
Formal Specification and Verification of Software

The Z Specification Language

Bernhard Beckert

UNIVERSITÄT KOBLENZ -LANDAU

B. Beckert: Formal Specification and Verification of Software – p.1

The Z Specification Language

Based on

Typed first-order predicate logic

Zermelo-Fraenkel set theory

Rich notation

B. Beckert: Formal Specification and Verification of Software – p.2

The Z Specification Language

Based on

Typed first-order predicate logic

Zermelo-Fraenkel set theory

Rich notation

Invented/developed by

J.-R. Abrial, Oxford University Computing Laboratory

International standard

ISO/IEC JTC1/SC22

B. Beckert: Formal Specification and Verification of Software – p.2

The Z Specification Language

Tools

LATEX style

Type checker

Z/Eves deduction system

But

No tools for simulation/execution/testing

B. Beckert: Formal Specification and Verification of Software – p.3

Built-in Operators

Logical operators

¬ negation

∧ conjunction

∨ disjunction

⇒ implication (note: not →)

⇔ equivalence (note: not ↔)

Equality

= equality

On all types (but not predicates)

B. Beckert: Formal Specification and Verification of Software – p.4

Built-in Operators

Quantification

Q x1 : S1; . . . ; xn : Sn | p • q

where Q is one of ∀ ∃ ∃1

Meaning

∀x1 : S1; . . . ; xn : Sn(p ⇒ q) resp.
∃x1 : S1; . . . ; xn : Sn(p ∧ q)

Abbreviation

∀x : T • q for ∀x : T | true • q

B. Beckert: Formal Specification and Verification of Software – p.5

Notation for Sets

Enumeration

{e1, . . . , en}

The set of type-compatible elements e1, . . . , en

Example

{3, 5, 8, 4}

B. Beckert: Formal Specification and Verification of Software – p.6

Notation for Sets

Set comprehension

{x : T | pred(x) • expr(x)}

The set of all elements that result from evaluating expr(x)

for all x of type T for which pred(x) holds

Example

{x : Z | prime(x) • x ∗ x}

The set of all squares of prime numbers

B. Beckert: Formal Specification and Verification of Software – p.7

Notation for Sets

Abbreviation

{x : T | pred(x)} for {x : T | pred(x) • x}

Example

N = {x : Z | x ≥ 0}

The empty set

∅ = {x : T | false}

Note:

∅ = ∅[T] is typed

B. Beckert: Formal Specification and Verification of Software – p.8

Set Operations

∈ element-of relation

⊆ subset relation

S1 and S2 must have the same type

S1 ⊆ S2 ⇔ (∀x : S1 • x ∈ S2)

P power set operator

S′ ∈ P S ⇔ S′ ⊆ S

× cartesian product

(x1, . . . , xn) ∈ S1 × . . .× Sn ⇔ (x1 ∈ S1 ∧ . . . ∧ xn ∈ Sn)

B. Beckert: Formal Specification and Verification of Software – p.9

Set Operations

∪,∪ union

Involved sets must have the same type T

x ∈ S1 ∪ S2 ⇔ (x ∈ S1 ∨ x ∈ S2)

x ∈∪S ⇔ (∃ s′ : T • s′ ∈ S ∧ x ∈ s′)

∩,∩ intersection

\ set difference

B. Beckert: Formal Specification and Verification of Software – p.10

Types

Pre-defined types

Z with constants: 0, 1, 2, 3, 4, . . .
functions: +,−,∗, /
predicates: <,≤,>,≥

Sets

Every set can be used as a type

Basic types (given sets)

Example

[Person]

B. Beckert: Formal Specification and Verification of Software – p.11

Free Type Definitions

Example

weekDay ::= mon | tue | wed | thu | fri | sat | sun

Example

Tree ::= leaf 〈〈Z〉〉 | node〈〈Tree × Tree〉〉

Meaning

[Tree] generated by leaf , node

∀x1, y1, x2, y2 : Tree |
node(x1, y1) = node(x2, y2) • (x1 = x2 ∧ y1 = y2)

∀x1, x2 : Z | leaf (x1) = leaf (x2) • x1 = x2

∀x : Z; y, z : Tree • leaf (x) 6= node(y, z)

Note: Generatedness is not expressible in first-order logicB. Beckert: Formal Specification and Verification of Software – p.12

