Formal Specification and Verification of Software

Steam Boiler Control
An Example in ASM Formalisation

Bernhard Beckert

97

UNIVERSITAT KOBLENZ-LANDAU

B. Beckert: Formal Specification and Verification of Software — p.1

Steam Boller Control: Scenario

System Components

a
z & steam boller
4\ & water level measuring device
\ & four pumps
\ w/l k,,
& four pump controlers
_W . i . .
min & steam quantity measuring device
@ /s, & valve for emptying the boiler
VvV
pl/.../p4
Koy !l Ky

B. Beckert: Formal Specification and Verification of Software — p.2

Steam Boller Control: Scenario

Physical constants

Wmin MiNnimal water level

a
Z Wmae Maximal water level
4 [water amount per pump
\
\ Amez ~ Maximal quantity of
\ ~w/ kW " :
steam exiting the boiler
”Wmin :
Op error in the value of |
@ /5 04 error in steam
\Y
pl/.../p4 measurement
Kool ol Koy

B. Beckert: Formal Specification and Verification of Software — p.3

Steam Boller Control: Scenario

Measured values

w water level
a
, d amount of steam exiting
the boller
4\
\ ky(i) pump iworks/broken
\ “w/ k
W .
kuw water level measuring
Y min device works/broken
@ I3 k; steam amount measuring
y .
ol/.. ./ ph device works/broken
Koo/ 1 Koy

B. Beckert: Formal Specification and Verification of Software — p.4

Steam Boller Control: Scenario

Control values

a
Z p(i) pump 1 on/off
4\ v valve open/closed
\ a boiler on/off
\ w/l k,,
W Z state
S min
Init/norm/broken/stop
@ |/ 6p
VvV
pl/.../p4
Koy !l Ky

B. Beckert: Formal Specification and Verification of Software - p.5

Steam Boiler with ASMs

Restrictions

& Real-time aspects not modelled

& Communication between devices not modelled

B. Beckert: Formal Specification and Verification of Software — p.6

Steam Boiler with ASMs

Restrictions

& Real-time aspects not modelled

& Communication between devices not modelled

Measured values

Modelled as functions that are changed externally

Control values

Modelled as functions that are read externally

B. Beckert: Formal Specification and Verification of Software — p.6

Steam Boiler with ASMs: Two Versions

First version
The possibility that devices are broken is not modelled

States: wnit, normal, stop

Second version
The possibility that devices are broken is included in the mo del

Additional state: broken

B. Beckert: Formal Specification and Verification of Software — p.7

First Version: Strategy for Filling

Additional constant w

Optimal water level

Strategy
\
Werns } stop
> pumps off
\
wopt
> 1 pump on)
Wopt — [
$ > 2 pumps on
Wopt — 20
> 3 pumps on “)
Wopt — 3l
/
> 4 pumps on
Wmin
} stop
/

B. Beckert: Formal Specification and Verification of Software — p.8

First Version: Vocabulary

Universes
state = {init, norm, stop}
openClosed = {open, closed}
water = N
PUMPS = {1,2,3,4}
on Off = {on,off }

B. Beckert: Formal Specification and Verification of Software — p.9

First Version: Vocabulary

Universes
state = {init, norm, stop}
openClosed = {open, closed}
water = N
PUMPS = {1,2,3,4}
on Off = {on,off }

Note

These are unary boolean functions; they define a type/class

B. Beckert: Formal Specification and Verification of Software — p.9

First Version: Vocabulary

Dynamic functions

p: pumps — onOff
(o — openClosed
a: — onOff
Z: — State

External functions

w : — water
d : — water

Static functions

+, —, % : NXxN-—=N
<, < N x N — Boole
Wimax y Wmin, Wopt, l, Amaz — N

controling the pumps
controling the steam

valve
controling the boiler
boiler state
water level

steam exiting boiler

arithmetic
ordering
physical constants

B. Beckert: Formal Specification and Verification of Software — p.10

Initial State

&
|

off

z = 1t

B. Beckert: Formal Specification and Verification of Software — p.11

Rule Initialisation

if =(z = init) then

skip
else
if 0 < dthen
Z .= stop
else if w < Wpin + dimag then
par
v — closed
pi) = on ({(A=1.4)
endpar
else if w4, < w then
par
v = open
p(i) = off (1A=1.4)
endpar

else
par
Z = norm
v = closed
a = on
p(i) = off (1=1..4)
endpar
endif endif endif
endif

