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Abstract

In this position paper, we describe ongoing work on re-
using deductive proofs for program correctness when the
verification system itself is modified (including its logic, its
calculus, and its proof construction mechanism).

We build upon a method for reusing proofs when the pro-
gram to be verified is changed, which has been implemented
within the KeY program verification system and is success-
fully applied to reuse correctness proofs for Java programs.

1. Motivation

Proof reuse in program verification is mostly thought of
as a means to more easily construct a proof for the correct-
ness of some program p in cases where a proof for a similar
program p′ (or the same program p with a slightly differ-
ent specification) is already available.

If proofs are used as certificates for the correctness of
programs, however, there is an even more important rea-
son for reuse. One has to be able to reuse proofs in case
the proof system is modified. While changing the program
that is to be verified has only local effects in that only the
proofs for that particular program are invalidated, modify-
ing the verification system globally affects and potentially
invalidates all proofs done so far. Since proofs that serve as
certificates for program correctness need to be maintained
over a longer period, possibly over many years, modifica-
tions to the proof system are to be expected over the life-
time of proofs. Thus, being able to reuse proofs when the
system is modified is an indispensable feature of any pro-
gram verification infrastructure that is put to serious practi-
cal use.

In [5], we have presented a method for reusing correct-
ness proofs when the program changes. That method has
been successfully implemented within the KeY system [7,
1] (see Sect. 2) to reuse correctness proofs for Java pro-
grams. It can handle many different types of changes in

the program to be verified, such as adding/changing/delet-
ing statements, changing (sub-)expressions, changing the
control structure (e.g., by adding an if-statement), changing
the class hierarchy, and overwriting inherited method im-
plementations. It works well in practical everyday use; and
only rarely are old proof attempts reused in a less than opti-
mal way.

In this position paper, we describe ongoing work on the
extension of our method to handle modifications of the ver-
ification environment instead of the programs to be verified.
Possible modifications we consider include changes to the
program logic used in the system, changes to the rules of the
verification calculus, changes to the language used to repre-
sent these rules, and changes to the deductive engine of the
proof system.

Note that we are not formalizing our method in a meta-
logic, as it’s not helpful to achieve a working solution. Our
subject is a particular kind of proof search procedure, and
only valid proof objects can be constructed in any given
prover version anyway (this also applies to loading a proof
from a file). In a sense, the problem we are looking at is not
one of logics.

2. Background

The KeY Project. The KeY system [7, 1] is a comprehen-
sive environment for integrated deductive software design.
Software developed with KeY can be formally proven cor-
rect, i.e., behaving up to the given specification. In the KeY
process, the correctness of programs is formally proven by
establishing the validity of Java Dynamic Logic formulas
generated from the specification and the implementation of
a program. This correctness is asserted by an explicit proof
object.

The system is built on top of the CASE tool Borland
Together ControlCenter, which is an enterprise-grade plat-
form for UML-based software development. A version in-
tegrated with the popular open IDE Eclipse is also avail-
able. KeY augments this modeling foundation with an ex-
tension for formal specification, a verification middleware,



and a deduction component. Formal software specifications
are written either in Object Constraint Language (OCL),
which is part of the UML standard, or Java Modeling Lan-
guage (JML). The KeY extension offers facilities for author-
ing, rendering and analysis of formal specifications. The
verification middleware is the link between the modeling
and the deduction component. It translates the model (the
class diagram), the implementation (Java), and the specifi-
cation (OCL/JML) into Java Dynamic Logic proof goals,
which are passed to the deduction component. The verifi-
cation middleware is also responsible for managing proofs
during the development and verification process. The de-
duction component is a novel Java Dynamic Logic theorem
prover that is used to actually construct proofs for the proof
goal.
Java Dynamic Logic. Dynamic Logic (DL) can be seen to
be an extension of Hoare logic (see [6] for an overview). It is
a first-order modal logic with a modality 〈p〉 for every pro-
gram p (we allow p to be any sequence of Java statements
with the only restriction that they must not contain threads).
In the semantics of these modalities a world w (called state
in the DL framework) is accessible from the current world,
if the program p terminates in w when started in the current
world. The formula 〈p〉φ expresses that φ holds in some fi-
nal state of p. Considering sequential Java programs, there
is exactly one such final state for every initial state (if p ter-
minates) or there is no final state (if p does not terminate).
The formula φ→ 〈p〉ψ is valid if, for every state s satisfy-
ing precondition φ, a run of the program p starting in s ter-
minates, and in the terminating state the post-condition ψ
holds.
The KeY Calculus for Java Dynamic Logic. As usual for
deductive program verification systems, we use a sequent-
style calculus. The programs in Java DL formulas are basi-
cally executable Java code. The verification of a given pro-
gram can be thought of as symbolic code execution.

