
Verification of Software Product Lines with
Delta-oriented Slicing

Daniel Bruns1, Vladimir Klebanov1, and Ina Schaefer2?

1 Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{bruns, klebanov}@kit.edu

2 Chalmers University of Technology, 421 96 Gothenburg, Sweden
schaefer@chalmers.se

Abstract. Software product line (SPL) engineering is a well-known
approach to develop industry-size adaptable software systems. SPL are
often used in domains where high-quality software is desirable; the over-
whelming product diversity, however, remains a challenge for assuring
correctness. In this paper, we present delta-oriented slicing, an approach
to reduce the deductive verification effort across an SPL where individual
products are Java programs and their relations are described by deltas.
On the specification side, we extend the delta language to deal with for-
mal specifications. On the verification side, we combine proof slicing and
similarity-guided proof reuse to ease the verification process.

1 Introduction

A software product line (SPL) [18] is a set of software systems (called products)
with well-defined commonalities and variabilities. SPL are often used in domains
(e.g., communications, medical, transportation) where high-quality software is
desirable; the overwhelming product diversity, however, remains a challenge for
assuring correctness by any method.

Even without formal verification, the dimensions and complexity of product
lines make it essential to model the relationships between products explicitly.
One of the authors has been working on the software engineering aspects of
SPL [22, 23, 21]. This has resulted in a modeling approach called delta-oriented
programming (Sect. 2). Our current effort aims to exploit the structural infor-
mation available in an SPL model to reuse verification results obtained from
verifying one product when considering another product. Where necessary, we
enrich the model with semantical information (such as formal specifications,
Sect. 3). Considering other possibilities to verify SPL that are more meta-level
(like generic or partial proofs) and require more semantical information, we de-
cided to go on with a more light-weight approach first.

The technology that we are using to illustrate our approach is Java for pro-
gramming single products, JML [13] for formal specifications and the KeY sys-

? This author has been supported by Deutsche Forschungsgemeinschaft (DFG) and
by the EU project FP7-ICT-2007-3 HATS.



tem [4] for deductive verification. However, we only make the following assump-
tions about the verification system:

– We concentrate on systems that manipulate an explicit proof object in the
proof assistant style, but do discuss systems operating in the verifying com-
piler style (a verification condition-generating tool chain with an SMT solver
at its end).

– We support both ways in which verification systems can treat method calls:
using the method contract or inlining the implementation. Using the contract
is inherently modular while inlining is not, but it still has its advantages. It
is simple, does not force the developer to write “trivial” contracts for helper
methods, and reduces the number of commitments that need to be updated
as the code evolves.

– Our method is also parametric on how a verification system treats invariants.
In the worst case, all methods in the program have to be verified to preserve
every invariant, as the invariant vocabulary is (in general) unrestricted. In
practice, verification systems use criteria such as visibility, syntax and typing,
assignable clauses or ownership to reduce the workload. We simply limit
ourselves to requiring that all relevant invariants must be checked.

In our approach we analyze the SPL model to determine which parts of the
original product are unchanged in the new product and also do not have to be
verified again. This analysis constitutes proof slicing (Sect. 4).

For the modified or otherwise affected product parts, we apply a previously-
developed proof reuse technique based on the assumption of similarity between
the two implementation variants. (Sect. 5).

We present related work in Sect. 6 and draw conclusions in Sect. 7.

2 Delta-oriented Programming of Software Product Lines

Delta-oriented programming (DOP) [22, 23, 21] is a novel approach for imple-
menting software product lines. Delta-oriented programming offers an expres-
sive and flexible “programming meta-language” for specifying a set of products.
Its aim is to relax the restrictions of currently established SPL description for-
malisms such as feature-oriented programming (FOP) [3] by adding the explicit
possibility to remove parts of a program. For a more detailed comparison be-
tween delta-oriented and feature-oriented programming, the reader is referred to
[22].