Compound Types

Set type: P T

The type of sets of elements of type T

Cartesian product type: T1 × · · · × Tn

The type of tuples (t1, . . . , tn) with ti ∈ Ti

B. Beckert: Formal Specification and Verification of Software – p.13

Types: Overview

Possible type definitions

T = Z

T = [Type]

T ::= . . . (free type)

T = P T′

T = T1 × · · · × Tn

B. Beckert: Formal Specification and Verification of Software – p.14

Types: Overview

Possible type definitions

T = Z

T = [Type]

T ::= . . . (free type)

T = P T′

T = T1 × · · · × Tn

Note

All types are disjoint (not for sets that are used as types)

All terms have a unique type

B. Beckert: Formal Specification and Verification of Software – p.14

Variables

Variable declarations

Example

x : Z

sold : P Seat

Variables can range over types and over sets

B. Beckert: Formal Specification and Verification of Software – p.15

Syntactical Abbreviations

Abbreviations

must not be recursive

can be generic

Examples

numberPairs == Z×Z

pairWithNumber[S] == Z× S

Note

Type variables are “meta-variables” (cannot be quantified)

B. Beckert: Formal Specification and Verification of Software – p.16

Abbreviations vs. Generated Types

weekDay1 == {mon, tue, wed, thu, fri, sat, sun}

vs.

WeekDay2 ::= mon | tue | wed | thu | fri | sat | sun

B. Beckert: Formal Specification and Verification of Software – p.17

Abbreviations vs. Generated Types

weekDay1 == {mon, tue, wed, thu, fri, sat, sun}

vs.

WeekDay2 ::= mon | tue | wed | thu | fri | sat | sun

Not the same

Type definition implies elements to be different

B. Beckert: Formal Specification and Verification of Software – p.17

Axiomatic Definitions

Form of an axiomatic definition

SymbolDeclarations

ConstrainingPredicates

Example

N1 : PZ

∀ z : Z • (z ∈ N1 ↔ z ≥ 1)

B. Beckert: Formal Specification and Verification of Software – p.18

Relations

Relation types/sets

S ↔ T is the type/set of relations between types/sets S and T

S ↔ T = P(S× T)

