AT

Karlsruhe Institute of Technology

Formal Systems II: Theory

Separation Logic

SS 2022

Mattias Ulbrich
Institute of Theoretical Informatics

KIT — Die Forschungsuniversitit in der Helmholtz-Gemeinschaft www.kit.edu

http://www.kit.edu

Motivation

Ulbrich — Formal Systems Il Theory — Separation Logic 2/46

I Reminder ... Dynamic Logic T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Given: a program with a contract:

@ precondition, FOL formula pre
@ postcondition, FOL formula post

@ code, while program 7

In program verification, one formally proves that

N | pre — [r]post

If pre holds before execution of 7 then post holds after
termination.

Reminder: weakest precondition calculus for DL.

Ulbrich — Formal Systems Il Theory — Separation Logic 3/46

I The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

Ulbrich — Formal Systems Il Theory — Separation Logic 4/46

I The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

Ulbrich — Formal Systems Il Theory — Separation Logic 4/46

I The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Ulbrich — Formal Systems Il Theory — Separation Logic 4/46

I The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q's number.

Ulbrich — Formal Systems Il Theory — Separation Logic 4/46

I The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q's number.

m Precondition: P has a telephone.

Ulbrich — Formal Systems Il Theory — Separation Logic 4/46

I The Framing Problem

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q's number.
m Precondition: P has a telephone.

a Postcondition: P knows the number of Q

Ulbrich — Formal Systems Il Theory — Separation Logic

4/46

I The Framing Problem

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Formal Software Verification

m Prove what effects a program has.

m Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for @'s number.
m Precondition: P has a telephone.
a Postcondition: P knows the number of Q

a missing postcondition?
Postcondition: P still has a telephone.

Ulbrich — Formal Systems Il Theory — Separation Logic

4/46

The Framing Problem T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example in Java

interface Account {
void setBalance(int);
int getBalance();

}

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem ﬂ("'

stitute of Technology

Example in Java

interface Account {
void setBalance(int);
int getBalance();

}

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100);
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

The Framing Problem ﬂ("'

stitute of Technology

Example in Java

interface Account {
void setBalance(int);
int getBalance();

}

//@ requires accountl != account2;

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100) ;
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem ﬂ("'

stitute of Technology

Specify what does not change
Example in Java

interface Account {
void setBalance(int);
int getBalance();

}

//@ requires accountl !=

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100) ;
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem ﬂ("'

stitute of Technology

Specify what does not change

. m setBalance does not effect other
Example in Java e

interface Account {
void setBalance(int);
int getBalance();

}

//@ requires accountl !=

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100) ;
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem ﬂ("'

stitute of Technology

Specify what does not change

. m setBalance does not effect other
Example in Java e

interface Account { ® setBalance does not effect other
void setBalance(int); .
customer objects

int getBalance();
}

//@ requires accountl !=

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100) ;
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem ﬂ("'

stitute of Technology

Specify what does not change

. m setBalance does not effect other
Example in Java e

interface Account { ® setBalance does not effect other
void setBalance(int); .
customer objects

int getBalance();

} a setBalance does not effect any
object of any classes which may be
//@ requires accountl != added later.

//@ ensures \result == 100;

int f(Account accountl, Account account2) {
accountl.setBalance(100) ;
account?2.setBalance (200) ;
return accountl.getBalance();

3

Ulbrich — Formal Systems Il Theory — Separation Logic 5/46

I The Framing Problem AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Ulbrich — Formal Systems Il Theory — Separation Logic 6/46

I The Framing Problem IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

= Ownership (Types) (Noble, Vitek and Potter 1998)
m Separation Logic (Reynolds, 1999)
w Dynamic Frames/Region Logic (Kassios 2006)
...

Ulbrich — Formal Systems Il Theory — Separation Logic 6/46

I The Framing Problem IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

= Ownership (Types) (Noble, Vitek and Potter 1998)
m Separation Logic (Reynolds, 1999)
w Dynamic Frames/Region Logic (Kassios 2006)
...