In delta-oriented programming, an SPL is implemented as a core module
together with a set of delta modules. The core module contains a complete prod-
uct implementation for some valid feature configuration, which can be developed
by conventional single-application engineering techniques. Delta modules specify
changes to be applied to the core module in order to implement other products.

The notation we use for Java programs constituting individual products is
the following:



Definition 1. A program is a set of class declarations (further called classes)
and a binary inheritance relation on this set. We are primarily interested in the
transitive closure of this relation @ and the transitive reflexive closure v. A @ B
means that the class A is below class B in the inheritance hierarchy. Abstract
classes and interfaces are omitted in this paper for brevity.

A class is a set of field and method declarations (which are built up of names,
types, parameters, bodies, etc., as appropriate in Java). If C is a class declaring
a method with signature m, then we will refer to this particular implementation
as C::m.3 Vice versa, we identify the method signature m with a set of classes
in a product that declare a method with that signature: C ∈ m if C::m ∈ C.

core Base {
class Account extends Object {

int balance;
int bonus;
void addBonus(int x){}
void update(int x) {

balance += x;
}

}
}

(a) Core module with Account class

de l t a DInvestment when Investment {
mod i f i e s class Account {

removes void addBonus(int x);
adds void addBonus(int x) {

bonus += x;
}
removes void update(int x);
adds void update(int x){

balance += x;
if (x > 0) addBonus(x/2);

}
}

}

(b) Delta module for feature Investment

class Account extends Object {
int balance;
int bonus;
void addBonus(int x){

bonus += x;
}
void update(int x) {

balance += x;
if (x > 0) addBonus(x/2);

}
}

(c) Result of delta module application

Fig. 1: Example of a delta-oriented product line.

Modification operations used in delta modules that we consider in this paper
are the following:

– adding/removing a class declaration C: adds(C), removes(C)
– modifying class C by

3 For simplicity, we assume the absence of method overloading. In Java, a class may
contain several method implementations with the same identifier and compatible
parameter types. This renders the lookup procedure far more complicated; c.f. [8,
Sect. 15.12.2].



• adding/removing a field f : adds(C::f), removes(C::f)
• adding/removing a method declaration m: adds(C::m), removes(C::m)
• changing the direct superclass of C to C ′: reparents(C,C ′)

On an abstract level, the variability of an SPL is defined by the feature set F .
Valid member products of an SPL are given by the feature model F ⊆ 2F . Each
product uniquely corresponds to a combination of features, also called feature
configuration. In the following, we identify products and feature configurations
in F . Each delta module d contains an application condition ϕd (the when clause
in concrete syntax), which is a propositional formula over the feature set F .
The application conditions specify which delta modules are necessary for which
features. For every pair of valid products P1, P2 ∈ F , ∆(P1, P2) is the set of
delta modules that have to be applied to the product P1 in order to obtain a
product P2 with a different feature configuration.4 The original delta language
proposal [22] demands a partial order on deltas to guarantee that the result of
applying ∆(P1, P2) is unique, as well as certain other syntactical well-formedness
conditions, which we are not concerned with in this paper.

Example 1. Our running example in this paper is a delta-oriented product line
of bank accounts inspired by [7]. Figure 1a shows the core module of this SPL
with the basic Account class. Figure 1b shows the delta module DInvestment for
activating the Investment feature, which accumulates a bonus for each deposit
made. Figure 1c contains the result of applying the delta module to the core,
which is, again, a conventional Java class. Later on, in Example 3, we will also
see the Paycheck feature adding the class Employer as a client of Account. ♦

3 Delta-oriented Formal Specification of Software
Product Lines

We use the Java Modeling Language (JML) [13] for the formal specification of
product properties. In this work, we concentrate on class invariants and method
contracts with pre- and post-conditions. As JML specifications are written di-
rectly into Java source files as comments, it is possible to include them in the
delta language introduced in Sect. 2. A core module is specified just as a con-
ventional program. An example of a core module with JML specifications can
be seen in the first listing of Example 3.

