Specification & Formal Analysis of Java Programs
Functional Verification of Java Programs

Prof. Dr. Bernhard Beckert | ADAPT 2010
Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\{\langle p \rangle \phi, [p] \phi\}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives

- Program variables are flexible *constants*: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested
Dynamic Logic Formulas (Simple Version)

<table>
<thead>
<tr>
<th>Definition (Dynamic Logic Formulas (DL Formulas))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each FOL formula is a DL formula</td>
</tr>
<tr>
<td>If (p) is a program and (\phi) a DL formula then ({ \langle p \rangle \phi }) is a DL formula</td>
</tr>
<tr>
<td>DL formulas closed under FOL quantifiers and connectives</td>
</tr>
</tbody>
</table>

- Program variables are flexible *constants*: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested
Example (Well-formed? If yes, under which signature?)

- \(\forall \text{int } y; ((\langle x = 1; \rangle x \cdot y) \leftrightarrow (\langle x = 1 \cdot 1; \rangle x \cdot y)) \)

 Well-formed if FSym\(_{nr}\) contains int \(x \);

- \(\exists \text{int } x; [x = 1;](x \div 1) \)

 Not well-formed, because logical variable occurs in program.

- \(\langle x = 1; \rangle([\text{while (true) {}};] \text{false}) \)

 Well-formed if FSym\(_{nr}\) contains int \(x \); program formulas can be nested.
Example (Well-formed? If yes, under which signature?)

- \(\forall \text{int } y; ((\langle x = 1; \rangle x \div y) \iff (\langle x = 1 \ast 1; \rangle x \div y)) \)

 Well-formed if FSym\(_{nr}\) contains \text{int } x;

- \(\exists \text{int } x; [x = 1;](x \div 1) \)

 Not well-formed, because logical variable occurs in program

- \(\langle x = 1;\rangle([\text{while (true) \{} {};]false) \)

 Well-formed if FSym\(_{nr}\) contains \text{int } x;

 program formulas can be nested
Example (Well-formed? If yes, under which signature?)

<table>
<thead>
<tr>
<th>Formula</th>
<th>Well-formed? Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall \text{int } y; (\langle x = 1; \rangle x \doteq y) \leftrightarrow (\langle x = 1 \times 1; \rangle x \doteq y)$</td>
<td>Well-formed if FSym_{nr} contains $\text{int } x$;</td>
</tr>
<tr>
<td>$\exists \text{int } x; [x = 1;](x \doteq 1)$</td>
<td>Not well-formed, because logical variable occurs in program</td>
</tr>
<tr>
<td>$\langle x = 1; \rangle([\text{while(true)} {};{};\text{false})$</td>
<td>Well-formed if FSym_{nr} contains $\text{int } x$; program formulas can be nested</td>
</tr>
</tbody>
</table>
Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

- $\forall \text{int } y; \ (\langle x = 1; \rangle x \div y) \iff (\langle x = 1 * 1; \rangle x \div y)$
 Well-formed if FSym_{nr} contains $\text{int } x$;

- $\exists \text{int } x; \ [x = 1;] (x \div 1)$
 Not well-formed, because logical variable occurs in program

- $\langle x = 1; \rangle ([\text{while (true) } \{\};] \text{false})$
 Well-formed if FSym_{nr} contains $\text{int } x$;
 program formulas can be nested
Example (Well-formed? If yes, under which signature?)

- \(\forall \text{int } y; ((\langle x = 1; \rangle x \doteq y) \leftrightarrow (\langle x = 1 \ast 1; \rangle x \doteq y)) \)
 - Well-formed if \(\text{FSym}_{nr} \) contains \text{int } x;

- \(\exists \text{int } x; [x = 1;](x \doteq 1) \)
 - Not well-formed, because logical variable occurs in program

- \(\langle x = 1; \rangle([\text{while (true) {}};] \text{false}) \)
 - Well-formed if \(\text{FSym}_{nr} \) contains \text{int } x;
 - program formulas can be nested
Example (Well-formed? If yes, under which signature?)