The rules of the Java DL calculus [3, 1] operate on the
first active command p of a program πpω; it is the focus of
their application. The non-active prefix π consists of an ar-
bitrary sequence of opening braces “{”, labels, etc. The pre-
fix is needed to keep track of the blocks that the (first) ac-
tive command is part of, such that the abruptly terminating
statements like throw and return can be handled appro-
priately. The postfix ω denotes the “rest” of the program,
i.e., everything except the prefix and the part of the pro-
gram the rule operates on.

Since there is (at least) one rule schema in the Java DL
calculus for each Java programming construct, we can here
only give a simple but typical example, the rule schema for
the if statement:

Γ, b = TRUE ` 〈π p ω〉φ
Γ, b = FALSE ` 〈π q ω〉φ

Γ ` 〈π if(b) p else q ω〉φ

The rule has two premisses, which correspond to the two
cases of the if statement. The semantics of this rule is
that, if the two premisses hold in a state, then the conclu-
sion is true in that state. In particular, if the two premisses
are valid, then the conclusion is valid. Note, that this rule is
only applicable if the condition b is known (syntactically) to
be free of side-effects. Otherwise, if b is a complex expres-
sion, other rules have to be applied first to evaluate b.

The Taclet Mechanism. The KeY system provides a formal-
ism for implementing rules (resp. rule schemata) called tac-
lets [4]. As the name suggests taclets can be considered as
lightweight, stand-alone tactics. They have a simple syntax
and semantics and have means to represent explicitly (i) the
pure logical content of a rule; (ii) restrictions or guards
on the expected context and position of a rule application;
(iii) heuristic information on whether and when a rule is ap-
plied automatically/interactively. Here is the same rule as
above formulated as a taclet:

find 〈π if(b) p else q ω〉φ
replacewith (〈π p ω〉φ) add (b = TRUE ` );
replacewith (〈π q ω〉φ) add (b = FALSE ` )

The KeY Proof Format. The KeY prover stores its proofs
as a proof script consisting of a stream of rule names, ap-
plication positions (as index into the sequent) and explicit
schema variable instantiations if these cannot be inferred
from the sequent. This format avoids excessive inclusion of
formulas in the file, since these include programs and can
be quite lengthy. On the other hand, this design does not
perform gracefully if—for some reason—the currently con-
structed proof object does not match the form expected in
the script.

3. Proof Reuse for Program Changes

In this section, we briefly describe our method presented
in [5], which allows to reuse proofs when the program to be
verified changes. It forms the basis for our work on reusing
proofs when the verification system is modified.

The Need For Proof Reuse Upon Changes in Programs. Ex-
perience shows that the prevalent use case of program verifi-
cation systems is not a single proof run. It is far more likely
that a proof attempt fails, and that the program (and/or the
specification, see Section 5.2) has to be revised. Then, af-
ter a small change, it is better to adapt and reuse the exist-
ing partial proof than to verify the program again from first
principles. This is of particular advantage for deductive ver-
ification systems (which we consider here), where proof re-
use reduces the number of required user interactions.

Features. The main features of our reuse method are:
(1) The units of reuse are single rule applications. That

is, proofs are reused incrementally, one proof step at a time.



This allows to keep our method flexible, avoiding the need
to build knowledge about particularities of the calculus, its
rules, and the target programming language into the reuse
mechanism.

(2) Proof steps can be adapted and reused even if the sit-
uation in the new proof is merely “similar” but not identical
to the template.

(3) In case reuse has to stop because a changed part in the
new program is reached that requires genuinely new proof
steps, reuse can be resumed later on when an unaffected part
is reached.

Basic Ideas. The rules of the calculus are represented by
rule schemata (taclets). Thus, at each proof step, there are
three choices that the reuse facility—like every incremen-
tal proof construction method—has to make: (a) the rule
(schema) to be applied, (b) the goal/position where it is ap-
plied (which we call the “focus” of the rule application),
and (c) instantiations for schema variables.

Our goal is to make—if possible—the same choices as
in the template proof. But that requires us to generalize and
extract the essence of the choices in the old proof such that
it can be applied to the (similar but different) situation in the
new proof.

For finding the rules that are candidates for choice (a),
such a generalization is readily available. The rule schemata
(i.e., the schematic representations of the rules) are natural
generalizations of particular rule applications. They are de-
fined by the developer of the verification calculus who has
the required insight to know what the essence of a rule ap-
plication is. We then adhere to the overall succession of rule
schema applications in the template proof. But, since proofs
are not linear, at each point in time there can still be several
candidate rules that compete for being used first.

