
Formal Specification of Software

Bernhard Beckert

Adaptation of slides by
Wolfgang Ahrendt

Chalmers University, Gothenburg, Sweden

Formal Specification of Software: 1 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification of Software: 2 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification of Software: 2 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

But what do we mean by state?

Formal Specification of Software: 2 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the overall state

But what do we mean by state?

Formal Specification of Software: 2 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the locally visible part of the overall state

But what do we mean by state?

Formal Specification of Software: 2 / 36

Unit Specifications

in the object-oriented setting:

The units to be specified are interfaces, classes, and their methods.

We first focus on specifying methods.

Methods are specified by potentially referring to:

the result value,

the initial values of formal parameters,

the locally visible part of the overall state

But what do we mean by state?

Formal Specification of Software: 2 / 36

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification of Software: 3 / 36

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification of Software: 3 / 36

Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation, described in terms of the programmer’s model.

An object oriented state consists of:

the set C of all loaded classes

the values of the static fields of classes in C
the set O of references to all created objects

the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.

Formal Specification of Software: 3 / 36

Prerequisite: Visible State

Like implementations, specifications can only refer to the locally visible
part of the state (e.g., not to private fields of other classes).

Formal Specification of Software: 4 / 36

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification of Software: 5 / 36

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification of Software: 5 / 36

Prerequisite: Visible State

In our context, we stick to the following principle:

Same Visible State for Specifications and Implementations:

In some local context, specifications and implementations can access the
same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Thus, specifications talk only about those parts of the state which are
accessible by:

respecting Java’s visibility rules (public, protected, private),

following (visible) references, starting from local fields.

Formal Specification of Software: 5 / 36

Purely Functional Specification

A purely functional specification of a (non-void) method talks

only about

the result of a call
the initial value of input parameters

but not about

(any part of) the state

examples:

interface/class: method:
Math static int abs(int a)
Math static double sqrt(double a)

Formal Specification of Software: 6 / 36

Purely Functional Specification

A purely functional specification of a (non-void) method talks

only about

the result of a call
the initial value of input parameters

but not about

(any part of) the state

examples:

interface/class: method:
Math static int abs(int a)
Math static double sqrt(double a)

Formal Specification of Software: 6 / 36

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification of Software: 7 / 36

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification of Software: 7 / 36

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification of Software: 7 / 36

Purely Functional Specification: Math::abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e. a redundant part of it.

Red and Blue are candidates for formalisation.

Formal Specification of Software: 7 / 36

Going a bit more formal

static int abs(int a)

Informal spec:
If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Semi formal:

Under the precondition ‘a ∈ [0...2147483647]’,
abs ensures the postcondition ‘result = a’.

Under the precondition ‘a ∈ [−2147483648...− 1]’,
abs ensures the postcondition ‘result = −a’.

Formal Specification of Software: 8 / 36

Going a bit more formal

static int abs(int a)

Informal spec:
If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Semi formal:

Under the precondition ‘a ∈ [0...2147483647]’,
abs ensures the postcondition ‘result = a’.

Under the precondition ‘a ∈ [−2147483648...− 1]’,
abs ensures the postcondition ‘result = −a’.

Formal Specification of Software: 8 / 36

Going a bit more formal

static int abs(int a)

Redundant informal spec:
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Semi formal:

Under the precondition ‘a = −2147483648’,
abs ensures the postcondition ‘result = −2147483648’.

Or simply:1

abs(−2147483648) = −2147483648

1But be careful when using a method call in a formula, see below.
Formal Specification of Software: 9 / 36

Going a bit more formal

static int abs(int a)

Redundant informal spec:
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Semi formal:

Under the precondition ‘a = −2147483648’,
abs ensures the postcondition ‘result = −2147483648’.