- $\forall \text{int } y; ((\langle x = 1; \rangle x \doteq y) \leftrightarrow (\langle x = 1*1; \rangle x \doteq y))$

 Well-formed if $\text{FSym} _ nr$ contains $\text{int } x$;

- $\exists \text{int } x; [x = 1;](x \doteq 1)$

 Not well-formed, because logical variable occurs in program

- $\langle x = 1;\rangle([\text{while } (\text{true}) \{ \};]\text{false})$

 Well-formed if $\text{FSym} _ nr$ contains $\text{int } x$;

program formulas can be nested
Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

- \(s, \beta \models \langle p \rangle \phi \) iff \(\rho(p)(s), \beta \models \phi \) and \(\rho(p)(s) \) is defined
 - \(p \) terminates and \(\phi \) is true in the final state after execution

- \(s, \beta \models [p] \phi \) iff \(\rho(p)(s), \beta \models \phi \) whenever \(\rho(p)(s) \) is defined

If \(p \) terminates then \(\phi \) is true in the final state after execution
Program Correctness

Definition (Notions of Correctness)

- If $s, \beta \models \langle p \rangle \phi$ then

 p totally correct (with respect to ϕ) in s, β

- If $s, \beta \models [p] \phi$ then

 p partially correct (with respect to ϕ) in s, β

- Duality $\langle p \rangle \phi$ iff $![p] ! \phi$

 Exercise: justify this with help of semantic definitions

- Implication if $\langle p \rangle \phi$ then $[p] \phi$

 Total correctness implies partial correctness

 - converse is false

 - holds only for deterministic programs
Semantics of Sequents

\[\Gamma = \{\phi_1, \ldots, \phi_n\} \text{ and } \Delta = \{\psi_1, \ldots, \psi_m\} \] sets of program formulas

where all logical variables occur bound

Recall: \(s \models (\Gamma \Rightarrow \Delta) \iff s \models (\phi_1 \land \cdots \land \phi_n) \rightarrow (\psi_1 \mid \cdots \mid \psi_m) \)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent \(\Gamma \Rightarrow \Delta \) over program formulas is \textit{valid} iff

\[s \models (\Gamma \Rightarrow \Delta) \text{ in all states } s \]

Consequence for program variables

Initial value of program variables implicitly “universally quantified”
Semantics of Sequents

$\Gamma = \{\phi_1, \ldots, \phi_n\}$ and $\Delta = \{\psi_1, \ldots, \psi_m\}$ sets of program formulas
where all logical variables occur bound

Recall: $s \models (\Gamma \implies \Delta)$ iff $s \models (\phi_1 \& \cdots \& \phi_n) \rightarrow (\psi_1 | \cdots | \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \implies \Delta$ over program formulas is *valid* iff

$s \models (\Gamma \implies \Delta)$ in *all states* s

Consequence for program variables

Initial value of program variables implicitly “universally quantified”
Initial States

Java initial states

KeY prover “starts” programs in initial states according to Java convention:

- Values of array entries initialized to default values: `int []` to 0, etc.
- Static object initialization
- No objects created

How to restrict validity to set of initial states $S_0 \subseteq S$?

1. Design closed FOL formula Init with
 $$ s \models \text{Init} \iff s \in S_0 $$

2. Use sequent
 $$ \Gamma, \text{Init} \Rightarrow \Delta $$
Operational Semantics of Programs

In labelled transition system $K = (S, \rho)$:

$\rho : \Pi \to (S \to S)$ is operationally semantics of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with $I_s(f)$

$\rho(x=t)(s) = s'$ where s' identical to s except $I_{s'}(x) = \text{val}_s(t)$

Very tedious task to define ρ for Java . . .

\Rightarrow go directly to calculus for program formulas!
Operational Semantics of Programs

In labelled transition system $K = (S, \rho)$:

$\rho : \Pi \rightarrow (S \rightarrow S)$ is operational semantics of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with $\mathcal{I}_s(f)$

$\rho(x = t)(s) = s'$ where s' identical to s except $\mathcal{I}_{s'}(x) = \text{val}_s(t)$

Very tedious task to define ρ for Java . . .

\Rightarrow go directly to calculus for program formulas!
Sequent calculus decomposes top-level operator in formula. What is “top-level” in a sequential program $p; q; r$?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program.
- Values of some variables unknown: symbolic state representation.

Example

Compute the final state after termination of:

```java
int x; int y; x=x+y; y=x-y; x=x-y;
```
Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula. What is “top-level” in a sequential program $p; q; r$?