Notation

a 7→ b for (a, b) if (a, b) ∈ S× T

B. Beckert: Formal Specification and Verification of Software – p.19

Operations on Relations

Domain dom R

dom R = {a : S, b : T | a 7→ b ∈ R • a}

Range ran R

ran R = {a : S; b : T | a 7→ b ∈ R • b}

B. Beckert: Formal Specification and Verification of Software – p.20

Operations on Relations

Domain dom R

dom R = {a : S, b : T | a 7→ b ∈ R • a}

Range ran R

ran R = {a : S; b : T | a 7→ b ∈ R • b}

Restrictions of relations

S′
⊳ R = {a : S; b : T | a 7→ b ∈ R ∧ a ∈ S′ • a 7→ b}

R ⊲ T′
= {a : S; b : T | a 7→ b ∈ R ∧ b ∈ T′ • a 7→ b}

S′ −⊳ R = {a : S; b : T | a 7→ b ∈ R ∧ a 6∈ S′ • a 7→ b}

R −⊲ T′
= {a : S; b : T | a 7→ b ∈ R ∧ b 6∈ T′ • a 7→ b}

B. Beckert: Formal Specification and Verification of Software – p.20

Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}

B. Beckert: Formal Specification and Verification of Software – p.21

Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}

Composition R o
9 R′ R : S ↔ T and R′ : T ↔ U

R o
9 R′

= {a : S; b : T; c : U
| a 7→ b ∈ R ∧ b 7→ c ∈ R′ • a 7→ c}

B. Beckert: Formal Specification and Verification of Software – p.21

Operations on Relations

Inverse relation R−1

R−1
= {a : S; b : T | a 7→ b ∈ R • b 7→ a}

Composition R o
9 R′ R : S ↔ T and R′ : T ↔ U

R o
9 R′

= {a : S; b : T; c : U
| a 7→ b ∈ R ∧ b 7→ c ∈ R′ • a 7→ c}

Closures R : S ↔ S

iteration Rn
= R o

9 Rn−1

identity R0
= {a : S | true • a 7→ a}

refl./trans. R∗
=∪{n : N | true • Rn}

transitive R+
=∪{n : N | n ≥ 1 • Rn}

symetric Rs
= R ∪R−1

reflexive Rr
= R ∪R0

B. Beckert: Formal Specification and Verification of Software – p.21

Functions

Special relations

Functions are special relations

Notation

Instead of ↔

→ total function

7→ partial function

B. Beckert: Formal Specification and Verification of Software – p.22

Functions

Partial functions

f ∈ S 7→ T ⇔

f ∈ S ↔ T ∧
∀ a : S, b : T, b′ : T | (a 7→ b ∈ f ∧ a 7→ b′ ∈ f) • b = b′

B. Beckert: Formal Specification and Verification of Software – p.23

Functions

Partial functions

f ∈ S 7→ T ⇔

f ∈ S ↔ T ∧
∀ a : S, b : T, b′ : T | (a 7→ b ∈ f ∧ a 7→ b′ ∈ f) • b = b′

Total functions

f ∈ S → T ⇔

f ∈ S 7→ T ∧
∀ a : S • ∃b : T • a 7→ b ∈ f

B. Beckert: Formal Specification and Verification of Software – p.23

λ Notation for Functions

General form

λ a : S | p • e

Example

double : Z 7→ Z

double = λ n : Z | n ≥ 0 • n + n

Equivalent to

double : Z 7→ Z

double = {n : N | true • n 7→ n + n}

B. Beckert: Formal Specification and Verification of Software – p.24

Prefix and Infix Notation

Notation

Relations and functions can be declared prefix and infix

Parameter positions are indicated with “ ”

Example

even : Z → B

∀x : Z • (even x ⇔ (∃y : Z • x = y + y))

Equivalent to

even : Z → B

even = {x : Z | (∃y : Z • x = y + y)}

B. Beckert: Formal Specification and Verification of Software – p.25

More Notation for Functions

Notation

7 partial injective function

 total injective function

7→→ partial surjective function

→→ total surjective function

→ total bijective function

B. Beckert: Formal Specification and Verification of Software – p.26

Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))

B. Beckert: Formal Specification and Verification of Software – p.27

Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))

Function

abs : Z → N

abs = (λ m : Z | m ≤ 0 • −m) ∪ (λm : Z | m ≥ 0 • m)

B. Beckert: Formal Specification and Verification of Software – p.27

Three Definitions of abs

Relation (in infix notation)

abs : Z ↔ N

∀m : Z, n : N • (m abs n) ↔
((m = n ∧ m ≥ 0) ∨ (−m = n ∧ m ≤ 0))

Function

abs : Z → N

abs = (λ m : Z | m ≤ 0 • −m) ∪ (λm : Z | m ≥ 0 • m)

Function (in prefix notation)

abs : Z 7→ N

∀x : Z | x ≤ 0 • x = −(abs x)
∀x : Z | x ≥ 0 • x = abs x

B. Beckert: Formal Specification and Verification of Software – p.27

Finite Constructs

Finite subsets of Z

m..n = {n′ : N | m ≤ n′ ∧ n′ ≤ n}

B. Beckert: Formal Specification and Verification of Software – p.28

Finite Constructs

Finite subsets of Z

m..n = {n′ : N | m ≤ n′ ∧ n′ ≤ n}

Finite sets

F T consists of the finite sets in P T

[S]
F : P(P S)

F = {s : P S | (∃n : N • (∃ f : 1..n → s • true))}

B. Beckert: Formal Specification and Verification of Software – p.28

Finite Sets: Cardinality

Cardinality operator #

[S]
: F S → N

∀ s : F S; n : N • (n = #s ↔ (∃ f : 1..n → s • true))

B. Beckert: Formal Specification and Verification of Software – p.29

Finite Functions

Notation

7 7→ finite (partial) functions (e.g. arrays)

S 7 7→ T = {f : S 7→ T | dom f ∈ F S}

7 7 finite (partial) injective functions (e.g. duplicate-free arrays)

S 7 7 T = {f : S 7 T | dom f ∈ F S}

B. Beckert: Formal Specification and Verification of Software – p.30

Sequences

Definition

seq T == {s : Z 7 7→ T | dom s = 1..#s}

Note

sequences are functions, which are relations, which are set s

the length of s is #s

B. Beckert: Formal Specification and Verification of Software – p.31

Sequences

Definition

seq T == {s : Z 7 7→ T | dom s = 1..#s}

Note

sequences are functions, which are relations, which are set s

the length of s is #s

Notation

The sequence {1 7→ x1, 2 7→ x2, . . . , n 7→ xn}

is written as 〈x1, x2, . . . , xn〉

B. Beckert: Formal Specification and Verification of Software – p.31

Example: Concatenation of Sequences

s a t ==

s ∪
(λ n : Z | n ∈ #s + 1..#s + #t • n − #s) o

9 t

B. Beckert: Formal Specification and Verification of Software – p.32

Schemata

General form

Name
SymbolDeclarations

ConstrainingPredicates

Linear notation

Name =̂ [SymbolDeclarations | ConstrainingPredicates]