For delta modules, we extend the delta language with the following operations
to manipulate specifications:

– adding an invariant to a class: adds(C, I)
– removing an invariant from a class: removes(C, I)
– adding a contract (pre-/post-condition pair) to a method: adds(C::m, ct)
– removing a contract from a method: removes(C::m, ct)

4 This is a slight generalization of the original delta approach, where deltas could only
be applied to the core product.



Note that we only consider pairs of exactly one pre- and post-condition to be
added or removed together. In case one of them is trivial (i.e., true), it is omitted.

Example 2. Figure 2 shows the delta module DInvestmentSpec changing the
specifications in class Account. It is applied for the same configurations as the
code delta DInvestment, since it has the same application condition.5 ♦

In general, there is no concordance between code deltas and specification
deltas for one product. It is perfectly conceivable to change the code without
changing the specification or the other way round. However, there are (at least)
the following exceptions where code changes influence the specification:

– Removing a class or a method induces the removal of attached specifications.
– JML enforces behavioral subtyping, i.e., subclasses inherit the specifications

of the superclass. Changing the inheritance hierarchy, thus, also changes the
specification.

– JML by default enforces non-nullness of fields, variables, etc. Adding a field
of reference type to a class automatically creates an implicit invariant about
this field.

– Changing a (pure) method changes the semantics of specifications using this
method.

de l t a DInvestmentSpec when Investment {

mod i f i e s class Account {

removes //@ ensures bonus == \old(bonus );

from void addBonus(int x);

adds //@ requires x >= 0;

//@ ensures bonus == \old(bonus) + x;

to void addBonus(int x);

}

Fig. 2: A specification delta adds and removes pre- and post-conditions from a method.

4 Delta-oriented Slicing

When a new product is derived by delta application, in general, both the im-
plementation as well as the specification change. However, from the structural
information available in the used delta modules, we are able to conservatively
infer which specifications of the new product remain valid (i.e., the proofs done
for the old product are not affected by the change) and which parts have to

5 It is possible to specify code and specification changes in the same delta module.
The separation at this point is for presentation reasons.



be (re-)proven in order to establish the specified properties. We call the latter
delta-oriented slice. Slicing originated as a program analysis technique answering
the question of which program statements influence the value of a given variable.
Our algorithm answers the question of which proofs are influenced by a delta
module.

Of course, the simplest and safest way to achieve assurance for a changed
product is to redo all proofs. However, at the current state of hardware and
deduction technology, this approach is too slow for any product of non-trivial
size. Our approach is much less computationally expensive as it only involves
a deterministic static analysis of different artifacts. This way, proof slicing can
quickly provide feedback to the engineer on what impact a certain change to the
product will have.

Proof Modularity

The key to obtaining a sound slicing algorithm is identifying non-modular proof
steps. The issue of proof non-modularity arises if the validity of certain proof
steps in a verification proof is lost when the program that is to be verified is
changed or extended.

The change may be explicit, i.e., concerning the source code of the very
method being verified, or implicit, i.e., concerning program entities that are
only referenced (e.g., other methods called). Explicit changes are easy to detect,
and if they are benign, they can be treated by proof reuse (Sect. 5). Implicit
changes are more involved, and their impact depends both on the semantics of
the programming language, as well as on the particular verification calculus.
Implicit change is the case that we concentrate on in the following.

Proof modularity has been recognized as an issue for quite some time, focus-
ing, naturally, on adding/removing classes and overriding methods. Particularly
relevant to our effort are a previous account for the KeY system [20, Sect. 6.2]
as well as a comprehensive survey for the KIV system [24, Chap. 6]. As our
change vocabulary is larger, we have to address this issue anew. In the KeY
system, identifying rules resulting in non-modular proof steps is made easier
by the fact that the class declarations and the class hierarchy are not part of
the original proof obligation. This information is available in the background
(i.e., in the prover implementation) and can be introduced into a logical sequent
by rules containing metaconstructs (functions that are not logically specified,
but programmed in the prover). These functions make non-modular rules easily
identifiable syntactically, which we have done for the KeY rule base. In the KeY
calculus, we discern rules giving rise to proof steps whose validity is:

(A) not affected by implicit program changes (rewriting, propositional, and the
like, but also many symbolic execution rules, e.g., for conditionals, loops,
etc.);

(B) affected by presence or absence of classes regardless of their content;6

6 The rules of this type are rare and the KeY system has only two of them: typeAb-
stract and arrayStoreStaticAnalyse. The former allows deducing the dynamic



(C) affected by methods declared in classes; these rules are the non-modular
method invocation rules inlining the method implementations and simulat-
ing dynamic binding;

(D) affected by fields declared in classes regardless whether these fields are used
in the program; these are the instance creation rules assigning default values
to fields;

(E) affected by inheritance relationship between classes; these are the rules for
tackling the inheritance predicate v.

The slicing algorithm is based on these findings.
Other systems encode the class hierarchy as axioms that are part of the proof

obligation from the start. Here, it is necessary to analyze the proofs constructed
by the prover for occurrence of particular axioms. This may be difficult if there
is no explicit proof object, but, for instance, the popular SMT prover Z3 often
used in verifying compilers provides this information.

The Algorithm

In the following, we present the delta-oriented slicing algorithm. As the first step
of the algorithm, we copy all finished proofs from product P1 into product P2

regardless of their validity for P2. In the resulting set of proofs for the new
product, our algorithm identifies the proofs that do not hold in the new context
and marks them as invalid. These proofs have to be redone. The algorithm also
identifies new proof obligations that have to be discharged in order to obtain a
full set of proofs for the specifications of P2.

Input: A set of proofs for a product P1, and the delta ∆(P1, P2)7

Output: A set of valid proofs for the product P2 = P1 +∆(P1, P2)

1. Copy all proofs from P1 to P2 (regardless of validity). Weed out all proofs
where the vocabulary involved (code or specification) is no longer present.

The following steps refer to the content of the delta module ∆(P1, P2). The
algorithm currently considers only the structural change information available in
the delta and does not take the content of the modified methods or specifications
into account.

2. For each adds(C):
(a) do adds(C::f) for each f ∈ C
(b) do adds(C::m) for each m ∈ C
(c) invalidate all proofs with proof steps by non-modular rules of type (B)

where C or any of its superclasses appear in the rule conclusion

type of an object pointed to by an expression with an abstract static type (this rule
produces a disjunction over all subclasses). The latter uses a simple static analysis
to check whether an array assignment can throw an ArrayStoreException.

7 For the sake of the algorithm, we assume that ∆(P1, P2) contains exactly one delta
module (i.e., we assume delta module composition).



3. For each removes(C):
(a) do removes(C::f) for each f ∈ C
(b) do removes(C::m) for each m ∈ C
(c) invalidate all proofs with proof steps by non-modular rules of type (B)

where C or any of its superclasses appear in the rule conclusion

Adding and removing methods. When adding methods, we have to distinguish
if their invocation is treated by inlining and contract application. If an altered
implementation is inlined, the proof, of course, will be invalidated. For a contract,
this is different since the altered implementation is expected to fulfill the old
contract. Contracts are also not affected by method removal. Even though an
implementation has been removed, the contract still applies to some overriding
implementation in a subclass.

4. For each adds(C::m):
(a) invalidate all pre-existing proofs where m was inlined and C::m would

have been among potentially referenced implementations (see Fig. 3)
(b) proofs using the contracts for m remain valid
(c) prove that C::m satisfies all specifications of C (either stated directly or

inherited), as well as all other invariants
5. For each removes(C::m):

(a) invalidate all pre-existing proofs where m was inlined and C::m would
have been among potentially referenced implementations (Fig. 3)

(b) proofs using the contracts for m remain valid

Adding and removing fields. In steps 6–7, it might not be immediately clear why
adding or removing a field can invalidate a proof. Consider the following code
snippet:

class A { Object f; }

class B extends A { /*@ invariant f == ((A)this).f; @*/ }

The invariant in class B holds if and only if no field f is added to class B.
Otherwise, the left occurrence of f would refer to B::f, while the right one
would continue referring to A::f as fields are bound statically in Java.

