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Reminder . . . Dynamic Logic

Given: a program with a contract:

1 precondition, FOL formula pre

2 postcondition, FOL formula post

3 code, while program π

In program verification, one formally proves that

N |= pre → [π]post

If pre holds before execution of π then post holds after
termination.

Reminder: weakest precondition calculus for DL.
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The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.
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The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}
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Specify what does not change

setBalance does not effect other
accounts

setBalance does not effect other
customer objects

setBalance does not effect any
object of any classes which may be
added later.
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The Framing Problem

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

Ownership (Types) (Noble, Vitek and Potter 1998)

Separation Logic (Reynolds, 1999)

Dynamic Frames/Region Logic (Kassios 2006)

. . .
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Heaps and “Footprints”

Heap
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Heaps and “Footprints”

Heap

account1

account2
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Heaps and “Footprints”

Heap

account1

account2

NO!
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Heaps and Heaplets

Modelling assumptions

Every memory location holds a value in N.

There infinitely many memory locations.

Heap and Heaplet

A heap is a total function modelling memory:
heap : N→ N

A heaplet is a finite partial function modelling footprints:
heaplet : N 7→ N

Partial function:
Partial function f : A 7→ B is a function f : D → B for D ⊆ A.
The finite set D = dom f is called the domain of f .
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Operations and Heaps

Disjoint union of heaplets:
h = h1 ∪+ h2 iff dom h1 ∩ dom h2 = ∅ and h = h1 ∪ h2.

h1 ∪+ h2 is always a heaplet.
(Union ∪ of heaplets does not always result in heaplets.)

Membership
For (x , y) ∈ h write h(x) = y .

It means: Memory location x holds value y .

Empty Heap
The empty heaplet ∅ is without allocated locations.

Singletons
Heaplet with exactly one allocated location x which holds value y :

write h = {(x , y)}
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Separation Logic
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Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic
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Operator Precedence

How are the implicit parentheses in
B −∗ C ∧ D ∨ A ∗ x 7→ y ?

Binding force:

∗ binds like ∧
−∗ binds like →, ∨
7→ binds like =

Answer:(
B −∗ (C ∧ D)

)
∨
(
A ∗ (x 7→ y)

)
or B −∗

(
(C ∧ D) ∨

(
A ∗ (x 7→ y)

))
Add explicit parentheses when combining ∨/→ / −∗ or ∧/ ∗
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Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2
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Separation Logic

Connector ∗ is called Separating Conjunction

A ∗ B has the following intuitive semantics:

A ∗ B is true
⇐⇒

A is true
and B is true

and A and B refer to
disjoint sets of memory locations.
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Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)

?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)
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Caution

β, h |= A 7→ B means that:{
(val(A), val(B))

}
= h,

not only (val(A), val(B)) ∈ h

On the other hand:

β, h |=? ⇐⇒ (val(A), val(B)) ∈ h

Notation sometimes: A ↪→ B :↔ A 7→ B ∗ true
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Some Valid Formulas

emp ↔ ¬(∃x , y . x 7→ y ∗ true)

ϕ ∗ ψ ↔ ϕ ∧ ψ
if neither emp nor 7→ occur.

x 7→ y ∧ x 7→ z → y = z

P ∗ (Q ∨ R) ↔ (P ∗ Q) ∨ (P ∗ R)
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Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)
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The Magic Wand

Modus Ponens for classical logic

A ∧ (A→ B)

B

Corresponding rule for separating conjunction ∗?

Modus Ponens for separation logic

A ∗ (A −∗ B)

B

The magic wand operator A −∗ B, aka separating implication:

β, h |= A −∗ B

⇐⇒
for all h′, h+ : N 7→ N : If h+ = h ∪+ h′ and h′ |= A, then h+ |= B
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Separating Operators

Taken from:
Separation Logic: Expressiveness, Complexity, Temporal Extension

Rémi Brochenin, PhD Thesis. 2013
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Programs and Separation Logic
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Programming Language

statement ::= while formula do statement

| if formula then statement else statement

| statement ; statement

| var := term

| [term] := term

| var := [term]

(later) | var := cons(term, ..., term)

(later) | dispose(var)

Restriction: formula are the arithmetic formulas that do not contain 7→
or emp.
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Kripke Frames with Heaps

Every state is a pair (β, h) with β : Var → N and h : N 7→ N
Kripke state transition the program semantics ρ(st) ∈ S × S
for any statement st.

β1, h1
β2, h2

β3, h3

. . .

. . .