Choice (b), i.e., the point where a candidate rule is to be
applied, is more difficult as it is hard to capture the essence
of a formula or sequent. To solve this problem, we use a syn-
tactical similarity measure on formulas. Fortunately, there
is usually only a moderate number of possibilities, because
program verification calculi are to a large degree “locally
deterministic”. That is, given a partial (new) proof, there is
for most rule schemata only a small number of potential ap-
plication foci.

Finally, to make choice (c), schema variable instantia-
tions are computed by matching the rule schema against the
chosen focus of application. Schema variables that do not
get instantiated that way, e.g., quantifier instantiations, are
simply copied verbatim from the old proof.

Finding Reusable Subproofs. Our main reuse algorithm re-
quires an initial list of reuse candidates. These initial can-
didates, which are rule applications in the old proof, can be
seen as the points where the old proof is cut into subproofs
that are separately reusable. They are the points where re-
use is re-started after program changes required the user or

the automated proof search mechanism to perform new rule
applications not present in the old proof. The choice of the
right initial candidates is crucial for reuse performance.

The way initial candidates are computed depends on the
way the program (and thus the initial proof goal) has chan-
ged. For changes affecting single statements (local changes)
we extract the differences right from the source files, using
the GNU diff utility. Non-local changes, such as renaming
of classes or changes in the class hierarchy, cannot be de-
tected in a meaningful way by the standard diff algorithm;
the user has to announce the changes separately. We are also
investigating application of the recently emerged techniques
for difference detection in object-oriented programs [2].

Adaptability. Our reuse approach is very flexible. The only
part that is to some extent adapted to the target calculus is
the similarity measure on formulas. But even that does not
incorporate any knowledge about particular rules but only
some limited information about the target programming lan-
guage (Java in our case) and general properties of the cal-
culus (e.g., that rules are typically applied at the beginning
of a program).

4. Proof Reuse for Modifications of the Verifi-
cation System

4.1. Recertification Strategy Catalogue

In this section, we discuss different modification scenar-
ios that we have encountered during the six years of devel-
opment of the KeY system. All verification systems are sub-
ject to evolution, and the ones that persistently store proof-
relevant information (proof scripts, lemmas, abstractions,
program invariants, etc.) have to deal with similar problems
as we did. We believe that developers of other deductive ver-
ification systems can profit from our experiences.

We classify the recertification strategies that are possible
responses to modifications of the verification environment
as follows:

A No action necessary. The old proof can be loaded with-
out modification.

B Automated recertification with the help of additional
information that has been provided at time of change.

C Machine-supported recertification while necessary ad-
ditional information is inferred during the process. In
this case we assume that the old proof can be loaded
into the system with the corresponding set of rules.

D Same as C, but in case the old proof cannot be loaded
into the system. Then, just the information available in
the stored proof file is available.

E No action possible/intended.



Γ, a = null ` 〈π NPE; ω〉φ

Γ, a 6= null ∧ (i < 0 ∨ i ≥ a.length) ` 〈π AOBE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length ` {a[i] := val}〈π ω〉φ

Γ ` 〈π a[i]=val ω〉φ

Γ, a = null ` 〈π NPE; ω〉φ

Γ, a 6= null ∧ (i < 0 ∨ i ≥ a.length) ` 〈π AOBE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length ∧ ¬storable(val, a) ` 〈π ASE; ω〉φ

Γ, a 6= null ∧ i ≥ 0 ∧ i < a.length∧storable(val, a) ` {a[i] := val}〈π ω〉φ

Γ ` 〈π a[i]=val ω〉φ

Figure 1. A rule for array assignment: initial and revised version. Differences are boxed.

In the following discussion of different types of modifi-
cations, we indicate what we believe is the right kind of
strategy to handle the respective modification. We currently
work on developing methods for strategies B, C, and D.

4.2. Changes of the Logic Syntax

The presence of a rich program and logic vocabulary
within the same formula makes designing a usable and at
the same time parseable logic syntax quite a challenge. Sev-
eral iterations were necessary to obtain a satisfactory solu-
tion.

The quantifier notation of exists x:int.prop(x)
was changed in order to allow fully qualified sort names, as
in \exists java.lang.Object o; prop(o). The
diamond modality notation had to be modified from the sim-
ple <program>formula to \<program\>formula in
order to allow a<b in place of lt(a,b). Proposed re-
certification strategy: B, as one could parse old proof ver-
sions with the associated old parser and then transform the
abstract representation into the new format. Furthermore,
stored KeY proofs rarely mentions formulas explicitly.