Or simply:1

abs(−2147483648) = −2147483648

1But be careful when using a method call in a formula, see below.
Formal Specification of Software: 9 / 36

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification of Software: 10 / 36

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification of Software: 10 / 36

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification of Software: 10 / 36

State Aware Specification

A state aware specification of a (void or non-void) method talks about

the result of a call (if non-void)

the initial value of input parameters

two states:

the ‘pre-state’ of the method call
the ‘post-state’ of the method call

examples:

interface/class: method:
List Object set(int index, Object element)
Collections static void sort(List list)

Formal Specification of Software: 10 / 36

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification of Software: 11 / 36

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification of Software: 11 / 36

State Aware Specification: List::set(i,e)

from the Java API of List::set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
It talks about the state, in particular about the state change.

Formal Specification of Software: 11 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification of Software: 12 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification of Software: 12 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

element = ‘get(index) evaluated in the post-state’

Does this capture the meaning of the word ‘replace’?

Formal Specification of Software: 12 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postconditions:

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification of Software: 13 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postconditions:

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification of Software: 13 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position.

Semi formal:
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification of Software: 14 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position.

Semi formal:
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and

element = ‘get(index) evaluated in the post-state’, and

for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Formal Specification of Software: 14 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification of Software: 15 / 36

Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification of Software: 15 / 36

Altogether:

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

result = ‘get(index) evaluated in the pre-state’, and
element = ‘get(index) evaluated in the post-state’, and
for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’

Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.

Formal Specification of Software: 16 / 36

Reflection

We identify elements of a framework for Formal Specification

pairs of

preconditions
corresponding postconditions

a language to express these conditions, capturing:

relations, equality, logical connectives
quantification

constructs to refer to:

values in the new and in the old state
the throwing of exceptions

To identify one more element, we consider another example.

Formal Specification of Software: 17 / 36

Reflection

We identify elements of a framework for Formal Specification

pairs of

preconditions
corresponding postconditions

a language to express these conditions, capturing:

relations, equality, logical connectives
quantification

constructs to refer to:

values in the new and in the old state
the throwing of exceptions

To identify one more element, we consider another example.

Formal Specification of Software: 17 / 36

Consider Class SortedIntegers

public c la s s SortedIntegers {

private int arr[];
private int capacity , size = 0;

public SortedIntegers(int capacity) {
th i s .capacity = capacity;
th i s .arr = new int [capacity];

}

public void add(int elem) { /*...*/ }

public boolean remove(int elem) { /*...*/ }

public int max() { /*...*/ }
}

Which methods have purely functional / state aware specifications?

Formal Specification of Software: 19 / 36

Consider Class SortedIntegers

public c la s s SortedIntegers {

private int arr[];
private int capacity , size = 0;

public SortedIntegers(int capacity) {
th i s .capacity = capacity;
th i s .arr = new int [capacity];

}

public void add(int elem) { /*...*/ }

public boolean remove(int elem) { /*...*/ }

public int max() { /*...*/ }
}

Which methods have purely functional / state aware specifications?

Formal Specification of Software: 19 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification of Software: 20 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification of Software: 20 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of the elements in the array arr.

But that is not what we wanted.

max() should return the maximum of the elements which were already
added, and not removed thereafter.

Formal Specification of Software: 20 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of those elements in the array arr which
were already added, and not removed thereafter.

How can we state this without referring to the history of the object?

We can use the fact that the integers are (supposed to be) sorted.

Formal Specification of Software: 21 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of those elements in the array arr which
were already added, and not removed thereafter.

How can we state this without referring to the history of the object?

We can use the fact that the integers are (supposed to be) sorted.

Formal Specification of Software: 21 / 36

Specifying SortedIntegers::max()

Specification of int max()

max() returns the maximum of those elements in the array arr which
were already added, and not removed thereafter.

How can we state this without referring to the history of the object?

We can use the fact that the integers are (supposed to be) sorted.

Formal Specification of Software: 21 / 36

Specifying SortedIntegers::max()

Specification of int max() now much simpler

max() returns arr(size-1).

Sufficient if we assume sortedness.

Questions:

A) how to express the sortedness property?

B) how to specify that an instance of SortedIntegers always has this
property?

Formal Specification of Software: 22 / 36

Specifying SortedIntegers::max()

Specification of int max() now much simpler

max() returns arr(size-1).