ρ

ρ
ρ

ρ

ρ
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Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ
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Program semantics (with heap)

Accessiblity Relation for Programs

ρ : statement→ S × S
A state s ∈ S is a pair (β, h) with β : Var → N and h : N 7→ N

(
(β, h), (β′, h′)

)
∈ ρ(v := t) ⇐⇒ β′ = β[v/valβ(t)] and h′ = h

(
(β, h), (β′, h′)

)
∈ ρ(v := [t]) ⇐⇒ valβ(t) ∈ dom h and h′ = h and

β′ = β
[
v/h[valβ(t)]

]
(
(β, h), (β′, h′)

)
∈ ρ([t] := u) ⇐⇒ valβ(t) ∈ dom h and β′ = β and

h′ = h[valβ(t)/valβ(u)]

(Remember: f [a/b](a) = b and f [a/b](x) = f (x) for x 6= a)
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Failing executions

Statement x := [10] must not be executed if 10 6∈ dom h.

State (β, ∅) has no successor state in ρ(x := [10]).

How to distinguish between failed test ?ψ and memory violation?

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation.
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s ∈ fail(π) means: π started in s may cause memory violation.
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Fail-aware modality

Remember:

s |= [π]ϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π).

Problem:
emp→

[
[5] := 42

]
false is a valid formula.

New modality J·K
s |= JπKϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π) and s 6∈ fail(π)

Now:
emp→ J[5] := 42

y
ψ is not valid for any ψ

Ulbrich – Formal Systems II Theory – Separation Logic 28/46



Dynamic Separation Logic

Valid formulas:

x 7→ 5→ Jv := [x ] ; [x ] := v + 1Kx 7→ 6

(∃y .x 7→ y)→ J[x ] := 7Kx 7→ 7

x 7→ 5 ∗ y 7→ 6 → J[x ] := 7K(x 7→ 7 ∗ y 7→ 6)
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A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: {P} π {Q}

A Hoare triple is valid if program π started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P → JπKQ .

We present the calculus using dynamic logic notation.
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Reminder: Hoare Calculus (in DL notation)

P[x�E ]→ Jx := EKP
[x�E ] is substitution

P → Jπ1KQ Q → Jπ2KR
P → Jπ1 ; π2KR

P ′ → P P → JπKQ Q → Q ′

P ′ → JπKQ ′

P ∧ C → Jπ1KQ P ∧ ¬C → Jπ2KQ
P → Jif C then π1 else π2KQ

P ∧ C → JπKP
P → Jwhile C do πK(P ∧ ¬C )

P → JπKQ
(∃x .P)→ JπK(∃x .Q)

if x 6∈ Free(π)
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Separation Logic Rules for Assignments

Axioms:

x = m ∧ emp → Jx := EKx = E [x�m] ∧ emp

x = m ∧ E 7→ n → Jx := [E ]K(x = n ∧ E [x�m] 7→ n)

(E 7→ n) → J[E ] := F K E 7→ F

Heap location must be accessible

Recall: s |= JπKϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π) and s 6∈ fail(π).
All accessed heap locations (read or write) must be in domain.
Therefore: Precondition must ensure that.
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The Frame Rule

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

P → JπK Q

P ∗ R → JπK(Q ∗ R)

Modifies(π) ∩ Free(R) = ∅

Separation in Proofs

Proof P → JπKQ using in P,Q the memory π refers to.
Get for free: Nothing besides these memory locations has changed.
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Remember: The Framing Problem

Example in Java

//@ requires acc1 != acc2;

//@ ensures \result == 100;

int f(Account acc1, Account acc2) {

acc1.setBalance(100);

acc2.setBalance(200);

return acc1.getBalance();

}

Rule for setBalance:
A 7→ x → JA.setBalance(y)KA 7→ y

Use Frame Rule:

acc2 7→ x → . . .

. . . Jacc2.setBalance(200); Kacc2 7→ 200
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Remember: The Framing Problem

Example in Java

//@ requires acc1 != acc2;

//@ ensures \result == 100;

int f(Account acc1, Account acc2) {

acc1.setBalance(100);

acc2.setBalance(200);

return acc1.getBalance();

}

Rule for setBalance:
A 7→ x → JA.setBalance(y)KA 7→ y

Use Frame Rule:

acc2 7→ x ∗ acc1 7→ 100 → . . .

. . . Jacc2.setBalance(200); Kacc2 7→ 200 ∗ acc1 7→ 100
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On the board ...

(∃v . X 7→ v ∗ Y 7→ v) → JX := [X] ; Y := [Y]K X = Y
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Soundness of Frame Rule

P → JπKQ
P ∗ R → JπK(Q ∗ R)

or equivalently
|= (JπKQ) ∗ R → JπK(Q ∗ R)

if Modifies(π) ∩ Free(R) = ∅

=⇒
Instantiate left rule with P := JπKQ.