B. Beckert: Formal Specification and Verification of Software – p.33

Schemata

With empty predicate part

Name
SymbolDeclarations

Linear notation

Name =̂ [SymbolDeclarations]

B. Beckert: Formal Specification and Verification of Software – p.34

Schemata: Example

Theater tickets

[Seat]
[Person]

TicketsForPerformance0
seating : P Seat
sold : Seat 7→ Person

dom sold ⊆ seating

B. Beckert: Formal Specification and Verification of Software – p.35

Schemata as Sets/Types

Schema

Name
x1 : T1

. . .
xn : Tn

ConstrainingPredicates

can be seen as the following set (type) of tuples:

Name =

{x1 : T1; . . . ; xn : Tn | ConstrainingPredicates • (x1, . . . , xn)}

B. Beckert: Formal Specification and Verification of Software – p.36

Schema Inclusion

Inclusion

Schemata can be used (included) in

– schema
– set comprehension
– quantification

by adding the schema name to the declaration part

Meaning

– declarations
– constraining predicates

are added to the corresponding parts of the including
schema / set comprehension / quantification

Note: Matching names merge and must be type compatible

B. Beckert: Formal Specification and Verification of Software – p.37

Schema Inclusion

Example

NumberInSet
a : Z

c : PZ

a ∈ c

{NumberInSet | a = 0 • c}

is the same as

{a : Z, c : PZ | a ∈ c ∧ a = 0 • c}

(the set of all integer sets containing 0)

B. Beckert: Formal Specification and Verification of Software – p.38

Schemata as Predicates

Schemata can be used as predicates in

– schema
– set comprehension
– quantification

by adding the schema name to the predicate part
(occurring variables must already be declared)

Meaning

The constraining predicates (not: the declaration part)
are added to the corresponding part of the
schema / set comprehension / quantification

B. Beckert: Formal Specification and Verification of Software – p.39

Schemata as Predicates

Example

NumberIn01
a : Z

c : PZ

a ∈ c
c ⊆ {0, 1}

∀ a : Z; c : PZ | NumberIn01 • NumberInSet

is the same as

∀ a : Z; c : PZ | a ∈ c ∧ c ⊆ {0, 1} • a ∈ c

B. Beckert: Formal Specification and Verification of Software – p.40

Generic Schemata

Type/set variables can be used in schema definitions

Example

NumberInSetGeneric[X]
a : X
c : P X

a ∈ c

Then

NumberInSetGeneric[Z] = NumberInSet

B. Beckert: Formal Specification and Verification of Software – p.41

Variable Renaming in Schemata

Variables in schemata can be renamed

Example

NumberInSet[a/q, c/s]

is equal to

q : Z

s : PZ

q ∈ s

B. Beckert: Formal Specification and Verification of Software – p.42

Conjunctions of Schemata

Schemata can be composed conjunctively

Example

Given

ConDis1
a : A; b : B

P

ConDis2
b : B; c : C

Q

Then the following are equivalent

ConDis1 ∧ ConDis2
a : A; b : B; c : C

P
Q

B. Beckert: Formal Specification and Verification of Software – p.43

Disjunctions of Schemata

Schemata can be composed disjunctively

Example

Given

ConDis1
a : A; b : B

P

ConDis2
b : B; c : C

Q

Then the following are equivalent

ConDis1 ∨ ConDis2
a : A; b : B; c : C

P ∨ Q

B. Beckert: Formal Specification and Verification of Software – p.44

Example

Informal specification

Theater: Tickets for first night are only sold to friends

Specification in Z

Status ::= standard | firstNight

Friends
friends : P Person
status : Status
sold : Seat 7→ Person

status = firstNight ⇒ ran sold ⊆ friends

B. Beckert: Formal Specification and Verification of Software – p.45

Example

TicketsForPerformance1 =̂

TicketsForPerformance0 ∧ Friends

and

TicketsForPerformance1
Friends
TicketsForPerformance0

B. Beckert: Formal Specification and Verification of Software – p.46

Example

TicketsForPerformance1 =̂

TicketsForPerformance0 ∧ Friends

and

TicketsForPerformance1
Friends
TicketsForPerformance0

are the same as

TicketsForPerformance1
friends : P Person; status : Status
sold : Seat 7→ Person; seating : P Seat