4.3. Changes of the Taclet Language

The taclet language used to define the rules of the KeY
prover is also subject to change. As clashes between tac-
let declaration keywords and JAVA identifiers became ap-
parent, an escaping mechanism was put in place (find ;

\find). Altogether this kind of change is transparent in the
stored proofs, as these only reference taclet names. Recer-
tification strategy: A. The semantics of the taclet language
has turned out to be exceedingly stable.

4.4. Changes in Parser/Disambiguation

Between the levels of syntax and semantics are changes
in parsing and disambiguation of logical expressions. An

example is a modification of the associativity of logic oper-
ators. The interpretation of the expression A ∧ B ∧ C has
changed from (A ∧ (B ∧ C)) to ((A ∧ B) ∧ C). In addi-
tion, the precedence between the state update operator and
arithmetic operators were changed in favor of the update so
that {update}a+ b evaluates to ({update}a)+ b instead of
the former meaning {update}(a+ b). Recertification strat-
egy: B. The old parser can be used to produce an AST, from
which an equivalent linearization for the new parser can be
generated using explicit brackets.

4.5. Changes in Formalization of the JAVA Lan-
guage Semantics

Sometimes minor errors in the symbolic execution rules
of the KeY calculus have to be fixed. This cannot be ruled
out, since one can never arrive from an informal specifica-
tion at a formal one by formal means. The KeY project on
regular bases performs the only measure suitable to mitigate
this: cross-checking our rules with other formalizations of
JAVA. A recent check of this kind [8] has discovered a miss-
ing case in our array assignment rule. The erroneous rule
and its correction are presented in Figure 1. Recertification
strategy: C. Small local changes allow a similarity-guided
proof reuse.

4.6. Changes in the Logical Structure of the Rules

At one point all rules containing a potential case distinc-
tion have been reformulated from the form (here’s an exam-
ple)

Γ ` ((a > b) → 〈π l = true; ω〉φ)∧
(¬(a > b) → 〈π l = false; ω〉φ)

Γ ` 〈π l = a > b ω〉φ



to a form employing a conditional formula

Γ ` if (a > b)
〈π l = true; ω〉φ else 〈π l = false; ω〉φ fi

Γ ` 〈π l = a > b ω〉φ

which has the advantage that one has to reason about the
condition only once. Recertification strategy: C, same as
above.

4.7. Changes in the Execution Engine

As noted in Section 2, it is important that the expected
shape of the proof object implicit in the proof script matches
the actual construction. This concordance can be disrupted
if the execution engine of the prover is either not determin-
istic or is purposefully changed.

Ordering of Proof Branches/Formulas. One degree of free-
dom left by the calculus is the way (i.e., position of) formu-
las are added to the sequent, and the ordering of the newly
generated subgoals whenever a rule has several premisses.

Recertification strategy: D, as it’s not possible to load the
old proof with a changed system.

The Link to the Program Model. The method call rule of
the KeY calculus simulates dynamic binding by a case dis-
tinction over all possible classes that offer a suitable imple-
mentation of the called method. The ordering of branches
is a potential nondeterminism source, which has been elim-
inated recently by applying alphabetical sorting. Recertifi-
cation strategy in case of change: D.

Changes in Logic Data Structures. Since stored proofs con-
tain numerical indices into the internal representation of
logical entities (formulas, terms), changes in this data struc-
ture affect the loading of proofs. Except one such change,
the representation has remained stable so far. Recertifica-
tion strategy: D as this problem class is similar to the one
dealing with the ordering of proof branches and formulas.

5. Further Related Issues

5.1. Changes of the JAVA Platform

In spite of Sun’s policy of upward source compatabil-
ity, new versions of the JAVA platform may bring changes
to the semantics of existing programs. We want to mention
here the introduction of new keywords and APIs (code has
to be rewritten to avoid clashes), bugfixes and updates to the
JAVA libraries (e.g., fixing the method StringBuffer.
append(StringBuffer) to be thread-safe or method
BigInteger.isProbablePrime(int)not to report
false for certain primes), or revisions of the JAVA Memory
Model (as proposed in JSR 133). The range of necessary re-
certification actions stretches from A to E, depending on the

particular case (e.g., whether the specification or the imple-
mentation of library methods was used in proofs, etc.).

5.2. Changes in Program Specification

The complementary case of a change in the program is a
changing specification. While the same techniques of proof
reuse should be applicable to some extent, a specification
is usually a higher-level description, and small changes are
likely to lead to bigger disruptions in proofs. We will not
pursue this issue here, as it affects individual problems only.

6. Conclusion

We have discussed possible modifications occurring dur-
ing the development and evolution of software verification
systems. A similarity-based method for proof reuse, which
has already been successfully implemented in the KeY sys-
tem, has been presented that handles program changes. Cur-
rently we extend and adapt this method to implement recer-
tification strategies of types B, C, and D.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
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