```
Learn a function f from examples (tabula rasa), i.e., find an hypothesis h such that h\approx f given a training set of examples f is the target function

An example is a pair x, f(x)
```

Inductive Learning (a.k.a. Science)

Simplest form

Learn a function f from examples (tabula rasa), i.e., find an hypothesis h such that $h \approx f$ given a training set of examples

f is the target function

An example is a pair x, f(x)

Example (for an example)

$$\begin{array}{c|cccc}
O & O & X \\
\hline
 & X & & \\
\hline
 & X & & \\
\hline
 & X & & \\
\end{array}$$
, +1

This is a highly simplified model of real learning

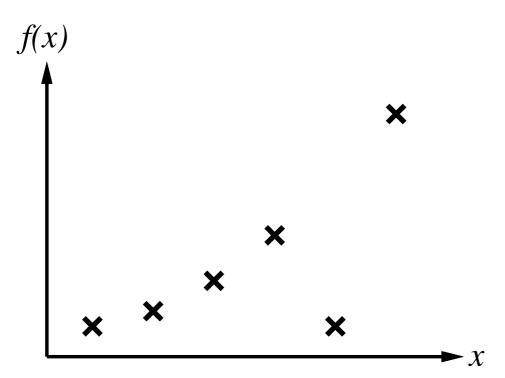
- Ignores prior knowledge
- Assumes a deterministic, observable environment
- Assumes examples are given
- \blacksquare Assumes that the agent wants to learn f (why?)

Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples

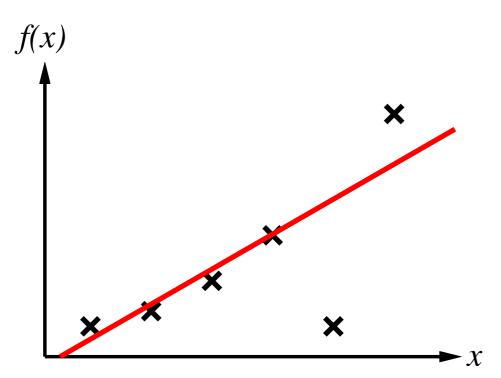
Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples



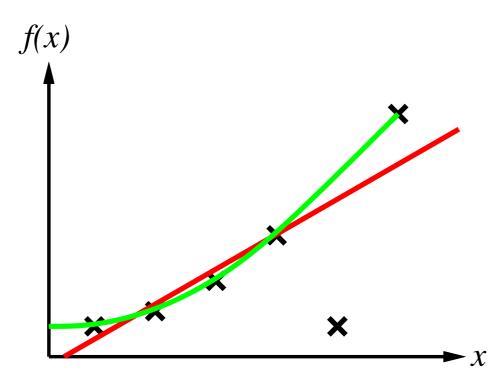
Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples



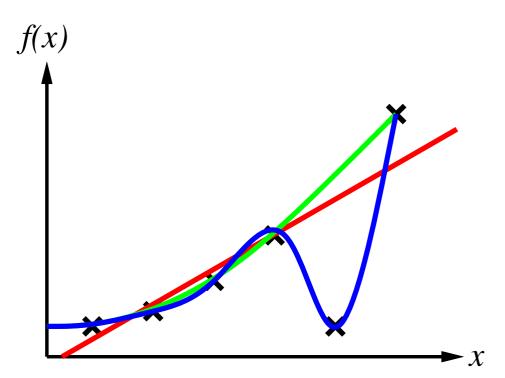
Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples



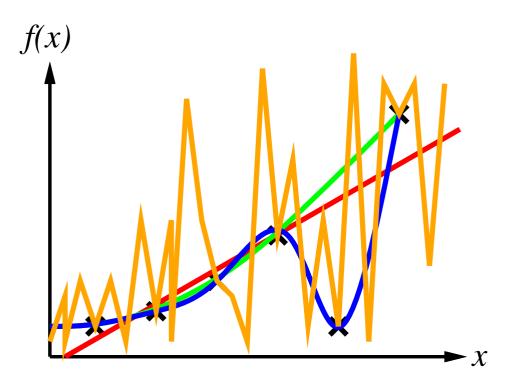
Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples



Idea

Construct/adjust h to agree with f on training set h is consistent if it agrees with f on all examples

