Formal Specification of Software

Modal Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU
Modal Logic

In classical logic, it is only important whether a formula is true.

In modal logic, it is also important in which

- way
- mode
- state

a formula is true.

A formula (a proposition) is

- necessarily / possibly true
- true today / tomorrow
- believed / known
- true before / after an action / the execution of a program
Propositional Modal Logic: Formulas

- The propositional variables \(p \in \text{Var} \) are modal formulas.

- If \(A, B \) are modal formulas, then

\[
\neg A \quad (A \land B) \quad (A \lor B) \quad (A \to B) \quad (A \leftrightarrow B)
\]

\(\Box A \) (read “box \(A \)”, “necessarily \(A \)”)
\(\Diamond A \) (read “diamond \(A \)”, “possibly \(A \)”)

are modal formulas.
Informal Interpretations of □

□F means

- F is necessarily true
- F is always true (in future states/words)
- an agent a believes F
- an agent a knows F
- F is true after all possible executions of a program p

Notation

If necessary write

□aF □pF [a]F [p]F

instead of □F
Informal Interpretations of \Diamond

<table>
<thead>
<tr>
<th>$\Box F$</th>
<th>$\Diamond F$ (the same as $\neg \Box \neg F$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F is necessarily true</td>
<td>F is possibly true</td>
</tr>
<tr>
<td>F is always true</td>
<td>F at least once true</td>
</tr>
<tr>
<td>agent a believes F</td>
<td>F is consistent with a’s beliefs</td>
</tr>
<tr>
<td>agent a knows F</td>
<td>a does not know $\neg F$</td>
</tr>
<tr>
<td>F is true after all possible executions of program p</td>
<td>F is true after at least one possible execution of program p</td>
</tr>
</tbody>
</table>
Kripke Structures

Given: a propositional signature Var

Definition

A Kripke structure

\[\mathcal{K} = (S, R, I) \]

consists of

- a non-empty set \(S \) (of worlds / states)
- an accessibility relation \(R \subseteq S \times S \)
- an interpretation \(I : \text{Var} \times S \rightarrow \{ \text{true}, \text{false} \} \)
Kripke Structures: Example

accessibility relation

set of states

Interpretation I
Modal Logic: Semantics

Given: Kripke structure $\mathcal{K} = (S, R, I)$

Valuation

\[val_{\mathcal{K}}(p)(s) = I(p)(s) \quad \text{for} \quad p \in \text{Var} \]

$val_{\mathcal{K}}$ defined for propositional operators in the same way as val_I

\[val_{\mathcal{K}}(\Box A)(s) = \begin{cases}
\text{true} & \text{if} \; val_{\mathcal{K}}(A)(s') = \text{true} \text{ for all } s' \in S \text{ with } sR \]
\[val_{\mathcal{K}}(\Diamond A)(s) = \begin{cases}
\text{true} & \text{if} \; val_{\mathcal{K}}(A)(s') = \text{true} \text{ for at least one } s' \in S \text{ with } sR \]
\]
Saul Aaron Kripke

Born 1940 in Omaha (US)

Studied at: Harvard, Princeton, Oxford and Rockefeller University

Professor at Princeton University since 1998
Emeritus at Princeton University
Modal Logic: Example for Evaluation

\[(\mathcal{K}, A) \models P \quad (\mathcal{K}, B) \models \neg P \quad (\mathcal{K}, C) \models P \quad (\mathcal{K}, D) \models \neg P\]

\[(\mathcal{K}, A) \models \Box \neg P \quad (\mathcal{K}, B) \models \Box P \quad (\mathcal{K}, C) \models \Box P \quad (\mathcal{K}, D) \models \Box P\]

\[(\mathcal{K}, A) \models \Box \Box P \quad (\mathcal{K}, B) \models \Box \Box P \quad (\mathcal{K}, C) \models \Box \Box \neg P\]
Modal Logic: Valid Formulas

Valid

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>□(P → Q) → (□P → □Q)</td>
<td></td>
</tr>
<tr>
<td>□P ∧ □(P → Q)) → □Q</td>
<td></td>
</tr>
<tr>
<td>□P ∨ □Q → □(P ∨ Q)</td>
<td></td>
</tr>
<tr>
<td>□P ∧ □Q ↔ □(P ∧ Q)</td>
<td></td>
</tr>
<tr>
<td>□P ↔ ¬◊¬P</td>
<td></td>
</tr>
<tr>
<td>◊(P ∨ Q) ↔ (◊P ∨ ◊Q)</td>
<td></td>
</tr>
<tr>
<td>◊(P ∧ Q) → (◊P ∧ ◊Q)</td>
<td></td>
</tr>
</tbody>
</table>

Not valid:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>□(P ∨ Q) → (□P ∨ □Q)</td>
<td></td>
</tr>
<tr>
<td>◊P ∧ ◊Q → ◊(P ∧ Q)</td>
<td></td>
</tr>
</tbody>
</table>
Not Valid: $\square(P \lor Q) \rightarrow (\square P \lor \square Q)$

$\square(P \lor Q)$
$\neg \square P$
$\neg \square Q$
$\neg(\square P \lor \square Q)$

$\square(P \lor Q) \rightarrow (\square P \lor \square Q)$ **not true in state** s_1
Formulas Characterising Properties of R

<table>
<thead>
<tr>
<th>Formula</th>
<th>Property of R</th>
<th>Formula</th>
<th>Property of R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\square p \to p$</td>
<td>reflexive</td>
<td>$\square p \to \square \square p$</td>
<td>transitive</td>
</tr>
<tr>
<td>$p \to \Diamond p$</td>
<td>reflexive</td>
<td>$p \to \square \Diamond p$</td>
<td>symmetrical</td>
</tr>
<tr>
<td>$\square \square p \to \square p$</td>
<td>reflexive</td>
<td>$\square \square p \leftrightarrow \square p$</td>
<td>reflexive, transitive</td>
</tr>
<tr>
<td>$\Diamond \Diamond p \to \Diamond p$</td>
<td>reflexive</td>
<td>$\Diamond \Diamond p \leftrightarrow \Diamond p$</td>
<td>reflexive, transitive</td>
</tr>
<tr>
<td>$\square p \to \Diamond \Diamond p$</td>
<td>reflexive</td>
<td>$\Diamond \square p \leftrightarrow \square p$</td>
<td>equivalence relation</td>
</tr>
<tr>
<td>$\Diamond \Diamond \Diamond p \to \Diamond p$</td>
<td>reflexive</td>
<td>$\square \Diamond \Diamond p \leftrightarrow \Diamond p$</td>
<td>equivalence relation</td>
</tr>
</tbody>
</table>
Modal Logic: Valid Formulas

<table>
<thead>
<tr>
<th>□F</th>
<th>□F</th>
<th>□□F</th>
<th>◻F</th>
<th>(□(F → □G) ∧ □G)</th>
<th>◻true</th>
</tr>
</thead>
<tbody>
<tr>
<td>F is necessarily true</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>agent a knows F</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>agent a believes F</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>F holds after executing program p</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>