Ulbrich — Formal Systems Il Theory — Separation Logic 6/46

I Heaps and “Footprints” A\‘(IT

Heap

Ulbrich — Formal Systems Il Theory — Separation Logic 7/46

I Heaps and “Footprints” AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Heap

Ulbrich — Formal Systems Il Theory — Separation Logic 7/46

I Heaps and “Footprints” AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Heap

Ulbrich — Formal Systems Il Theory — Separation Logic 7/46

I Heaps and “Footprints”

Heap

<o

Ulbrich — Formal Systems Il Theory — Separation Logic

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

7/46

I Heaps and Heaplets AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Modelling assumptions

a Every memory location holds a value in N.
a There infinitely many memory locations.

Heap and Heaplet

A heap is a total function modelling memory:
heap : N — N

A heaplet is a finite partial function modelling footprints:
heaplet : N -+ N

Partial function:
Partial function f : A+ B is a function f : D — B for D C A.
The finite set D = dom f is called the domain of f.

Ulbrich — Formal Systems Il Theory — Separation Logic 8/46

I Operations and Heaps T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Disjoint union of heaplets:
h=hi W hy iff domhiNdomhy =0 and h= hy U hs.

h1 ¥ hy is always a heaplet.
(Union U of heaplets does not always result in heaplets.)

Membership
For (x,y) € h write h(x) =y.
It means: Memory location x holds value y.

Empty Heap
The empty heaplet () is without allocated locations.

Singletons
Heaplet with exactly one allocated location x which holds value y:

write h = {(x, y)}

Ulbrich — Formal Systems Il Theory — Separation Logic 9/46

Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 10/46

I Separation Logic — Syntax AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Terms t:

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Terms t:
a FOL terms over N with 4+, —,-,0,1

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax IT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:

a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

o1 Aps, P11V, P1— P2

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

o1 Aps, P11V, P1— P2
at =1t t<t,...

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

o1 Aps, P11V, P1— P2
at =1t t<t,...
m Vx.p, Ix.p

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
FOL terms over N with +, —,-,0,1

Formulae ¢:

a1 Ap2, P11V, 1= P2
atp =10 t<t,...

m Vx.p, Ix.p

| P71 * P2

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

p1 NP2, 1 V2, Y12

at =1t t<t,...
m Vx.p, Ix.p
® emp

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AIT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

&1 A2, p1 V2, P12
at =1t t<t,...

m Vx.p, Ix.p

a QO]_*SOZ

a emp

mt— b

new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Separation Logic — Syntax AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Terms t:
a FOL terms over N with 4+, —,-,0,1

Formulae ¢:

P1 A P2, p1V 2, P1 P2
th =6, t1 <ty ...

Vx.p, Ix.p
$1* P2
emp

t1 — b
® 1 kP (later)
new in Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 11/46

I Operator Precedence AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

How are the implicit parentheses in
B+«CADVAxx—y?

Ulbrich — Formal Systems Il Theory — Separation Logic 12/46

I Operator Precedence AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

How are the implicit parentheses in
B«CADVAxx—y?

Binding force:

* binds like A
—t binds like —, V
— binds like =

Ulbrich — Formal Systems Il Theory — Separation Logic 12/46

I Operator Precedence AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

How are the implicit parentheses in
B«CADVAxx—y?

Binding force:

* binds like A
—t binds like —, V
— binds like =

Answer:
(B (CAD))V (Ax(x+y))

or B—*((C/\D)\/(A*(X'—U’)))

Ulbrich — Formal Systems Il Theory — Separation Logic 12/46

I Operator Precedence

How are the implicit parentheses in
B«CADVAxx—y?

Binding force:

* binds like A
—t binds like —, V
— binds like =

Answer:
(B (CAD))V (Ax(x+y))

or B—*((C/\D)\/(A*(X'—U’)))

Add explicit parentheses when combining V/ — / = or A/

Ulbrich — Formal Systems Il Theory — Separation Logic 12/46

I Separation Logic — Semantics AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var —» N
@ Heaplet h: N+ N

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics

(Structuee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

Terms:
w valg(ty + to) = valg(t1) +n valg(t2), same for “"
» valzg(x) = B(x) for variable x

Formulas in FOL:
w Operator 3, h |= is as expected for A, V,—,V, 3, <, =.
w Example: 8, h = @1 Ao iff B,hl= 1 and B, h = o