Sufficient if we assume sortedness.

Questions:

A) how to express the sortedness property?

B) how to specify that an instance of SortedIntegers always has this
property?

Formal Specification of Software: 22 / 36

Specifying SortedIntegers::max()

Specification of int max() now much simpler

max() returns arr(size-1).

Sufficient if we assume sortedness.

Questions:

A) how to express the sortedness property?

B) how to specify that an instance of SortedIntegers always has this
property?

Formal Specification of Software: 22 / 36

A) Expressing Sortedness

A SortedIntegers object is sorted if:

for all i ∈ [0...size()− 2]: arr(i) ≤ arr(i+1)

Below, we abbreviate this condition by ‘SORT ED’.

Note:
Even SortedIntegers objects with with size() ≤ 1 satisfy SORT ED.

Formal Specification of Software: 23 / 36

A) Expressing Sortedness

A SortedIntegers object is sorted if:

for all i ∈ [0...size()− 2]: arr(i) ≤ arr(i+1)

Below, we abbreviate this condition by ‘SORT ED’.

Note:
Even SortedIntegers objects with with size() ≤ 1 satisfy SORT ED.

Formal Specification of Software: 23 / 36

A) Expressing Sortedness

A SortedIntegers object is sorted if:

for all i ∈ [0...size()− 2]: arr(i) ≤ arr(i+1)

Below, we abbreviate this condition by ‘SORT ED’.

Note:
Even SortedIntegers objects with with size() ≤ 1 satisfy SORT ED.

Formal Specification of Software: 23 / 36

B) Specifying Sortedness

How to specify that sortedness is a property of a SortedIntegers
object at any time?

State that SORT ED is invariant w.r.t. actions on SortedIntegers.

i.e., SORT ED is:

established by all constructors

maintained by all methods

Formal Specification of Software: 24 / 36

B) Specifying Sortedness

How to specify that sortedness is a property of a SortedIntegers
object at any time?

State that SORT ED is invariant w.r.t. actions on SortedIntegers.

i.e., SORT ED is:

established by all constructors

maintained by all methods

Formal Specification of Software: 24 / 36

B) Specifying Sortedness

How to specify that sortedness is a property of a SortedIntegers
object at any time?

State that SORT ED is invariant w.r.t. actions on SortedIntegers.

i.e., SORT ED is:

established by all constructors

maintained by all methods

Formal Specification of Software: 24 / 36

B) Specifying Sortedness

add SORT ED to

postcondition of all constructors

precondition and postcondition of all methods

Problem: This way,

invariant conditions bloat the specification,

invariant conditions are difficult to maintain.

Formal Specification of Software: 25 / 36

B) Specifying Sortedness

add SORT ED to

postcondition of all constructors

precondition and postcondition of all methods

Problem: This way,

invariant conditions bloat the specification,

invariant conditions are difficult to maintain.

Formal Specification of Software: 25 / 36

Solution: Class Invariants

Invariant conditions belong to the object, not to the actions on object.

Attach invariant conditions to the class, not to methods/constructors.

We call these conditions ‘class invariants’.

Constructors/methods of a class are implicitly (but firmly!) obliged to
establish/maintain invariant conditions of their class.

Formal Specification of Software: 26 / 36

Solution: Class Invariants

Invariant conditions belong to the object, not to the actions on object.

Attach invariant conditions to the class, not to methods/constructors.

We call these conditions ‘class invariants’.

Constructors/methods of a class are implicitly (but firmly!) obliged to
establish/maintain invariant conditions of their class.

Formal Specification of Software: 26 / 36

Solution: Class Invariants

Invariant conditions belong to the object, not to the actions on object.

Attach invariant conditions to the class, not to methods/constructors.

We call these conditions ‘class invariants’.

Constructors/methods of a class are implicitly (but firmly!) obliged to
establish/maintain invariant conditions of their class.