Adding or removing fields also invalidates proofs containing instance cre-
ation, as this process must assign all fields a default value, resulting in varying
intermediate states.

6. For each adds(C::f):
(a) find the set of method implementations M referring to C::f in P2

(b) invalidate all pre-existing proofs about any C ′::m ∈M
(c) invalidate all pre-existing proofs inlining any C ′::m ∈M
(d) invalidate all pre-existing proofs of specifications referring to C::f in P2

(e) invalidate all pre-existing proofs with proof steps assigning default values
(during instance creation) to fields of an object with type A v C

7. For each removes(C::f): same as step 6, but look for C::f in P1



Class reparenting. Reparenting is an invasive operation, which is illustrated in
Fig. 4. reparents(C,C ′) moves C from under its old direct supertype C̃ and
beneath C ′, and with it movedPart = {K | K v C}. As Ĉ we then denote the
least common supertype of C̃ and C ′.

Reparenting class C makes C and its subclasses lose features (implementa-
tions and specifications) inherited from oldBranch = {K | C̃ v K @ Ĉ} and
inherit new features from newBranch = {K | C ′ v K @ Ĉ}.

8. For each reparents(C,C ′):
(a) invalidate all pre-existing proofs inlining method bodies for any virtual

method call e.m() with S as the static type of e and
i. S ∈ newBranch
ii. Ĉ v S

or, if at least one method body K::m was inlined such that
iii. S ∈ movedPart and K ∈ oldBranch
iv. S ∈ oldBranch and K ∈ movedPart
This step reacts to changes in the big case distinction simulating dynamic
binding.

(b) invalidate all pre-existing proofs about/inlining any method implemen-
tation C::m containing a method call of the form super.m′() (as the
superclass will change)

(c) invalidate all pre-existing proofs about/inlining any method implemen-
tation K::m, K ∈ movedPart that references a field K ′::f declared in
oldPart (as this reference would change its meaning after the move)

(d) contracts for methods in reparented classes remain valid unless the con-
tract no longer exists (i.e., it was inherited from oldBranch)

(e) invalidate proofs for specifications inherited from any class in oldBranch
(f) prove that all classes K ∈ movedPart satisfy the specifications inherited

from new superclasses in newBranch
(g) invalidate all proofs containing a proof step deciding the predicate A v B

if A v C and B ∈ oldBranch

Adding and removing specifications.

9. For each adds(C::m, ct)
(a) prove that the contract ct is fulfilled by all C ′::m with C ′ v C

10. For each removes(C::m, ct)
(a) invalidate all pre-existing proofs that use the contract ct

11. For each adds(C, I)
(a) prove that the invariant I is fulfilled by all relevant implementations

12. For each removes(C, I)
(a) invalidate all pre-existing proofs that assume the invariant I



For some of the algorithm steps, we need to determine whether an implementa-
tion C::m is potentially referenced by the method invocation expression e.m().
We consider the three different method invocation modes available in Java, defining
for each mode a starting point class S of method lookup. The relation of S and C
determines the answer:

Instance or “virtual” mode. This is the most common mode. The target expres-
sion e (of type S) references an object (it may be an implicit this reference),
and the method is not declared static or private. This invocation mode requires
dynamic binding.
– The implementation is in S or one of its subclasses: If C v S, then “yes”
– The implementation is in a superclass of S, but it is inherited by S or one

of its subclasses (i.e., it is not overridden between C and S): If S v C such
that for all K with S v K @ C holds K 6∈ m, then “yes” (cf. Fig. 5).

– Otherwise, “no”.
Static mode (m is declared static or private). In this case, no dynamic bind-

ing is performed. The implementation to invoke is determined in accordance with
the declared static type S of e. If C = S then “yes”, otherwise “no”.

