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Specification Checking : Temporal Logic

ObjectivesObjectivesObjectivesObjectives

� Understand why temporal logic can be a useful 
formalism for specifying properties of 
concurrent/reactive systems.

� Understand the intuition behind Computation 
Tree Logic (CTL) – the specification logic used 
e.g., in the well-known SMV model-checker.

� Be able to confidently apply Linear Temporal 
Logic (LTL) – the specification logic used in e.g., 
Bogor and SPIN – to specify simple properties 
of systems. 

� Understand the formal semantics of LTL.
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OutlineOutlineOutlineOutline

� CTL by example

� LTL by example

� LTL – formal definition

� Common properties to be stated for 
concurrent systems and how they can be 
specified using LTL

� Bogor’s support for LTL
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Reasoning about ExecutionsReasoning about ExecutionsReasoning about ExecutionsReasoning about Executions

� We’ve seen specifications that are about 
individual program states

� e.g., assertions, invariants

� Sometimes we want to reason about the 
relationship between multiple states

� Must one state always precede another?

� Does seeing one state preclude the possibility 
of subsequently seeing another?

� We need to shift our thinking from states 
to paths in the state space



Specification Checking : Temporal Logic

Reasoning about ExecutionsReasoning about ExecutionsReasoning about ExecutionsReasoning about Executions

� We want to reason about execution trees
� tree node = snap shot of the program’s state

� Reasoning consists of two layers
� defining predicates on the program states (control points, 

variable values)

� expressing temporal relationships between those predicates
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ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a 
definition

� When a file is opened it must subsequently 
be closed

� You cannot shift from drive to reverse 
without passing through neutral

� The program will eventually terminate
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Why Use Temporal Logic?Why Use Temporal Logic?Why Use Temporal Logic?Why Use Temporal Logic?

� Requirements of concurrent, distributed, and 
reactive systems are often phrased as 
constraints on sequences of events or states or 
constraints on execution paths.

� Temporal logic provides a formal, expressive, 
and compact notation for realizing such 
requirements.

� The temporal logics we consider are also 
strongly tied to various computational 
frameworks (e.g., automata theory) which 
provides a foundation for building verification 
tools.
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Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

Restrict path quantification to “ALL” (no “EXISTS”)
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Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of branching traces instead of branching trees
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Linear Time Logic (LTL)Linear Time Logic (LTL)Linear Time Logic (LTL)Linear Time Logic (LTL)

[]Φ …always ΦΦΦΦ

<>ΦΦΦΦ …eventually ΦΦΦΦ

Φ  Φ  Φ  Φ  U U U U ΓΓΓΓ …ΦΦΦΦ until ΓΓΓΓ

ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ

ΦΦΦΦ ΦΦΦΦ

ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΓΓΓΓ ΦΦΦΦ ΓΓΓΓ

Φ ::=  P                               …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ     | | | | X Φ …temporal operators

Syntax

Semantic Intuition
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Modal vs. Temporal LogicModal vs. Temporal LogicModal vs. Temporal LogicModal vs. Temporal Logic

Time point g ∈ GWorld g ∈ G

[]F (always in the future)

<>F (sometimes in the future)

XF (next time point)

F U G (until)

…

[]F

<>F

Temporal StructuresKripke Structures

(G,<)(G, R)

Temporal Logic (LTL)Modal Logic
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Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “Along all paths, it must be the case that globally (I.e., in 
each state we come to) eventually p will hold”

� Expresses a form of fairness

� p must occur infinitely often along the path 

� To check Φ under the assumption of fair traces, check
[]<>p -> Φ

p p p

[]<>p
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Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “Along all paths, eventually it is the case that p holds at 
each state)” (i.e., “eventually permanently p”)

� “Any path contains only finitely many !p states”

p p p

pp p p p

<>[]p
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Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “p unless q”, or “p waiting for q”, or “p weak-until q”

p p p

pp p p p

p W q []p || (p U q)=

ppppp

pp p p pqqqqq

q

q p p pqqppp
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Semantics for LTLSemantics for LTLSemantics for LTLSemantics for LTL

� Semantics of LTL is given with respect to a 
(usually infinite) path or trace

� π = s1 s2 s3 …

� We write πi for the suffix starting at si, e.g., 

� π3 = s3 s4 s5 …

� A system satisfies an LTL formula f if each path 
through the system satisfies f.
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Semantics of LTLSemantics of LTLSemantics of LTLSemantics of LTL

� For primitive propositions p:

π |= p ⇔ s1 |= p      π |= !p ⇔ s1 |= !p

� π |= f ∧ g ⇔ π |= f  and π |= g

� π |= f ∨ g ⇔ π |= f  or π |= g

� π |= Xf ⇔ π2 |= f

� π |= <>f ⇔ ∃i ≥1. πi |= f 

� π |= []f ⇔ ∀i ≥1. πi |= f

� π |= (f U g) ⇔ ∃i >= 1. πi |= g
and ∀j : 1 ≤ j < i. πj |= f
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LTL NotesLTL NotesLTL NotesLTL Notes

� Invented by Prior (1960’s), and first used 
to reason about concurrent systems by A. 
Pnueli, Z. Manna, etc.

� LTL model-checkers are usually explicit-
state checkers due to connection between 
LTL and automata theory

� Most popular LTL-based checker is SPIN 
(G. Holzman)
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Comparing LTL and CTLComparing LTL and CTLComparing LTL and CTLComparing LTL and CTL

� CTL is not strictly more expression than LTL (and vice 
versa)

� CTL* invented by Emerson and Halpern in 1986 to unify 
CTL and LTL

� We believe that almost all properties that one wants to express 
about software lie in intersection of LTL and CTL

CTLCTLCTLCTL LTLLTLLTLLTL

CTL*CTL*CTL*CTL*
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A classic distinction A classic distinction A classic distinction A classic distinction …………

� Safety properties

� “nothing bad ever happens”

� are violated by a finite path prefix that ends in a bad 
thing

� are fundamentally about the history of a computation 
up to a point

� Liveness properties

� “something good eventually happens”

� are violated by infinite path suffixes on which the 
good thing never happens

� are fundamentally about the future of a computation 
from a point onward
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ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a 
definition

� When a file is opened it must subsequently be 
closed

� You cannot shift from drive to reverse without 
passing through neutral

� No pair of adjacent dining philosophers can be 
eating at the same time

� The program will eventually terminate

� The program is free of deadlock
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ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a 
definition -- Safety

� When a file is opened it must subsequently be 
closed -- Liveness

� You cannot shift from drive to reverse without 
passing through neutral  -- Safety

� No pair of adjacent dining philosophers can be 
eating at the same time  -- Safety

� The program will eventually terminate --
Liveness

� The program is free of deadlock -- Safety