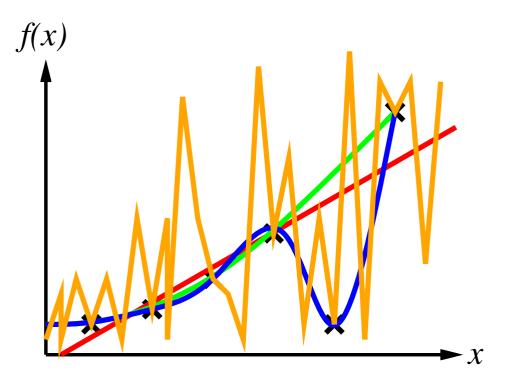


Idea

Construct/adjust h to agree with f on training set

h is consistent if it agrees with f on all examples

Example: Curve fitting



Ockham's razor

Maximize a combination of consistency and simplicity

Attribute-based Representations

Example description consists of

- Attribute values (boolean, discrete, continuous, etc.)
- Target value

Attribute-based Representations

Example

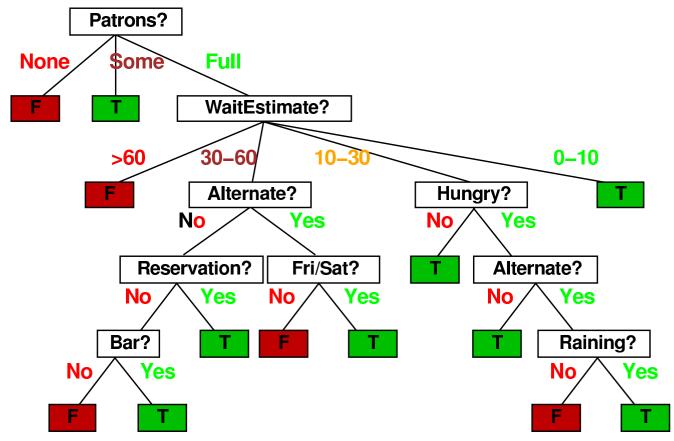
Situations where I will/won't wait for a table in a restaurant

Exmpl.	Attributes										Target
Exilipi.	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	Т
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Т	F	T	Some	\$\$	T	T	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	T	T	Thai	0–10	Т
X_9	F	Т	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Т	T	Т	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	Т	Full	\$	F	F	Burger	30–60	T

A possible representation for hypotheses

Example

The "correct" tree for deciding whether to wait



Properties

Decision trees can approximate any function of the input attributes ("correct" decision tree may be infinite)

- Decision trees can approximate any function of the input attributes ("correct" decision tree may be infinite)
- ▶ Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic)

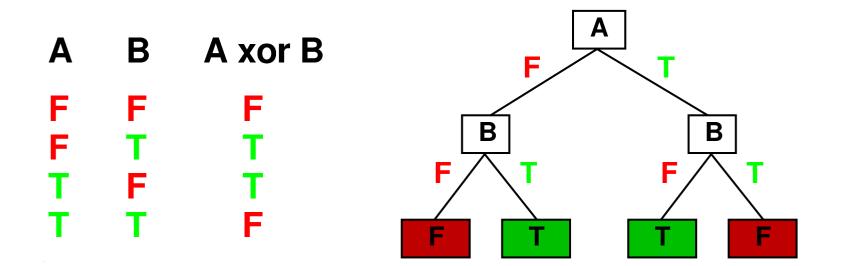
- Decision trees can approximate any function of the input attributes ("correct" decision tree may be infinite)
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic)
- Decision tree for training examples probably won't generalize to new examples

- Decision trees can approximate any function of the input attributes ("correct" decision tree may be infinite)
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic)
- Decision tree for training examples probably won't generalize to new examples
- Compact decision trees are preferable

- Decision trees can approximate any function of the input attributes ("correct" decision tree may be infinite)
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic)
- Decision tree for training examples probably won't generalize to new examples
- Compact decision trees are preferable
- More expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set
 - ⇒ may get worse predictions

Example

For Boolean functions: truth-table row = path to leaf in decision tree



How many distinct decision trees with n Boolean attributes?

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

How many distinct decision trees with n Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows

How many distinct decision trees with n Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows
- $= 2^{2^n}$

How many distinct decision trees with n Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows
- $= 2^{2^n}$

