Introduction to Artificial Intelligence

Introduction

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Summer Term 2003

B. Beckert: Einführrung in die KI / KI für IM - p.1

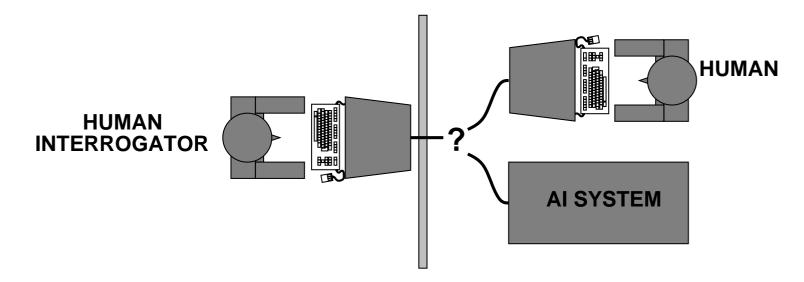
"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem sol- ving, learning" (Bellman, 1978)	"The study of mental faculties through the use of computatio- nal models" (Charniak and McDermott, 1985)
"The study of how to make com- puters do things at which, at the moment, people are better" (Rich and Knight, 1991)	"The branch of computer science that is concerned with the automation of intelligent behavior" (Luger and Stubblefield, 1993)

Views of AI fall into four categories

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Most AI researchers in Computer Science go for acting rationally

Acting humanly: The Turing test


Turing (1950): Computing machinery and intelligence

"Can machines think?"

"Can machines behave intelligently?"

Operational test for intelligent behavior: the Imitation Game

Classical Turing test

Acting humanly: The Turing test

Total Turing test

Includes physical interactions with environment

- speech recognition
- computer vision
- robotics

Problem of Turing test

Turing test is

- not reproducible
- not constructive
- not amenable to mathematical analysis

Turing's predictions

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge representation, reasoning, language understanding, learning

Turing's paper online available at

http://www.abelard.org/turpap/turpap.htm

The Turing Test and Subfields of AI

- Knowledge Representation
- Searching
- Automated Reasoning (Deduction)
- Machine Learning
- Natural Language Processing
- Computer Vision
- Sobotics

Loebner Prize

A restricted Turing test, held annually in the form of a competition

The Loebner Prize is awarded annually for the computer program that best emulates natural human behavior. During the contest, a panel of independent judges attempts to determine whether the responses on a computer terminal are being produced by a computer or a person, along the lines of the Turing Test. The designers of the best program each year win a cash award and a medal. If a program passes the test in all its particulars, then the entire fund will be paid to the program's designer and the fund abolished.

http://www.loebner.net/Prizef/loebner-prize.html

Robot World Cup Initiative (RoboCup)

Uses playing a soccer game as a standard problem, where a wide range of technologies can be integrated and examined. Carried out for various classes of robots and software agents.

Goal: By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champions.

http://www.robocup.org

Thinking humanly: Cognitive Science

Cognitive revolution (1960s)

Information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain ...

- What level of abstraction?
- "Knowledge" or "circuits"?

and Validation

- Predicting and testing behavior of human subjects (top-down)
 - \Rightarrow Cognitive Science
- Direct identification from neurological data (bottom-up)
 - \Rightarrow Cognitive Neuroscience

Second-order / Epistemological knowledge

"We know what we know and what we don't know"

Normative (prescriptive) rather than descriptive

Aristotle: What are correct arguments / thought processes?

Several Greek schools developed various forms of logic:

- notation
- rules of derivation (syllogisms)

Direct line through mathematics and philosophy to modern AI

Problems

- Not all intelligent behavior is mediated by logical deliberation
- What is the purpose of thinking? What thoughts should I have?
- What is the logic of human reasoning?

Rational behavior

Doing the right thing

The right thing

That which is expected to maximize goal achievement, given the available information

(Doesn't necessarily involve thinking—e.g., blinking reflex)

Aristotle: Nicomachean Ethics

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

A thoroughly pragmatic point of view

- In practical terms, so far the most fruitful road taken by AI
- Completely misses the perhaps most central aspect of being human:

Consciousness

Philosophical / theological questions

Can machines have

- minds?
- souls?
- consciousness?