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics AKIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics AKIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10

a5, h }= t1— t iff h= {(va/g(tl), Valg(tz))}

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10

a5, h }= t1— t iff h= {(Valg(tl), Valg(tz))}
® (3, h = @1 %o iff there exist heaplets hy, hy : N+ N with

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10

a5, h }= t1— t iff h= {(Valg(tl), Valg(tz))}

® (3, h = @1 %o iff there exist heaplets hy, hy : N+ N with
O h= h1] h2 and

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10
a5, h }= t1— t iff h= {(Valg(tl), Valg(tz))}

® (3, h = @1 %o iff there exist heaplets hy, hy : N+ N with
O h= h1] h2 and
° ﬁa hl ': ©1 and

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic — Semantics T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Fixed first order domain: N.
Terms and formulas are evaluated over:

@ Variable assignment 5 : Var - N
@ Heaplet h: N+ N

a 3,h=emp iff domh=10

a5, h }= t1— t iff h= {(Valg(tl), Valg(tz))}

® (3, h = @1 %o iff there exist heaplets hy, hy : N+ N with
O h= h1] h2 and
° ,8, hl ': ®1 and
@ L. k=

Ulbrich — Formal Systems Il Theory — Separation Logic 13/46

I Separation Logic T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Connector x is called Separating Conjunction

A x B has the following intuitive semantics:

A x B is true
<~
Ais true
and B is true
and A and B refer to
disjoint sets of memory locations.

Ulbrich — Formal Systems Il Theory — Separation Logic 14/46

I Properties of Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Idempotence

A & ANA (idempotence for A)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Idempotence

A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idempotence

A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idempotence

A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AKIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idempotence
A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AKIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idempotence
A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

s EFAANB — A (Weakining of conjunction)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AKIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idempotence
A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

s EFAANB — A (Weakining of conjunction)

,
s EAxB — A (Weakining of separating conjunction?)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Idempotence
A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

s EFAANB — A (Weakining of conjunction)
. ’; AxB — A (Weakining of separating conjunction?)
a NO! Counterexample:

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Properties of Separation Logic AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Idempotence
A & ANA (idempotence for A)
[|; A+ AxA (idempotence also for * ?)

a NO! Counterexample:
E-(T—3 = 7—=3%x7—23)

s EFAANB — A (Weakining of conjunction)
. ’; AxB — A (Weakining of separating conjunction?)
a NO! Counterexample:

E-(7T—3%x6—4 — 7~ 3)

Ulbrich — Formal Systems Il Theory — Separation Logic 15/46

I Caution AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

B,h = A~ B means that:

. {(val(A),val(B))} = h,
= not only (val(A),val(B)) € h

Ulbrich — Formal Systems Il Theory — Separation Logic 16/46

I Caution AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

B,h = A — B means that:
. {(val(A),val(B))} = h,
= not only (val(A),val(B)) € h

On the other hand:

B,h =7 < (val(A),val(B)) € h

Ulbrich — Formal Systems Il Theory — Separation Logic 16/46

I Caution AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

B,h = A — B means that:

. {(val(A),val(B))} = h,
= not only (val(A),val(B)) € h

On the other hand:

B,h = A B x true <= (val(A),val(B)) € h

Ulbrich — Formal Systems Il Theory — Separation Logic 16/46

I Caution T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

B,h = A — B means that:
. {(val(A),val(B))} = h,
= not only (val(A),val(B)) € h

On the other hand:

B,h = A B x true <= (val(A),val(B)) € h

Notation sometimes: A< B <+ A~ B * true

Ulbrich — Formal Systems Il Theory — Separation Logic 16/46

I Some Valid Formulas AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

w emp < —(3Ix,y. x — y * true)

Ulbrich — Formal Systems Il Theory — Separation Logic 17/46

I Some Valid Formulas

w emp < —(3Ix,y. x — y * true)

" oxY S PN
if neither emp nor — occur.

Ulbrich — Formal Systems Il Theory — Separation Logic 17/46

I Some Valid Formulas

w emp < —(3Ix,y. x — y * true)

" oxY S PN
if neither emp nor — occur.