Formal Specification of Software: 26 / 36

Specification Conditions

in summary: three types of conditions in specifications

preconditions of methods

postconditions of methods and constructors

class invariants2

2not to be confused with loop invariants, see last part of course
Formal Specification of Software: 27 / 36

Formal Language for Conditions

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

Java

First-Order Logic (FOL)

We first introduce First-Order Logic, and JML afterwards.

Formal Specification of Software: 28 / 36

Formal Language for Conditions

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

Java

First-Order Logic (FOL)

We first introduce First-Order Logic, and JML afterwards.

Formal Specification of Software: 28 / 36

First-Order Logic

Signature

A first-order signature Σ consists of

a set TΣ of types

a set FΣ of function symbols, each with fixed typing

a set PΣ of predicate symbols, each with fixed typing

a typing αΣ

The typing αΣ assigns

to each function and predicate symbol:

its number of arguments (≥ 0)
its argument types

to each function symbol its result type.

We assume set V of variables (V ∩ (FΣ ∪ PΣ) = ∅), each having a
unique type.

Formal Specification of Software: 29 / 36

First-Order Logic

Signature

A first-order signature Σ consists of

a set TΣ of types

a set FΣ of function symbols, each with fixed typing

a set PΣ of predicate symbols, each with fixed typing

a typing αΣ

The typing αΣ assigns

to each function and predicate symbol:

its number of arguments (≥ 0)
its argument types

to each function symbol its result type.

We assume set V of variables (V ∩ (FΣ ∪ PΣ) = ∅), each having a
unique type.

Formal Specification of Software: 29 / 36

First-Order Terms

terms are defined recursively:

Terms

A first-order term of type τ ∈ TΣ

is either a variable of type τ , or

has the form f (t1, . . . , tn),
where f ∈ FΣ has result type τ , and each ti is term of the correct
type, following the typing αΣ of f .

Formal Specification of Software: 30 / 36

Atomic Formulae

Logical Atoms

A logical atom has either of the forms

true

false

t1 = tn (“equality”)

p(t1, . . . , tn) (“predicate”),
where p ∈ PΣ, and each ti is term of the correct type, following the
typing αΣ of p.

Formal Specification of Software: 31 / 36

General Formulae

first-order formulae are defined recursively:

Formulae

each atomic formula is a formula

if φ and ψ are formulae, and x is a variable, then the following are
also formulae:

¬φ (“not φ”)
φ ∧ ψ (“φ and ψ”)
φ ∨ ψ (“φ or ψ”)
φ→ ψ (“φ implies ψ”)
φ↔ ψ (“φ is equivalent to ψ”)
∀ t x . φ (“for all x of type t holds φ”)
∃ t x . φ (“there exists an x of type t such that φ”)

Formal Specification of Software: 32 / 36

In a real Logic Course

... we now would rigorously define:

validity of formulae

provability of formulae (in various calculi)

⇒ see course ‘Logic in Computer Science’

In our course, we stick to the intuitive meaning of formulae.

But we mention ‘models’.

Formal Specification of Software: 33 / 36

Models vs. States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a formula is either valid or not valid.

Tautologies

A formula is a tautology if it is valid in all models.

In the context of formal specification of imperative programs:
states take over the role of models.

Formal Specification of Software: 34 / 36

Models vs. States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a formula is either valid or not valid.

Tautologies

A formula is a tautology if it is valid in all models.

In the context of formal specification of imperative programs:
states take over the role of models.

Formal Specification of Software: 34 / 36

Models vs. States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a formula is either valid or not valid.

Tautologies

A formula is a tautology if it is valid in all models.

In the context of formal specification of imperative programs:
states take over the role of models.

Formal Specification of Software: 34 / 36

Models vs. States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a formula is either valid or not valid.

Tautologies

A formula is a tautology if it is valid in all models.

In the context of formal specification of imperative programs:
states3 take over the role of models.

3together with input values and results, and possibly paired with an old states
Formal Specification of Software: 34 / 36

Good to Remember

useful tautologies: whiteboard

Formal Specification of Software: 35 / 36

Next Lecture

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

First-Order Logic (FOL)

Java

Formal Specification of Software: 36 / 36

	Unit Specification
	First-Order Logic