B. Beckert: Formal Specification and Verification of Software — p.12

Rule Normal

if =(z = norm) then

skip
else
If Wae < WV W < Woyn then
par
a = off
z = Stop
endpar
else
par
if w < Wopt then p(1) := on else p(1) := off endif

if w < wyp — 1 then p(2) := on else p(2) := off endif
if w < weyp — (2x1)then p(3) := on else p(3) := off endif
if w < weyy — (3x1)then p(4) := on else p(4) := off endif
endpar
endif
endif

B. Beckert: Formal Specification and Verification of Software - p.13

Rule Control

par
Initialisation
Normal
endpar

B. Beckert: Formal Specification and Verification of Software — p.14

Second Version: Vocabulary

Universes
state = {init, norm, broken, stop}
openClosed = {open, closed}
water = N
PUMPS = {1,2,3,4}
onOff = {on,off }
worksBroken = {works, broken}

B. Beckert: Formal Specification and Verification of Software — p.15

Second Version: Vocabulary

Dynamic functions

p : pumps — onOff controling the pumps
U: — openClosed controling steam valve
a: — onOff controling the boller
Z: — state boiler state
Smin s Smaz - — water estimated water level
ny: — pumps number of active pumps

External functions

w: — water water level

d: — water steam exiting boiler
ky : pumps — worksBroken pump works/broken
ky : — worksBroken water level device

kj: — worksBroken steam amount device

B. Beckert: Formal Specification and Verification of Software — p.16

Second Version: Vocabulary

Static functions

+, —, %, min : NXxN-—N arithmetic
<, < N x N — Boole ordering
Wonaz s Womin L — N physical constants
Armaz,0p, 04 — N physical constants
optPumps : water X water — pumps optimal pump
number
num Working : N x worksBroken 4 — N number of

working pumps

controlPumps : pumps % x worksBroken * — onOff control for
each pump

B. Beckert: Formal Specification and Verification of Software — p.17

Second Version: Vocabulary

Static function optPumps (encodes the strategy)

optPumps(wq,w,) = optimal number of pumps for
water level between wq and w»

B. Beckert: Formal Specification and Verification of Software — p.18

Second Version: Vocabulary

Static function optPumps (encodes the strategy)

optPumps(wq,w,) = optimal number of pumps for
water level between wq and w»

Static function num Working

numWorking(i,ky, ka, k3, ka) = #{j | j <iNk; = works}

B. Beckert: Formal Specification and Verification of Software — p.18

Second Version: Vocabulary

Static function optPumps (encodes the strategy)

optPumps(wq,w,) = optimal number of pumps for
water level between wq and w»

Static function num Working
numWorking(i,ky, ka, k3, ka) = #{j | j <iNk; = works}

Static function controlPumps
controlPumps(i, nopt, k1, ko, k3, kg) =

on if numWorking(i —1,kq1,ko, ks, kg) < nopt
off otherwise

B. Beckert: Formal Specification and Verification of Software — p.18

Rule Initialisation

if =(z = init) then
skip
else
if 0 <dVky, = broken
Vk; = broken then

Z .= stop
else if W < Wyip + dmag then
par
v — closed
p(i) = on ({(A=1.4)
endpar
else if w4 < w then
par
v = open
p(i) = off (1A=1.4)
endpar

else
par
Z = norm
v — closed
Smin — W
Smaz — W
ny = 0
p(i) = off (=1.4)
endpar
endif endif endif
endif