@ X YANX—zZ = y=2z

Ulbrich — Formal Systems Il Theory — Separation Logic 17/46

I Some Valid Formulas AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

w emp < —(3Ix,y. x — y * true)

" oxY S PN
if neither emp nor — occur.

@ X YANX—zZ = y=2z

a Px(QVR) < (PxQ)V(Px*R)

Ulbrich — Formal Systems Il Theory — Separation Logic 17/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z
Q@ x—HyAx—z

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

I Quiz!

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z
@ x—=yAx—=z
@ (x—0Ay—0)—=x=y

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z
Q@ x—HyAx—z
@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—HyAx—z

@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y
@ (x—0xy—0)—(x=y)

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—HyAx—z

@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y
@ (x—0xy—0)—(x=y)
@ (x—aAy—b)—a=b

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—yAx—z

@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y
@ (x—0xy—0)—(x=y)
@® (x—aANy—b)—a=0b
@ pxemp—

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—yAx—z

@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y
@ (x—0xy—0)—(x=y)
@® (x—aANy—b)—a=0b
@ pxemp—

@ ¢ox—p

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—yAx—z

@ (x—0Ay—0)—=x=y

@ (x—0xy—0)—x=y

@ (x—0xy—0)—(x=y)

@ (x—aAy—b)—a=b

@ pxemp—

@ ¢y

a. Y x) for ¢ without —,emp

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

| Quiz IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Are the following formulas valid/satisfiable /unsatisfiable?
(here: A formula ¢ is satisfiable iff are there 5 and h such that 3, h = ¢.)

D x—yxx—>z

Q@ x—yAx—z

@ (x—0Ay—0)—=x=y
@ (x—0xy—0)—x=y
@ (x—0xy—0)—(x=y)
@® (x—aANy—b)—a=0b
@ pxemp—

a. Y x) for ¢ without —,emp
b. x—=y*(x—y)

Ulbrich — Formal Systems Il Theory — Separation Logic 18/46

I The Magic Wand AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Modus Ponens for classical logic

AN (A= B)
B

Ulbrich — Formal Systems Il Theory — Separation Logic 19/46

I The Magic Wand

Modus Ponens for classical logic

AN (A= B)
B

Corresponding rule for separating conjunction =7

Ulbrich — Formal Systems Il Theory — Separation Logic 19/46

I The Magic Wand

Modus Ponens for classical logic

AN (A= B)
B

Corresponding rule for separating conjunction =7

Modus Ponens for separation logic

Ax (A = B)
B

The magic wand operator A — B, aka separating implication:

B,hl=A—xB /

—
forall W, h" : N+ N: If "" = hw h and ' |= A, then h" = B

Ulbrich — Formal Systems Il Theory — Separation Logic 19/46

I Separating Operators

@ fxg when there are ¢ and D
such that @ = ©, as well as ¢ Fs. fand D F g.

D Es. f +g whenany ¢ such that ¢ s f is also such that © F g.

Figure 1.5: Visual representation of the semantics of separation operators

Taken from:
Separation Logic: Expressiveness, Complexity, Temporal Extension
Rémi Brochenin, PhD Thesis. 2013

Ulbrich — Formal Systems Il Theory — Separation Logic 20/46

Programs and Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 21/46

I Programming Language ﬂ("'

stitute of Technology

statement ::= while formula do statement
| if formula then statement else statement

| statement ; statement

] var := term

| [term] := term

| var := [term]
(later) | var := cons(term, ..., term)
(later) | dispose(var)

Restriction: formula are the arithmetic formulas that do not contain —
or emp.

Ulbrich — Formal Systems Il Theory — Separation Logic 22/46

I Kripke Frames with Heaps AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

w Every state is a pair (3, h) with 5: Var - Nand h: N+ N

u Kripke state transition the program semantics p(st) € S x S
for any statement st.