Symbolic Execution (King, late 60s)

- Follow the *natural control flow* when analysing a program
- Values of some variables unknown: *symbolic state representation*

Example

Compute the final state after termination of

```
int x; int y; x = x + y; y = x - y; x = x - y;
```
Symbolic Execution of Programs
Cont’d

General form of rule conclusions in symbolic execution calculus

\[
\langle \text{stmt}; \text{rest} \rangle \phi, \quad [\text{stmt}; \text{rest}] \phi
\]

- Rules must \textit{symbolically execute} first statement
- Repeated application of rules in a proof corresponds to \textit{symbolic program execution}
Symbolic Execution of Programs Cont’d

Symbolic execution of assignment

\[
\begin{align*}
\text{assign} \quad & \{x/x_{\text{old}}\} \Gamma, \quad x \doteq \{x/x_{\text{old}}\} t \quad \Rightarrow \quad \langle \text{rest} \rangle \phi, \quad \{x/x_{\text{old}}\} \Delta \\
\Gamma \quad & \Rightarrow \quad \langle x = t; \; \text{rest} \rangle \phi, \Delta
\end{align*}
\]

\(x_{\text{old}} \) new program variable that “rescues” old value of \(x \)

Example

Conclusion matching: \(\{x/x\}, \{t/x+y\}, \{\text{rest}/y=x-y; \; x=x-y;\}, \{\phi/(x \doteq y_0 \& y \doteq x_0)\}, \{\Gamma/x \doteq x_0, \; y \doteq y_0\}, \{\Delta/\emptyset\} \)

\[
\begin{align*}
\{x_{\text{old}} \doteq x_0, \; y \doteq y_0, \; x \doteq x_{\text{old}}+y \} \quad & \Rightarrow \quad \langle y=x-y; \; x=x-y;\rangle(x \doteq y_0 \& y \doteq x_0) \\
\{x \doteq x_0, \; y \doteq y_0 \} \quad & \Rightarrow \quad \langle x=x+y; \; y=x-y; \; x=x-y;\rangle(x \doteq y_0 \& y \doteq x_0)
\end{align*}
\]
Symbolic Execution of Programs
Cont’d

Symbolic execution of assignment

\[
\text{assign } \Gamma, x \overset{x/\text{x}_{\text{old}}} \rightarrow t \quad \Rightarrow \quad \langle \text{rest} \rangle \phi, \{x/\text{x}_{\text{old}}\} \Delta
\]

\[
\Gamma \Rightarrow \langle x = t; \text{rest} \rangle \phi, \Delta
\]

\(x_{\text{old}}\) new program variable that “rescues” old value of \(x\)

Example

Conclusion matching: \(\{x/x\}, \{t/x+y\},\)
\(\{\text{rest}/y=x-y; \ x=x-y;\}, \{\phi/(x \overset{\cdot}{=} y_0 \ \& \ y \overset{\cdot}{=} x_0)\},\)
\(\{\Gamma/\overset{\cdot}{x} = x_0, \ y \overset{\cdot}{=} y_0\}, \{\Delta/\emptyset\}\)

\[
\begin{align*}
\overset{\cdot}{x}_{\text{old}} &= x_0, \ y \overset{\cdot}{=} y_0, \ x \overset{\cdot}{=} x_{\text{old}} + y \Rightarrow \langle y=x-y; \ x=x-y; \phi/(x \overset{\cdot}{=} y_0 \ \& \ y \overset{\cdot}{=} x_0)\rangle \\
\overset{\cdot}{x} &= x_0, \ y \overset{\cdot}{=} y_0 \Rightarrow \langle x=x+y; \ y=x-y; \ x=x-y; \phi/(x \overset{\cdot}{=} y_0 \ \& \ y \overset{\cdot}{=} x_0)\rangle
\end{align*}
\]
Partial correctness assertion

If program p is started in a state satisfying Pre and terminates, then its final state satisfies Post.

In Hoare logic: $\{\text{Pre}\} \ p \ \{\text{Post}\}$ (Pre, Post must be FOL)

In DL: $\text{Pre} \rightarrow [p]\text{Post}$ (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

```plaintext
\programVariables {
    int x; int y;
}

\problem {
    (\forall int x0; \forall int y0; ((x=x0 & y=y0) \rightarrow
    \langle x=x+y; y=x-y; x=x-y; \rangle (x=y0 & y=x0)))
}
```
Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates, then its final state satisfies Post

In Hoare logic $\{\text{Pre}\} p \{\text{Post}\}$ (Pre, Post must be FOL)

In DL $\text{Pre} \rightarrow [p]\text{Post}$ (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\begin{verbatim}
\programVariables {
 int x; int y; }

\problem {
 (\forall \text{int } x0; \forall \text{int } y0; ((x=x0 & y=y0) -> \langle x=x+y; y=x-y; x=x-y; \rangle (x=y0 & y=x0)))
}
\end{verbatim}
More Properties