Do sufficiently intelligent machines (automatically) have

- minds?
- souls?
- consciousness?

Two theories

Dualism:Body and soul/mind are separate things

Materialism: There is no immaterial soul/mind (J. R. Searle: "Brains cause minds")

Agent

- An entity that perceives and acts
- A useful way to think about building AI programs is in terms of designing (and implementing) rational agents

Abstract definition

An agent is a function from percept histories to actions:

$$f:\mathcal{P}^*\to\mathcal{A}$$

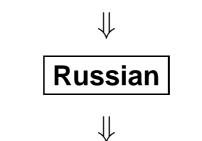
Optimal agent

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Caveat

Computational limitations make perfect rationality unachievable

 \Rightarrow Design best agent for given machine resources


AI: Historical Roots

Philosophy	logic, methods of reasoning mind as physical system foundations of learning, language, rationality
Mathematics	formal representation and proof algorithms computation, (un)decidability, (in)tractability probability
Psychology	adaptation phenomena of perception and motor control experimental techniques (psychophysics, etc.)
Linguistics	knowledge representation grammar
Neuroscience	physical substrate for mental activity
Control theory	homeostatic systems, stability simple optimal agent designs

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's Computing Machinery and Intelligence
- 1952–69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- **1956** Dartmouth meeting: "Artificial Intelligence" adopted
- 1963 Robinson's complete algorithm for logical reasoning
- 1966–74 AI discovers computational complexity Neural network research almost disappears
- 1969–79 Early development of knowledge-based systems
- **1980–88** Expert systems industry booms
- 1988–93 Expert systems industry busts: "Al Winter"
- 1985–95 Neural networks return to popularity
- 1988– Probabilistic methods; enormous increase in technical depth "Nouvelle AI": ALife, GAs, soft computing
- 1995– Agents is the new buzzword

An early effort in Machine Translation

"The spirit is willing, but the flesh is weak"

"The vodka is good, but the meat is rotten"

Which of the following can be done by an AI program/robot at present?

- Play a decent game of table tennis
- Drive along a curving mountain road
- Drive in the center of a big city
- Play a decent game of Bridge or Go
- **Discover** and prove a new mathematical theorem
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken German in real time

AI programs ...

- Regularly win a chess game against grandmasters http://www.lkessler.com/cclinks.shtml
- Roughly translate a text from one language into another http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html
- Proved a mathematical problem that was open for 60 years http://www-unix.mcs.anl.gov/~{}mccune/papers/robbins/

- Reflective architecture for agents (epistemological reasoning)
- Compilation from deliberative reasoning to reflex system (e.g., reinforcement learning)
- Make use of massive parallelism in an effective way
- Bridge the gap between human and rational AI

Formal software and hardware verification (automated reasoning)

Intel spends up to 90 % of budget in processor development for verification

The Semantic Web (knowledge representation, learning)

From keyword-based search to content-based search

Data mining, automatic discovery of structures From data to information, *Discovery Science* Probabilistic methods, learning, fuzzy sets

Autonomous agents

- cleaning robots
- military applications
- etc.

Recognition of speech, gestures, facial expression

- handicapped people
- cars/planes
- surveillance & security

Automated translation from/to natural language

Summary

- Early success, exaggerated claims, "roller coaster" ride
- Spin-off to mainstream CS
 (e.g., search, knowledge representation, complexity theory)
- Unresolved dichotomy "soft"/human-oriented vs. "hard"/rational AI
- Hard AI gained much in depth and rigour in recent years
- Many impressive tasks can be achieved with AI technology today
- Technological developments
 - WWW
 - computerization of all devices (ubiquitous computing)
 - data explosion

create highly promising application areas for AI

We can only see a short distance ahead, but we can see that much remains to be done.

System consists of a room with

- a human who does not understand Chinese
- a rule book written in English
- blank paper to write on

When the human follows the rules in the book, he/she can generate intelligent aswers in Chinese to questions posed in Chinese.

Questions

- Does the human now understand Chinese?
- Does the room understand Chinese?
- Is the room intelligent?