Super mode (e is the keyword super). This mode is used to access the meth-
ods of the immediate superclass S (of the class containing the invocation expres-
sion super.m()).
– If S v C and for all K with S v K @ C holds K 6∈ m, then “yes”.
– Otherwise, “no”.

Fig. 3: Subroutine: When is a method implementation potentially referenced?

bC

eC C′

C

C′′

C

C′′

ol
dB

ra
nch

newB
ranch

movedPart

reparents

Fig. 4: Illustration of reparents(C,C′). Solid
lines represent the direct subtype relation, dot-
ted lines its transitive closure, and dashed lines
show relations of the previous product.

C C::m()

S inherits C::m()

S′ inherits C::m()

S′′ S′′::m()

Fig. 5: Virtual method
invocation mode and
method overriding.



An Example

Example 3. (i) We return to the bank account example introduced in Sect. 2.
The core product with the basic Account class now contains specifications (see
below). It can easily be proven that both methods satisfy their contracts and
the class invariant.
core Base {

class Account extends Object {

//@ invariant bonus >= 0;

int balance;

int bonus;

//@ ensures bonus == \old(bonus);

void addBonus(int x){}

/*@ ensures balance == \old(balance) + x;

@ && bonus >= \old(bonus ); @*/

void update(int x) {

balance += x;

}

}

}

(ii) Next, we apply the delta module shown below in order to generate a new
product with the additional feature Paycheck. This module adds an Employer
class with a reference to the account and a payday() method with a correspond-
ing specification. In order to determine which proofs for the basic bank account
are still valid, we use the delta-oriented slicing algorithm. We perform step 2 for
the added class, leading to step 4 for the added method, step 6 for the added field
and step 9 for the added contract. Only step 4c is non-trivial, since the method
payday() did not exist before. The method can be verified easily – either by
inlining the implementation of addBonus() and update() or by applying their
contracts. There is no existing proof to reuse. Step 6 is trivial (the set M is
empty) as the field a did not exist previously. Step 9 is subsumed by step 4 as
Employer has no subclasses. No proofs are invalidated.

de l t a DPaycheck when Paycheck {

adds class Employer extends Object {

Account a;

/*@ requires x >= 0 && bonus >= 0;

@ ensures a.balance == \old(a.balance) + x

@ && a.bonus >= \old(a.bonus);

@*/

void payday(int x, int bonus) {

a.addBonus(bonus);

a.update(x);

}

}

}



(iii) If we now want to incorporate the Investment feature as well, we apply
the deltas DInvestment (Fig. 1b) and DInvestmentSpec (Fig. 2) to the latest
product. These two deltas modify the implementation and specification of the
method addBonus() and the implementation of the method update() in the
class Account. The slicing steps to take to determine which proofs from the
previous product are still valid are: step 4 for the added methods, step 5 for the
removed methods, step 9 for the added contract and step 10 for the removed
contract.

Steps 4c and 9 dictate that both update() and addBonus() have to be re-
proven for conformance with the class invariant and their respective (modified)
contracts. Proof reuse is feasible here (see Sect. 5). In contrast, payday() has
not changed (neither code nor specification), but the proof that it satisfies its
contract is now invalid. The proof has been invalidated by step 4a or 10, since it
(the proof) depends on either the implementation or the contract of addBonus().
The proof reuse mechanism may be applied here to find a new proof efficiently.
The contract of update() has not changed, and all proofs using it remain valid
(step 4b). ♦

5 Proof Reuse for Changed Methods

In this section, we point to the existing technique of proof reuse [11] as a natural
complement to delta-oriented proof slicing. This part of our approach is tailored
to interactive verification systems like KeY, where the user provides hints to
the prover by manipulating an explicit proof object. In practice (although not in
our illustrating example), proofs contain proof steps which cannot be (efficiently)
found automatically. Users have to instantiate quantifiers, provide lemmas, loop
invariants, and guide proof search in other ways. These efforts can be recycled
through proof reuse.