status = firstNight ⇒ ran sold ⊆ friends
dom sold ⊆ seating

B. Beckert: Formal Specification and Verification of Software – p.46

Normalisation of Schemata

Normalisation

A schema is normalised if in the declaration part

Variables are typed

but not restricted to subsets of types

B. Beckert: Formal Specification and Verification of Software – p.47

Normalisation of Schemata

Normalisation

A schema is normalised if in the declaration part

Variables are typed

but not restricted to subsets of types

Example

The normalisation of

x : N

P

is

x : Z

x ≥ 0
P

B. Beckert: Formal Specification and Verification of Software – p.47

Negation of Schemata

A schema is negated by negating the predicate part in
its normalised form

Example

The negation of

x : N

P

which is

x : Z

¬ (x ∈ N ∧ P)

is the negation of

x : Z

x ∈ N

P

B. Beckert: Formal Specification and Verification of Software – p.48

Schemata as Operations

States

A state is a variable assignment

A schema describes a set of states

Operations

To describe an operation,
a schema must describe pairs of states (pre/post)

B. Beckert: Formal Specification and Verification of Software – p.49

Schemata as Operations

States

A state is a variable assignment

A schema describes a set of states

Operations

To describe an operation,
a schema must describe pairs of states (pre/post)

Notation

Variables are decorated with ′ to refer to their value in the post state

Whole schemata can be decorated

B. Beckert: Formal Specification and Verification of Software – p.49

Schemata as Operations

Example

NumberInSet′

is the same as

NumberInSet′

a′ : Z

c′ : PZ

a′ ∈ c′

B. Beckert: Formal Specification and Verification of Software – p.50

Schemata as Operations

Example

NumberInSet′

is the same as

NumberInSet′

a′ : Z

c′ : PZ

a′ ∈ c′

Further decorations

input variables are decorated with “ ?”

output variables are decorated with “ !”

B. Beckert: Formal Specification and Verification of Software – p.50

Example

Theater: Selling tickets

Purchase0
TicketsForPerformance0
TicketsForPerformance0′

s? : Seat
p? : Person

s? ∈ seating\dom sold

sold′ = sold∪ {s? 7→ p?}
seating′ = seating

(no output variables in this schema)

B. Beckert: Formal Specification and Verification of Software – p.51

Example

Response ::= okay | sorry

Success
r! : Response

r! = okay

Then

Purchase0 ∧ Success

is a schema that reports successful ticket sale

B. Beckert: Formal Specification and Verification of Software – p.52

Schemata as Operations

General Form

StateSpace
x1 : T1; . . . ; xn : Tn

inv(x1, . . . , xn)

Operation
StateSpace
StateSpcae′

i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, x′1, . . . , x′n, o1!, . . . , op!)

B. Beckert: Formal Specification and Verification of Software – p.53

The ∆ Operator

Definition

∆Schema abbreviates Schema ∧ Schema′

General form of operation schema using ∆

Operation
∆StateSpace
i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, x′1, . . . , x′n, o1!, . . . , op!)

B. Beckert: Formal Specification and Verification of Software – p.54

The Ξ Operator

Definition

ΞSchema abbreviates ∆Schema ∧ (x1 = x′1 ∧ . . . ∧ xn = x′n)

where x1, . . .xn are the variables declared in Schema

General form of operation schema using Ξ

Operation
ΞStateSpace
i1? : U1; . . . ; im? : Um

o1! : V1; . . . ; op! : Vp

pre(i1?, . . . , im?, x1, . . . , xn)
op(i1?, . . . , im?, x1, . . . , xn, o1!, . . . , op!)