Premiss: trivially true, conclusion: desired implication.

⇐=
Let β, h |= P ∗ R, i.e., β, h1 |= P and β, h2 |= R with h = h1 ∪+ h2.

By premiss: β, h1 |= JπKQ and β, h |= (JπKQ) ∗ R
Right rule gives: β, h |= JπK(Q ∗ R)

�
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Lemma

Let h1, h
′
1, h2, h

′
2 : N 7→ N be heaplets, dom h1 ∩ dom h2 = ∅

β, β′ : Var → N be variable assignments. Then:

β, h1
π−→ β′, h′1 =⇒

(
β, h1 ∪+ h2

π−→ β′, h′1 ∪+ h′2 ⇐⇒ h2 = h′2
)

By structural induction:

variable assignment v := t (heap irrelevant)

heap store [t1] := t2 (val(t)
!
∈ dom h1)

heap load v := [t] (val(t)
!
∈ dom h1)

first-order test ?ϕ (heap irrelevant)

π1 ∪ π2, π1 ; π2, π∗ (appeal to ind. hyp)

s
π−→ s ′ means (s, s ′) ∈ ρ(π)
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Soundness of Frame Rule

|= (JπKQ) ∗ R → JπK(Q ∗ R) if Modifies(π)∩Free(R) = ∅ (?)

Let β, h |= (JπKQ) ∗ R, i.e., β, h1 |= JπKQ and β, h2|=R, h=h1∪+h2.

β, h |= (JπKQ) ∗ R

β, h1 |= (JπKQ)

β, h2 |= R

β′, h1Q |= Q

β′, h2 |= R

β′, h1Q ∪+ h2 |= Q ∗ R

∪+

∪+

π

(?)

∪+

∪+

Lemma, lang. is deterministic =⇒ β, h |= JπK(Q ∗ R)
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Memory Allocation and Deallocation

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Semantics: ρ and fail(
(β, h), (β′, h′)

)
∈ ρ(v := cons(t))

iff
β′ = β[v/loc] and h′ = h ∪+ {(loc, valβ(t))} and loc 6∈ dom h

fail(v := cons(t)) = ∅

cons allocates n consecutive unused memory locations, stores the
argument values there and returns the first memory location.

(See literature for general n-ary version)
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Memory Allocation and Deallocation

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Semantics: ρ and fail

((β, h), (β′, h′)) ∈ ρ(dispose(v))
iff

β′ = β and β(v) ∈ dom h and h′ = h \ {(β(v), h(β(v))}

fail(dispose(v)) = {(β, h) | β(v) 6∈ dom h}

dispose deallocates the allocated memory location v ;
fails if an unallocated location is disposed.
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Soundness of Frame Rule

(JπKQ) ∗ R

JπK(Q ∗ R)
if Modifies(π) ∩ Free(R) = ∅

Proof by structural induction over π.

see Reynolds p.77ff
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Decidability of Separation Logic

Decidable

Some restricted logics from Separation Logic are decidable.

1 Restricted arithmetic

2 No magic wand −∗
They can be reduced to Monadic Second Order Logic over N.
Equivalent to word emptiness of Büchi Automata.

The separating implication −∗ makes undecidable.

Relatively complete

The calculus for Separation Logic is relatively complete.
Every correct program can be proved using an oracle for N.
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Application of Separation Logic
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Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

list(x , 〈17, 21, 9〉) ↔ (x 7→ 17) ∗ (x+1 7→ v) ∗ (v 7→ 21) ∗ . . .
. . . ∗ (v + 1 7→ w) ∗ (w 7→ 9) ∗ (w + 1 7→ 0)

17

21

9

x
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Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

list(x , 〈17, 21, 9〉) ↔ (x 7→ 17) ∗ (x+1 7→ v) ∗ (v 7→ 21) ∗ . . .
. . . ∗ (v + 1 7→ w) ∗ (w 7→ 9) ∗ (w + 1 7→ 0)

General:

Recursive predicate list:

∀x , v1, v̄ . list(x , 〈v1, v̄〉)↔ ∃n. ((x 7→ v1) ∗ (x +1 7→ n) ∗ list(n, v̄))
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Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .
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Discussion

Advantages of Separation Logic

+ Functional and frame specification combined – no extra
consideration needed

+ Frame rule!

+ Abstraction Predicates are nice way of abstraction

Disadvantages of Separation Logic

– Functional and frame specification combined – no separation
of concerns!

– All data must be hierarchically structured

– Complicated semantics of Sep Logic (c.f. −∗)
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