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Objectives

To understand Büchi automata and their 
relationship to LTL
To understand how Büchi acceptance 
search enables a general LTL model 
checking algorithm
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Safety Checking

For safety properties we automated the 
“instrumentation” of checking for 
acceptance of a regular expression for a 
violation

This involved modifying the DFS algorithm to 
Calculate states of the property automaton
Check to see whether an accept state is 
reached

We will apply the same basic strategy for LTL
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Property

LTL Model Checking

From the semantics
An LTL formula defines a set of (accepting) 
traces

We can
Check for trace containment

System
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LTL Model Checking

From the semantics
The negation of an LTL formula defines a set 
of (violating) traces

We can
Check for non-empty language intersection

System

Negation of Property
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Emptiness Check

LTL is closed under complement
L(φ) = L(¬φ) 

where the language of a formula defines a 
set of infinite traces

A Büchi automaton accepts a set of infinite 
traces
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Büchi Automata
A Büchi automaton is a quadruple (R,I,δ,F)

S is a set of states
I ⊆ R is a set of initial states
δ : R → P(R) is a transition relation
F is a set of accepting states

Unlike FSAs, Büchi automata are always non-
deterministic

set of initial states
multiple transitions from a state
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Büchi Automata

Automaton states are labeled with atomic 
propositions of the formula
λ : R → P(A)

• where A are the set of observables for the 
program

• λ(r) is the set of observables for a property 
state

Note that the meaning of the automata is 
defined via this mapping
• plays the role of alphabet in FSA
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Example : Büchi Automaton

cruise off true

S = {r0, r1, r2}
I = {r0}
δ = {(r0,{r0,r1}),(r1,{r2}),(r2,{r2})}
F = {r2}
λ = {(r0,cruire}),(r1,{off}),(r2,{})}

r0 r2r1
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Büchi Automata Semantics
An infinite trace

σ = r0, r1, …
is accepted by a Büchi automaton iff    

r0 ∈ I starting in an initial state

∀i≥0 : ri+1∈ δ(ri)   trace corresponds to 
transition relation

∀i≥0 ∃j≥i : rj ∈ F   can reach a final state 
from end of all prefixes
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Büchi Trace Containment
Assume each system state (S) is labeled (Λ) 

with set of observables (A)
A Büchi automaton accepts a system trace

s0, s1, …

∃r0 ∈ I : λ(r0)∈ Λ(s0)

∀i≥0 ∃ri+1∈ δ(ri) : λ(ri+1)∈ Λ(si+1)

∀i≥0 ∃j≥i : rj ∈ F
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Example : Büchi Automaton

cruise off true

cruise cruise off off accel accel cruise …
cruise cruise accel cruise off accel …

ro r1 r2
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LTL and Büchi Automata

Every LTL formula has a Büchi automaton 
that accepts its language (not vice versa)

L(φ) ⊆ L(BA)
L(φ) ∩ L(BA) ≠∅

Büchi automata cannot be determinized
i.e., there is no canonical deterministic 
automaton that accepts the same language

Büchi automata are closed under the 
standard set operations
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Example : Büchi Automaton

cruise off true

What LTL property does this correspond to?

ro r1 r2

cruise U off
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Example : Büchi Automaton

true off true

What LTL property does this correspond to?

ro r1 r2

◊ off
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LTL Model Checking

Apply same strategy as before
Generate Büchi automaton for the negation
of the LTL property
Explore state space of the product of the 
automaton and the system
Check for emptiness

Violation are indicated by accepting traces
Look for cycles containing an accept state
Use nested depth-first search
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errors := {}
seen := {}
for each r ∈ I do

seen := seen U {(s0 , r)}
stack := [(s0 , r)]
DFS((s0 , r))
pop(stack)

LTL Model Checking

For each initial property state

initialize DFS data structures

perform search of initial product state
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DFS ((s,r))
workSet := enabled (s )
for each α ∈ workSet do

s’ := α (s )
for each r’ ∈ δ(r) do

if λ(r’ ) ∉ Λ(s’) then
if (s’ ,r’ ) ∉ seen then

seen := seen ∪ {(s’ ,r’ )}
push (stack, (s’ ,r’ ))
DFS((s’,r’))
if r’ ∈ A then

seen’ := {(s’ ,r’)}
stack’ := [(s’ ,r’)]
NDFS((s’,r’),(s’ ,r’))
pop(stack’ )

pop(stack)
end DFS

LTL Model Checking

For each transition

check if state labels match

Only launch a cycle search 
from property accept states
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NDFS ((s,r), seed)
workSet := enabled (s )
for each α ∈ workSet do

s’ := α (s )
for each r’ ∈ δ(r) do

if λ(r’ ) ∉ Λ(s’) then
if (s’ ,r’) = ∫eed then

errors := errors U {(stack,stack’)}
continue

if (s’,r’)  ∉ seen’ then
seen’ := seen’ ∪ {(s’,r’)}
push (stack’, (s’,r’))
NDFS((s’,r’), seed)
pop(stack’ )

end NDFS

LTL Model Checking

For each transition

check if state labels match

Same logic as for

progress checking
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Fairness

Liveness states that the system should 
eventually do something

Often times in real systems threads rely on a 
schedule to give them a chance to run
Abstracting scheduling to non-deterministic 
choice introduces severe approximation

There are many forms of fairness
The intuition is that we restrict the systems 
behaviors to only those on which each 
process gets a chance to execute
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Fairness in LTL

LTL is expressive enough to state fairness 
properties directly

[]<> (Phil1.eating || Phil2.eating)
([]<>Phil1.eating) && ([]<>Phil2.eating)

Fairness formula can be used to filter the 
behaviors that are checked as follows

Fairness -> Property
If not Fairness then whole thing is true
Property checked only when Fairness holds