Example

\(\forall T \ y; \ (((\langle p \rangle x \models y) \iff (\langle q \rangle x \models y)) \)

Not valid in general

Programs \(p \) behave \(q \) equivalently on variable \(T \ x \)

Example

\(\exists T \ y; \ (x \models y \rightarrow \langle p \rangle \text{true}) \)

Not valid in general

Program \(p \) terminates in all states where \(x \) has suitable initial value
More Properties

Example

\[\forall \; T \; y; \; ((\langle p \rangle x \triangleright y) \iff (\langle q \rangle x \triangleright y)) \]

Not valid in general

Programs \(p \) behave \(q \) equivalently on variable \(T \; x \)

Example

\[\exists \; T \; y; \; (x \triangleright y \rightarrow \langle p \rangle \text{true}) \]

Not valid in general

Program \(p \) terminates in all states where \(x \) has suitable initial value
More Properties

Example

∀ T y; ((⟨p⟩x ⊨ y) ↔ (⟨q⟩x ⊨ y))
Not valid in general
Programs p behave q equivalently on variable T x

Example

∃ T y; (x ⊨ y → ⟨p⟩true)
Not valid in general
Program p terminates in all states where x has suitable initial value
More Properties

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall T \ y; (((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y)))</td>
</tr>
<tr>
<td>Not valid in general</td>
</tr>
<tr>
<td>Programs (p) behave (q) equivalently on variable (T \ x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists T \ y; (x \doteq y \rightarrow (\langle p \rangle \text{true}))</td>
</tr>
<tr>
<td>Not valid in general</td>
</tr>
<tr>
<td>Program (p) terminates in all states where (x) has suitable initial value</td>
</tr>
</tbody>
</table>
Symbolic Execution of Programs
Cont’d

Symbolic execution of conditional

\[\Gamma, b \models \text{true} \Rightarrow \langle p; \text{rest} \rangle \phi, \Delta \]
\[\Gamma, b \models \text{false} \Rightarrow \langle q; \text{rest} \rangle \phi, \Delta \]

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

unwindLoop

\[\Gamma \Rightarrow \langle \text{if} (b) \{ \ p \ \} \ \text{else} \{ \ q \ \} ; \text{rest} \rangle \phi, \Delta \]
Symbolic Execution of Programs

Cont’d

Symbolic execution of conditional

\[
\Gamma, b \models \text{true} \Rightarrow \langle p; \ \text{rest}\rangle \phi, \Delta \quad \Gamma, b \models \text{false} \Rightarrow \langle q; \ \text{rest}\rangle \phi, \Delta
\]

\[
\Gamma \Rightarrow \langle \text{if} (b) \{ p \} \ \text{else} \{ q \}; \ \text{rest}\rangle \phi, \Delta
\]

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

\[
\text{unwindLoop} \quad \Gamma \Rightarrow \langle \text{if} (b) \{ p; \ \text{while} (b) p\}; \ r\rangle \phi, \Delta
\]

\[
\Gamma \Rightarrow \langle \text{while} (b) \{ p\}; \ r\rangle \phi, \Delta
\]
How to express correctness for any initial value of program variable?

Not allowed: \(\forall T \ i; \langle \ldots i \ldots \rangle \phi \)
(program \(\neq \) logical variable)

Not intended: \(\Rightarrow \langle \ldots i \ldots \rangle \phi \)
(Validity of sequents: quantification over all states)

As previous: \(\forall T \ i_0; \ (i_0 \models i \ \Rightarrow \ \langle \ldots i \ldots \rangle \phi) \)

Solution

Use explicit construct to record values in current state

Update \(\forall T \ i_0; \ (\{i := i_0\}\langle \ldots i \ldots \rangle \phi) \)
Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: $\forall T \ i; \langle \ldots i \ldots \rangle \phi$
(program \neq logical variable)

Not intended: $\Rightarrow \langle \ldots i \ldots \rangle \phi$ (Validity of sequents: quantification over all states)

As previous: $\forall T \ i_0; \ (i_0 \triangleright i \rightarrow \langle \ldots i \ldots \rangle \phi)$

Solution

Use explicit construct to record values in current state

$Update \quad \forall T \ i_0; \ (\{i := i_0\} \langle \ldots i \ldots \rangle \phi)$
Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: \[\forall T \; i; \langle \ldots i \ldots \rangle \phi \] (program \(\neq \) logical variable)

Not intended: \[\Rightarrow \langle \ldots i \ldots \rangle \phi \] (Validity of sequents: quantification over \textit{all} states)