The proof reuse technique has been originally developed for KeY by one of
the authors to save verification effort during incremental development (i.e., after
fixing a bug). Since then, the method has been applied to a number of differ-
ent change management scenarios. It uses a similarity measure that determines
which proof steps from proofs for the original product can be used to establish
the proof obligations for the new product. It is a light-weight technique based on
proof replay rather than on proof generation. For a full account of proof reuse
in KeY we refer the reader to [11].

In the delta-oriented slicing step, we have identified which proofs have to be
redone for the newly generated product. However, some of the changed method
bodies may still have considerable similarities to the ones in the already verified
product. The correctness proofs of such modified methods are likely to resem-
ble the old proofs. Here proof reuse can help. Reuse can also be used in case
of changed specifications but much less effectively. Specifications are less struc-
tured than programs, and proof shapes adhere to implementations rather than
specifications, which makes finding reusable subproofs much harder.



6 Related Work

Formal methods are used in the context of software product lines for a variety
of applications. A large body of work is concerned with the formal analysis of
feature models [1] or product models [14]. Further approaches (e.g., [6]) verify
that the variability specified by a feature model is correctly implemented in
code. Efficient verification of product behavior, however, is not well established.
In testing [15, 17] or model checking [12, 5] there is work to make validation of
product lines more efficient, though.

In [2], a case study for the product line development of a compiler is con-
sidered. The compiler is developed by stepwise refinement or extension of the
compiler functionality. The correctness proof of the compiler is extended and
refined in line with the functional extensions by introduction or adaptation of
invariants and the addition of case distinctions. This approach relies on a fixed
structure of the induction proof for compiler correctness that allows determining
in advance which modifications of the proof are required by functional changes.

Reuse of verification artifacts is also related to a whole plethora of work
which is impossible to survey here, such as slicing for debugging [25, 27] or model
checking [9], reuse of refined specifications [26], change management in theory
development [16, 10], incremental compilation, refactoring, and software change
impact analysis.

An interesting and closely related result from change impact analysis is the
tool Chianti [19], which determines whether the results of a test are affected
by changes to the source code. Changes to the program are decomposed into
“atomic operations”, which are similar to our delta operations. These are then
analyzed for their impact on the program’s call graph.

Of course, deriving a new product in a product line is also closely related
to evolving a single product. Most verification systems implement some kind of
proof management for this case. Alas, system developers apparently–and unjus-
tifiedly, we think–tend to consider this important component an implementation
detail, as published accounts on this subject are rare.

7 Conclusions

Working on verification of SPL, we have identified several interesting lines of
future research. Most of them regard the transition from a syntactic modeling
of SPL as in the current delta-oriented programming approach [22] to a more
semantic-based modeling of SPL.

In order to define delta operations on specifications in a meaningful way, it
is necessary to uniquely identify class invariants and method contracts (e.g., for
removal or modification). This could be handled by introducing labels (as most
tools probably already do internally).

So far the operations we have defined for specification deltas are rather basic.
One reason for this is simplicity. Another reason is that at least with the current
calculi, the shape of a proof follows rather closely the shape of the program,



but it is much less related to the shape of a specification. It remains to be seen
whether adding more fine-grained change information in the specification deltas
helps obtaining new proofs more efficiently. Additional operators that appear
promising to us are case distinctions and redundant specifications (lemmas).

Until now, the delta module operations (for code) and their applicability
conditions are mostly syntactical. Greater power and precision can be achieved
by adding more semantical information. For instance, such a description might
dictate that a certain feature is only compatible with another if the base product
preserves certain data invariants. New tools could be devised to assist in deriving
consistent products with desired behavior based on semantical information.