B. Beckert: Formal Specification and Verification of Software — p.19

Rule NormBroken

if =(z = norm V z = broken) then

skip
else

if k,, = works then

let min = w, mar = w, z,; = norm in ControlPumps endlet

else if k; = works then

MAaT = Spag — A + My -1+ 05+ 1y - 0y,

Zya = broken
in ControlPumps endlet

else
par
z =
a =
endpar
endif endif
endif

stop
off

B. Beckert: Formal Specification and Verification of Software — p.20

Rule ControlPumps

If min < Wpnin V Wnaee < max then

par

z =

a

endpar
else

let 11,y = optPumps(min, max) in

par
p(i)
Mp
Smin
Smaaz
z
endpar
endlet
endif

stop
off

controlPumps(i, nopt, kp(1), ..., ky(4)) (G =1..4)
min(7,p¢, num Working(4,ky(1), ..., ky(4)))

main
max

Zyal

B. Beckert: Formal Specification and Verification of Software - p.21

Rule Control

par
Initialisation
NormBroken
endpar

B. Beckert: Formal Specification and Verification of Software — p.22

Alternative Solution: Vocabulary

Universes
state = {init, norm, broken, stop }
openClosed = {open, closed}
water = N
pumps = {1,2,3,4}
onOff = {on,off }
worksBroken = {works, broken}
waitCompute = {wait, compute}

B. Beckert: Formal Specification and Verification of Software — p.23

Alternative Solution: Vocabulary

Additional dynamic functions

1: — pumps current pump
f : — waitCompute next cycle

Meaning of function f

f = compute: Control the pumps

f = wait: Measurement

B. Beckert: Formal Specification and Verification of Software — p.24

Alternative: Rule Initialisation

if =(z = init) then par
skip v = open
else p(i) = off (1=1..4)
if 0 <dVky = broken f = wait
Vk; = broken then endpar
Z := stop else
else if w < Win + dmaz then par
par Z = norm
v = closed f = wait
p(i) = on (1I=1..4) v = closed
f = wait Siin = W
endpar Smazr = W
else if w,q: < w then ny = 0
p(i) = off G=1.4)
endpar
endif endif endif endif

B. Beckert: Formal Specification and Verification of Software — p.25

Alternative: Rule NormBroken (1)

if =((z=normV z = broken) N\ f = wait) then

skip
else
if k,;, = works then
par
Smin — W
Smaz — W
z = norm
f = compute
1 = 1
ny = 0
endpar

B. Beckert: Formal Specification and Verification of Software — p.26

Alternative: Rule NormBroken (2)

else if k; = works then

par
Smin

Smam

endpar
endif endif
endif

broken

compute
1

0

stop

Smin —d+My- 1 —05—1y-0p

B. Beckert: Formal Specification and Verification of Software — p.27

Alternative: Rule ControlPumps (1)

if =((z=normV z = broken) \ f = compute) then

skip
else
It Syin < Wmin VY Wmazr < Smaz then
par
z = stop
a = off
endpar

B. Beckert: Formal Specification and Verification of Software — p.28

Alternative: Rule ControlPumps (2)

else
par

if n, < optPumps(Smin s Smaz) N\ kp(2) = works then

par
p(i) =
n, =
endpar
else
p(i) == off
endif
if 1 < 4 then
1:=1+1
else
f = wait
endif
endpar
endif

on

np+1

B. Beckert: Formal Specification and Verification of Software — p.29

Alternative: Rule Control

par
Initialisation
NormBroken
ControlPumps
endpar

B. Beckert: Formal Specification and Verification of Software — p.30

	
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler Control: Scenario
	Steam Boiler with ASMs
	Steam Boiler with ASMs: Two Versions
	First Version: Strategy for Filling
	First Version: Vocabulary
	First Version: Vocabulary
	Initial State
	Rule 	extit {Initialisation}
	Rule 	extit {Normal}
	Rule 	extit {Control}
	Second Version: Vocabulary
	Second Version: Vocabulary
	Second Version: Vocabulary
	Second Version: Vocabulary
	Rule 	extit {Initialisation}
	Rule 	extit {NormBroken}
	Rule 	extit {ControlPumps}
	Rule 	extit {Control}
	Alternative Solution: Vocabulary
	Alternative Solution: Vocabulary
	Alternative: Rule 	extit {Initialisation}
	Alternative: Rule 	extit {NormBroken} (1)
	Alternative: Rule 	extit {NormBroken} (2)
	Alternative: Rule 	extit {ControlPumps} (1)
	Alternative: Rule 	extit {ControlPumps} (2)
	Alternative: Rule 	extit {Control}