As previous: \[\forall T \; i_0; (i_0 \dot{=} i \rightarrow \langle \ldots i \ldots \rangle \phi) \]

Solution

Use explicit construct to record values in \textit{current} state

\textbf{Update} \[\forall T \; i_0; (\{i := i_0\}\langle \ldots i \ldots \rangle \phi) \]
Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: \(\forall T_{i}; \langle \ldots i \ldots \rangle \phi \)
(program \(\neq \) logical variable)

Not intended: \(\Rightarrow \langle \ldots i \ldots \rangle \phi \) (Validity of sequents: quantification over all states)

As previous: \(\forall T_{i_{0}}; (i_{0} \triangleq i \rightarrow \langle \ldots i \ldots \rangle \phi) \)

Solution

Use explicit construct to record values in current state

Update \(\forall T_{i_{0}}; \{i := i_{0}\} \langle \ldots i \ldots \rangle \phi \)
How to express correctness for any initial value of program variable?

Not allowed: \(\forall T \ i; \langle \ldots \ i \ldots \rangle \phi \) (program \(\neq \) logical variable)

Not intended: \(\Rightarrow \langle \ldots \ i \ldots \rangle \phi \) (Validity of sequents: quantification over all states)

As previous: \(\forall T \ i_0; (i_0 \vdash i \rightarrow \langle \ldots \ i \ldots \rangle \phi) \)

Solution

Use explicit construct to record values in current state

Update \(\forall T \ i_0; (\{i := i_0\}\langle \ldots \ i \ldots \rangle \phi) \)
Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)
If \(v \) is program variable, \(t \) FOL term type-compatible with \(v \), \(t' \) any FOL term, and \(\phi \) any DL formula, then

- \(\{v := t\}t' \) is DL term
- \(\{v := t\}\phi \) is DL formula

Definition (Semantics of Updates)
State \(s \) interprets non-rigid symbols \(f \) with \(\mathcal{I}_s(f) \)
\(\beta \) variable assignment for logical variables in \(t \)

\[\rho(\{v := t\})(s) = s' \] where \(s' \) identical to \(s \) except
\[\mathcal{I}_{s'}(x) = \text{val}_{s,\beta}(t) \]
Explicit State Updates Cont’d

Facts about updates \(\{ v := t \} \)

- Update semantics identical to assignment
- Value of update depends on logical variables in \(t \):
- Updates as “lazy” assignments (no term substitution done)
- Updates are *not assignments*: right-hand side is FOL term
 \(\{ x := n \} \phi \) cannot be turned into assignment (\(n \) logical variable)
 \(\langle x=i++; \phi \rangle \) cannot directly be turned into update
- Updates are *not equations*: change value of non-rigid terms
- KeY simplifies and applies (if possible) updates automatically.
Assignment Rule Using Updates

Symbolic execution of assignment using updates

\[
\text{assign} \quad \frac{\Gamma \Rightarrow \{x := t\} \langle \text{rest} \rangle \phi, \Delta}{\Gamma \Rightarrow \langle x = t; \text{rest} \rangle \phi, \Delta}
\]

- Avoids renaming of program variables
- Works as long as \(t \) has no side effects (ok in simple DL)
- Special cases for \(x = t_1 + t_2 \), etc.

Demo

\text{swap.key}
Example Proof

Example

\texttt{programVariables \{} \texttt{int \ x;} \texttt{\}}

\texttt{problem \{}
\texttt{\exists \texttt{int \ y;}}
\texttt{\{x := y\} \ast \texttt{while \ (x > 0) \{x = x-1;\}\} \rightarrow x=0 \}}

Intuitive Meaning? Satisfiable? Valid?

Demo

term.key

What to do when we \textit{cannot} determine a concrete loop bound?
Example

\texttt{\textbf{Example}}

\begin{verbatim}
\texttt{\textbf{programVariables} { }
 \texttt{int x;}
}
\texttt{\textbf{problem} { }
 \texttt{(exists int y; }
 \texttt{(x := y)\{while (x > 0) {x = x-1;}\} x=0))}
\end{verbatim}

Intuitive Meaning? Satisfiable? Valid?