Example

With 6 Boolean attributes, there are

18,446,744,073,709,551,616 trees

Decision Tree Learning

Aim

Find a small tree consistent with the training examples

Idea

(Recursively) choose "most significant" attribute as root of (sub)tree

Choosing an Attribute

Idea

A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative", i.e.,

gives much information about the classification

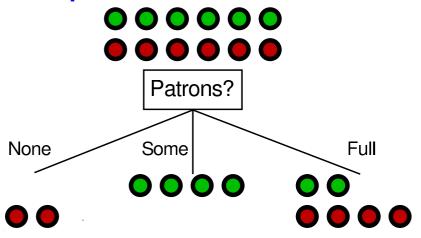
Choosing an Attribute

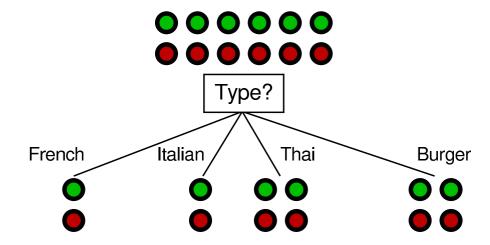
Idea

A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative", i.e.,

gives much information about the classification

Example



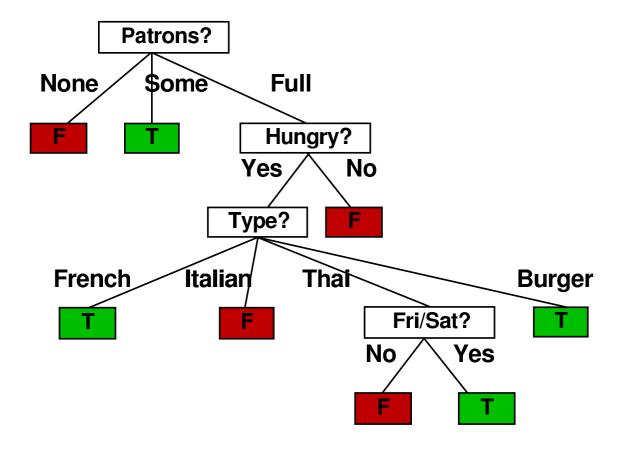


Decision Tree Learning: Algorithm

```
function DTL(examples,attributes,default) returns a decision tree
  if examples is empty then return default
  else if all examples have the same classification then return the classification
  else if attributes is empty then return MAJORITY-VALUE(examples)
  else
      best ← Choose-Attributes, examples)
      tree \leftarrow a new decision tree with root test best
      m \leftarrow MAJORITY-VALUE(examples)
      for each value v<sub>i</sub> of best do
          examples_i \leftarrow \{elements of examples with best = v_i\}
          subtree \leftarrow ,DTL(examples_i,attributes - best,m)
          add a branch to tree with label v_i and subtree subtree
      return tree
```

Example

Decision tree learned from the 12 examples



Substantially simpler than "true" tree

A more complex hypothesis isn't justified by small amount of data

Performance Measurement

Hume's Problem of Induction

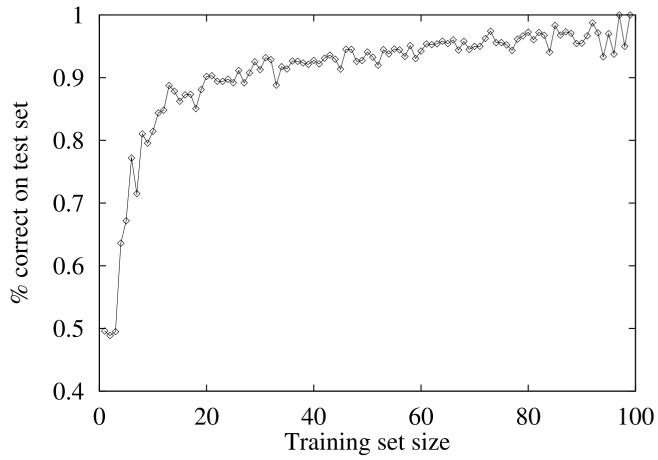
How do we know that $h \approx f$?

- Use theorems of computational/statistical learning theory
- Try h on a new test set of examples (use same distribution over example space as training set)

Performance Measurement

Learning curve

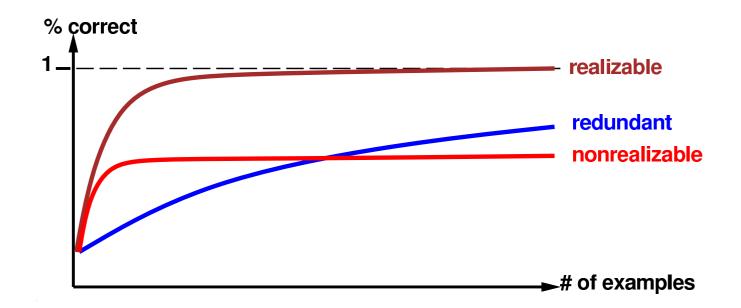
% correct on test set as a function of training set size



Performance Measurement (cont.)

Learning curve depends on

- realizable (can express target function) vs. non-realizable Non-realizability can be due to
 - missing attributes, or
 - restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)



Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set