Finally, getting the formal specification of a product right is difficult, but
deriving a correct product from another also has its pitfalls. Even if two prod-
ucts P1 and P2 fulfill the specification I (as ensured by our approach), it is
still only syntactically the same specification I. The product derivation process
may seduce one to believe that I is still an adequate specification for the new
product, which might not be the case. In the simplest case I might contain pure
methods, which have changed between products. The issue is aggravated by the
complicated and sometimes unclear semantics of modern specification languages
and requires further investigation.

References

1. Don S. Batory, David Benavides, and Antonio Ruiz-Cortés. Automated analysis
of feature models: Challenges ahead. Communications of the ACM, 49(12), 2006.

2. Don S. Batory and Egon Börger. Modularizing theorems for software product lines:
The Jbook case study. Journal of Universal Computer Science, 14(12), 2008.

3. Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004.

4. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

5. Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
Franois Raskin. Model checking lots of systems: Efficient verification of temporal
properties in software product lines (to appear). In 32nd International Conference
on Software Engineering, ICSE 2010, May 2-8, 2010, Cape Town, South Africa,
Proceedings. IEEE, 2010.

6. Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Conf. on Generative Program-
ming and Component Engineering (GPCE), 2006.

7. Benjamin Delaware, William Cook, and Don Batory. A Machine-Checked Model
of Safe Composition. In Foundations of Aspect-Oriented Languages (FOAL), pages
31–35. ACM, 2009.

8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Addison-Wesley Longman, Amsterdam, 3rd edition, 2005.

9. John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for model
construction. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

10. Dieter Hutter. Management of change in structured verification. In Automated
Software Engineering (ASE), page 23, 2000.



11. Vladimir Klebanov. Proof reuse. In Beckert et al. [4].
12. Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking of domain

artifacts in product line engineering. In Automated Software Engineering (ASE),
pages 269–280. IEEE Computer Society, 2009.

13. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a
behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

14. Mike Mannion. Using first-order logic for product line model validation. In Garry
Chastek, editor, Software Product Lines: Proceedings of the Second Software Prod-
uct Line Conference (SPLC2), LNCS 2379, pages 176–187, San Diego, CA, August
2002. Springer.

15. John D. McGregor. Testing a software product line. Technical Report CMU/SEI-
2001-TR-022, Software Engineering Institute, Carnegie Mellon University, Decem-
ber 2001.

16. Till Mossakowski. Heterogeneous theories and the heterogeneous tool set. In
Yannis Kalfoglou, W. Marco Schorlemmer, Amit P. Sheth, Steffen Staab, and
Michael Uschold, editors, Semantic Interoperability and Integration, volume 04391
of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005.

17. Henry Muccini and André van der Hoek. Towards testing product line architec-
tures. Electr. Notes Theor. Comput. Sci, 82(6), 2003.

18. Klaus Pohl, Günther Böckle, and Frank van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, Heidelberg, 2005.

19. Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. Chi-
anti: A tool for change impact analysis of Java programs. In John M. Vlissides and
Douglas C. Schmidt, editors, Proceedings of the 19th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, pages 432–448.
ACM, 2004.

20. Andreas Roth. Specification and Verification of Object-oriented Software Compo-
nents. PhD thesis, Universität Karlsruhe, 2006.

21. Ina Schaefer. Variability modelling for model-driven development of software prod-
uct lines. In 4th Int. Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), Linz, Austria, January 2010.

22. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. Delta-oriented programming of software product lines. In Proceedings,
14th International Software Product Line Conference, Lecture Notes in Computer
Science, Jeju, South Korea, September 13–17 2010. Springer. To appear.

23. Ina Schaefer, Alexander Worret, and Arndt Poetzsch-Heffter. A model-based
framework for automated product derivation. In Model-driven Approaches in Soft-
ware Product Line Engineering (MAPLE 2009), 2009.

24. Kurt Stenzel. Verification of Java Card Programs. PhD thesis, Fakultät für ange-
wandte Informatik, University of Augsburg, 2005.

25. Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3), 1995.

26. Heike Wehrheim. Slicing techniques for verification re-use. Theor. Comput. Sci,
343(3):509–528, 2005.

27. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, August 1984.