Using Ξ indicates that the operation does not change the state
B. Beckert: Formal Specification and Verification of Software – p.55

The Operators ∆ and Ξ: Example

The following schemata are equivalent

ΞNumberInSet

∆NumberInSet

a = a′

c = c′

NumberInSet
NumberInSet′

a = a′

c = c′

B. Beckert: Formal Specification and Verification of Software – p.56

Example

Theater: Selling tickets, but only to friends if first night p erformance

Purchase1
∆TicketsForPerformance1
s? : Seat
p? : Person

s? ∈ seating\dom sold
status = firstNight ⇒ (p? ∈ friends)

sold′ = sold∪ {s? 7→ p?}
seating′ = seating
status′ = status
friends′ = friends

B. Beckert: Formal Specification and Verification of Software – p.57

Example

NotAvailable
ΞTicketsForPerformance1
s? : Seat
p? : Person

s? ∈ dom sold ∨ (status = firstNight ∧ ¬ p? ∈ friends)

Failure
r! : Response

r! = sorry

TicketServiceForPerformance =̂

(Purchase1 ∧ Success) ∨
(NotAvailable ∧ Failure)

B. Beckert: Formal Specification and Verification of Software – p.58

Quantifying Variables in Schemata

Schema quantification

∀x : S • Schema resp.
∃x : S • Schema

(existential quantification is also called “variable hidin g”)

B. Beckert: Formal Specification and Verification of Software – p.59

Quantifying Variables in Schemata

Schema quantification

∀x : S • Schema resp.
∃x : S • Schema

(existential quantification is also called “variable hidin g”)

Example

∃ a : Z • NumberInSet

is the same as

c : PZ

∃ a : Z • a ∈ c

B. Beckert: Formal Specification and Verification of Software – p.59

Composition of Operation Schemata

Definition

Operation schemata can be composed using o
9, where

every variable with ′ in the first schema must occur without ′

in the second schema

these variables are identified and

hidden from the outside

B. Beckert: Formal Specification and Verification of Software – p.60

Composition: General form

Op1
x1 : T1; . . . ; xp : Tp

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

op1(x1, . . . , xp,
z1, . . . , zn, z′1, . . . , z′n)

Op2
y1 : U1; . . . ; yq : Uq

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

op2(y1, . . . , yq,
z1, . . . , zn, z′1, . . . , z′n)

Op1 o
9 Op2

x1 : T1; . . . ; xp : Tp

y1 : U1; . . . ; yq : Uq

z1 : V1; . . . ; zn : Vn

z′1 : V1; . . . ; z′n : Vn

∃ z′′1 : V1; . . . ; z′′n : Vn •
op1(x1, . . . , xp, z1, . . . , zn, z′′1 , . . . , z′′n)
op2(y1, . . . , yq, z′′1 , . . . , zn, z′1, . . . , z′n)

B. Beckert: Formal Specification and Verification of Software – p.61

Example

Purchase1 o
9 Purchase1[s?/s2?]

is equivalent to

∆TicketsForPerformance1
s? : Seat; s2? : Seat; p? : Person

s? ∈ seating\dom sold
s2? ∈ seating\dom(sold∪ {s? 7→ p?})
status = firstNight ⇒ (p? ∈ friends)

sold′ = sold∪ {s? 7→ p?, s2? 7→ p?}
seating′ = seating
status′ = status
friends′ = friends

B. Beckert: Formal Specification and Verification of Software – p.62

	
	The Z Specification Language
	The Z Specification Language
	Built-in Operators
	Built-in Operators
	Notation for Sets
	Notation for Sets
	Notation for Sets
	Set Operations
	Set Operations
	Types
	Free Type Definitions
	Compound Types
	Types: Overview
	Variables
	Syntactical Abbreviations
	Abbreviations vs. Generated Types
	Axiomatic Definitions
	Relations
	Operations on Relations
	Operations on Relations
	Functions
	Functions
	$lambda $ Notation for Functions
	Prefix and Infix Notation
	More Notation for Functions
	Three Definitions of abs
	Finite Constructs
	Finite Sets: Cardinality
	Finite Functions
	Sequences
	Example: Concatenation of Sequences
	Schemata
	Schemata
	Schemata: Example
	Schemata as Sets/Types
	Schema Inclusion
	Schema Inclusion
	Schemata as Predicates
	Schemata as Predicates
	Generic Schemata
	Variable Renaming in Schemata
	Conjunctions of Schemata
	Disjunctions of Schemata
	Example
	Example
	Normalisation of Schemata
	Negation of Schemata
	Schemata as Operations
	Schemata as Operations
	Example
	Example
	Schemata as Operations
	The $Delta $ Operator
	The $Xi $ Operator
	The Operators $Delta $ and $Xi $: Example
	Example
	Example
	Quantifying Variables in Schemata
	Composition of Operation Schemata
	Composition: General form
	Example

