
Specification Checking : Temporal
Logic

Software Model Checking:
Theory and Practice

Lecture: Specification Checking -
Temporal Logic

Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University and the University of Nebraska
in their current form or modified form without the express written permission of one of the copyright holders. During this
course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm
without the express written permission of one of the copyright holders.

Specification Checking : Temporal Logic

ObjectivesObjectivesObjectivesObjectives

� Understand why temporal logic can be a useful
formalism for specifying properties of
concurrent/reactive systems.

� Understand the intuition behind Computation
Tree Logic (CTL) – the specification logic used
e.g., in the well-known SMV model-checker.

� Be able to confidently apply Linear Temporal
Logic (LTL) – the specification logic used in e.g.,
Bogor and SPIN – to specify simple properties
of systems.

� Understand the formal semantics of LTL.

Specification Checking : Temporal Logic

OutlineOutlineOutlineOutline

� CTL by example

� LTL by example

� LTL – formal definition

� Common properties to be stated for
concurrent systems and how they can be
specified using LTL

� Bogor’s support for LTL

Specification Checking : Temporal Logic

Reasoning about ExecutionsReasoning about ExecutionsReasoning about ExecutionsReasoning about Executions

� We’ve seen specifications that are about
individual program states

� e.g., assertions, invariants

� Sometimes we want to reason about the
relationship between multiple states

� Must one state always precede another?

� Does seeing one state preclude the possibility
of subsequently seeing another?

� We need to shift our thinking from states
to paths in the state space

Specification Checking : Temporal Logic

Reasoning about ExecutionsReasoning about ExecutionsReasoning about ExecutionsReasoning about Executions

� We want to reason about execution trees
� tree node = snap shot of the program’s state

� Reasoning consists of two layers
� defining predicates on the program states (control points,

variable values)

� expressing temporal relationships between those predicates

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

Specification Checking : Temporal Logic

ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a
definition

� When a file is opened it must subsequently
be closed

� You cannot shift from drive to reverse
without passing through neutral

� The program will eventually terminate

Specification Checking : Temporal Logic

Why Use Temporal Logic?Why Use Temporal Logic?Why Use Temporal Logic?Why Use Temporal Logic?

� Requirements of concurrent, distributed, and
reactive systems are often phrased as
constraints on sequences of events or states or
constraints on execution paths.

� Temporal logic provides a formal, expressive,
and compact notation for realizing such
requirements.

� The temporal logics we consider are also
strongly tied to various computational
frameworks (e.g., automata theory) which
provides a foundation for building verification
tools.

Specification Checking : Temporal Logic

Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Specification Checking : Temporal Logic

Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of branching traces instead of branching trees

Specification Checking : Temporal Logic

Linear Time Logic (LTL)Linear Time Logic (LTL)Linear Time Logic (LTL)Linear Time Logic (LTL)

[]Φ …always ΦΦΦΦ

<>ΦΦΦΦ …eventually ΦΦΦΦ

Φ Φ Φ Φ U U U U ΓΓΓΓ …ΦΦΦΦ until ΓΓΓΓ

ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ

ΦΦΦΦ ΦΦΦΦ

ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΦΦΦΦ ΓΓΓΓ ΦΦΦΦ ΓΓΓΓ

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ | | | | X Φ …temporal operators

Syntax

Semantic Intuition

Specification Checking : Temporal Logic

Modal vs. Temporal LogicModal vs. Temporal LogicModal vs. Temporal LogicModal vs. Temporal Logic

Time point g ∈ GWorld g ∈ G

[]F (always in the future)

<>F (sometimes in the future)

XF (next time point)

F U G (until)

…

[]F

<>F

Temporal StructuresKripke Structures

(G,<)(G, R)

Temporal Logic (LTL)Modal Logic

Specification Checking : Temporal Logic

Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “Along all paths, it must be the case that globally (I.e., in
each state we come to) eventually p will hold”

� Expresses a form of fairness

� p must occur infinitely often along the path

� To check Φ under the assumption of fair traces, check
[]<>p -> Φ

p p p

[]<>p

Specification Checking : Temporal Logic

Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “Along all paths, eventually it is the case that p holds at
each state)” (i.e., “eventually permanently p”)

� “Any path contains only finitely many !p states”

p p p

pp p p p

<>[]p

Specification Checking : Temporal Logic

Linear Time LogicLinear Time LogicLinear Time LogicLinear Time Logic

� “p unless q”, or “p waiting for q”, or “p weak-until q”

p p p

pp p p p

p W q []p || (p U q)=

ppppp

pp p p pqqqqq

q

q p p pqqppp

Specification Checking : Temporal Logic

Semantics for LTLSemantics for LTLSemantics for LTLSemantics for LTL

� Semantics of LTL is given with respect to a
(usually infinite) path or trace

� π = s1 s2 s3 …

� We write πi for the suffix starting at si, e.g.,

� π3 = s3 s4 s5 …

� A system satisfies an LTL formula f if each path
through the system satisfies f.

Specification Checking : Temporal Logic

Semantics of LTLSemantics of LTLSemantics of LTLSemantics of LTL

� For primitive propositions p:

π |= p ⇔ s1 |= p π |= !p ⇔ s1 |= !p

� π |= f ∧ g ⇔ π |= f and π |= g

� π |= f ∨ g ⇔ π |= f or π |= g

� π |= Xf ⇔ π2 |= f

� π |= <>f ⇔ ∃i ≥1. πi |= f

� π |= []f ⇔ ∀i ≥1. πi |= f

� π |= (f U g) ⇔ ∃i >= 1. πi |= g
and ∀j : 1 ≤ j < i. πj |= f

Specification Checking : Temporal Logic

LTL NotesLTL NotesLTL NotesLTL Notes

� Invented by Prior (1960’s), and first used
to reason about concurrent systems by A.
Pnueli, Z. Manna, etc.

� LTL model-checkers are usually explicit-
state checkers due to connection between
LTL and automata theory

� Most popular LTL-based checker is SPIN
(G. Holzman)

Specification Checking : Temporal Logic

Comparing LTL and CTLComparing LTL and CTLComparing LTL and CTLComparing LTL and CTL

� CTL is not strictly more expression than LTL (and vice
versa)

� CTL* invented by Emerson and Halpern in 1986 to unify
CTL and LTL

� We believe that almost all properties that one wants to express
about software lie in intersection of LTL and CTL

CTLCTLCTLCTL LTLLTLLTLLTL

CTL*CTL*CTL*CTL*

Specification Checking : Temporal Logic

A classic distinction A classic distinction A classic distinction A classic distinction …………

� Safety properties

� “nothing bad ever happens”

� are violated by a finite path prefix that ends in a bad
thing

� are fundamentally about the history of a computation
up to a point

� Liveness properties

� “something good eventually happens”

� are violated by infinite path suffixes on which the
good thing never happens

� are fundamentally about the future of a computation
from a point onward

Specification Checking : Temporal Logic

ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a
definition

� When a file is opened it must subsequently be
closed

� You cannot shift from drive to reverse without
passing through neutral

� No pair of adjacent dining philosophers can be
eating at the same time

� The program will eventually terminate

� The program is free of deadlock

Specification Checking : Temporal Logic

ExamplesExamplesExamplesExamples

� A use of a variable must be preceded by a
definition -- Safety

� When a file is opened it must subsequently be
closed -- Liveness

� You cannot shift from drive to reverse without
passing through neutral -- Safety

� No pair of adjacent dining philosophers can be
eating at the same time -- Safety

� The program will eventually terminate --
Liveness

� The program is free of deadlock -- Safety