Demo

term.key

What to do when we \textit{cannot} determine a concrete loop bound?
Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

```java
int x; int y; x=x+y; y=x-y; x=x-y;
```

yields:

```java
{x := x+y} {y := x-y} {x := x-y}
```

Need to compose three sequential state changes into a single one!
Definition (Parallel Update)

A *parallel update* is expression of the form

\[
\{ l_1 := v_1 \parallel \cdots \parallel l_n := v_n \}
\]

where each \(\{ l_i := v_i \} \) is simple update

- All \(v_i \) computed in old state before update is applied
- Updates of all locations \(l_i \) executed simultaneously
- Upon conflict \(l_i = l_j, \ v_i \neq v_j \) later update (\(\max \{ i, j \} \)) wins

Definition (Composition Sequential Updates/Conflict Resolution)

\[
\{ l_1 := r_1 \}\{ l_2 := r_2 \} = \{ l_1 := r_1 \parallel l_2 := \{ l_1 := r_1 \} r_2 \}
\]

\[
\{ l_1 := v_1 \parallel \cdots \parallel l_n := v_n \} x = \left\{ \begin{array}{ll}
 x & \text{if } x \not\in \{ l_1, \ldots, l_n \} \\
 v_k & \text{if } x = l_k, x \not\in \{ l_{k+1}, \ldots, l_n \}
\end{array} \right.
\]
Parallel Updates Cont’d

Definition (Parallel Update)

A *parallel update* is expression of the form
\[\{ l_1 := v_1 \| \cdots \| l_n := v_n \} \]
where each \(\{ l_i := v_i \} \) is simple update
- All \(v_i \) computed in old state before update is applied
- Updates of all locations \(l_i \) executed simultaneously
- Upon conflict \(l_i = l_j, v_i \neq v_j \) later update (\(\max \{ i, j \} \)) wins

Definition (Composition Sequential Updates/Conflict Resolution)

\[\{ l_1 := r_1 \} \{ l_2 := r_2 \} = \{ l_1 := r_1 \| l_2 := \{ l_1 := r_1 \} r_2 \} \]
\[\{ l_1 := v_1 \| \cdots \| l_n := v_n \} x = \begin{cases} x & \text{if } x \notin \{ l_1, \ldots, l_n \} \\ v_k & \text{if } x = l_k, x \notin \{ l_{k+1}, \ldots, l_n \} \end{cases} \]
Parallel Updates Cont’d

Example

\[
\begin{align*}
&\{ \{ x := x+y \} \{ y := x-y \} \} \{ x := x-y \} = \\
&\{ x := x+y \ || \ y := (x+y) - y \} \{ x := x-y \} = \\
&\{ x := x+y \ || \ y := (x+y) - y \ || \ x := (x+y) - ((x+y) - y) \} = \\
&\{ x := x+y \ || \ y := x \ || \ x := y \} = \\
&\{ y := x \ || \ x := y \}
\end{align*}
\]

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation
Parallel Updates Cont’d

Example

\[
\begin{align*}
\{x := x+y \downarrow \downarrow y := x-y\} \{x := x-y\} &= \\
\{x := x+y \downarrow y := (x+y)-y\} \{x := x-y\} &= \\
\{x := x+y \downarrow y := (x+y)-y \downarrow x := (x+y)-(x+y)-y\} &= \\
\{x := x+y \downarrow y := x \downarrow x := y\} &= \\
\{y := x \downarrow x := y\} &=
\end{align*}
\]

KeY automatically deletes overwritten (unnecessary) updates

Demo

\texttt{swap.key}

Parallel updates to store intermediate state of symbolic computation
A Warning

First-order rules that substitute arbitrary terms

\[\exists \text{-right} \quad \frac{\Gamma \Rightarrow [x/t'] \phi, \exists T x; \phi, \Delta}{\Gamma \Rightarrow \exists T x; \phi, \Delta} \]

\[\forall \text{-left} \quad \frac{\Gamma, \forall T x; \phi, [x/t'] \phi \Rightarrow \Delta}{\Gamma, \forall T x; \phi \Rightarrow \Delta} \]

applyEq \[\frac{\Gamma, t \doteq t', [t/t'] \psi \Rightarrow [t/t'] \phi, \Delta}{\Gamma, t \doteq t', \psi \Rightarrow \phi, \Delta} \]

\(t, t' \) must be **rigid**, because all occurrences must have the same value

Example

\[\Gamma, i \doteq 0 \quad \Rightarrow \quad \langle i++ \rangle i \doteq 0 \Rightarrow \Delta \]

\[\Gamma, \forall T x; (x \doteq 0 \quad \Rightarrow \quad \langle i++ \rangle x \doteq 0) \Rightarrow \Delta \]

Logically valid formula would result in unsatisfiable antecedent!

Key prohibits unsound substitutions