Ulbrich — Formal Systems Il Theory — Separation Logic 23/46

eeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

Ulbrich — Formal Systems Il Theory — Separation Logic

nnnnnnn

24/46

eeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(mUm) = p(m)U p(r2)

Ulbrich — Formal Systems Il Theory — Separation Logic

nnnnnnn

24/46

eeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(mUm) = p(m)U p(r2)

p(my;m) = p(mr1); p(m2) ; is forward composition

Ulbrich — Formal Systems Il Theory — Separation Logic

nnnnnnn

24/46

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(mUm) = p(m)U p(r2)

p(my;m) = p(mr1); p(m2) ; is forward composition
= {(s,t) | ex. u € S with (s, u) € p(m), (u, t) € p(m2)}

Ulbrich — Formal Systems Il Theory — Separation Logic 24/46

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(mUm) = p(m)U p(r2)

p(my;m) = p(mr1); p(m2) ; is forward composition
= {(s,t) | ex. u € S with (s, u) € p(m), (u, t) € p(m2)}

p(r*) = p(n)* * is refl. transitive closure

Ulbrich — Formal Systems Il Theory — Separation Logic 24/46

Accessiblity Relation for Programs

p:statement — S x S

p(mUm) = p(m)U p(r2)

p(my;m) = p(mr1); p(m2) ; is forward composition
= {(s,t) | ex. u € S with (s, u) € p(m), (u, t) € p(m2)}

p(r*) = p(n)* * is refl. transitive closure

= {(so,5n) | ex. n > 0 with (s;,si+1) € p(7) f.a. i < n}

Ulbrich — Formal Systems Il Theory — Separation Logic 24/46

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(rrUm) = p(m)Up(m2)
p(my;m) = p(mr1); p(m2) ; is forward composition
= {(s,t) | ex. u € S with (s, u) € p(m), (u, t) € p(m2)}

* * is refl. transitive closure

p(7*) = p(r)
= {(so,5n) | ex. n > 0 with (s;,si+1) € p(7) f.a. i < n}

p(?p) = {(s,s)|sFE ¢}

Ulbrich — Formal Systems Il Theory — Separation Logic 24/46

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p:statement — S x S

p(rrUm) = p(m)Up(m2)
p(my;m) = p(mr1); p(m2) ; is forward composition
= {(s,t) | ex. u € S with (s, u) € p(m), (u, t) € p(m2)}

*

p(r*) = p(n) * is refl. transitive closure

= {(so,5n) | ex. n > 0 with (s;,si+1) € p(7) f.a. i < n}

p(rp) = {(s,s)|s v}
Reminder: IF and WHILE

if ¢ then aelse § =
while p doa = (?¢;a)*; ¢

Ulbrich — Formal Systems Il Theory — Separation Logic 24/46

I Program semantics (with heap) AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p: statement —+ S x S
A state s € S is a pair (8, h) with 8 : Var - Nand h: N-» N

Ulbrich — Formal Systems Il Theory — Separation Logic 25/46

I Program semantics (with heap) AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p: statement —+ S x S
A state s € S is a pair (8, h) with 8 : Var - Nand h: N-» N

((B.).(8. W) €plv:i=1) = = Blv/valy(t)] and = h

Ulbrich — Formal Systems Il Theory — Separation Logic 25/46

I Program semantics (with heap) AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p: statement —+ S x S
A state s € S is a pair (8, h) with : Var - Nand h: N+ N

((B.).(8. W) €plv:i=1) = = Blv/valy(t)] and = h

((B,h), (B, 1)) € p(v:=[t]) <= vals(t) € domhand ' = h and
B' = Blv/hlvals(t)]]

Ulbrich — Formal Systems Il Theory — Separation Logic 25/46

I Program semantics (with heap) AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Accessiblity Relation for Programs

p: statement —+ S x S
A state s € S is a pair (8, h) with : Var - Nand h: N+ N

((B.).(8. W) €plv:i=1) = = Blv/valy(t)] and = h

((B,h), (B, 1)) € p(v:=[t]) <= vals(t) € domhand ' = h and
B' = Blv/hlvals(t)]]

((B,h), (B, 1)) € p([t] :=u) <= vals(t) € domhand ' =3 and
h' = hlvalg(t)/valz(u)]
(Remember: f[a/b](a) = b and f[a/b](x) = f(x) for x # a)

Ulbrich — Formal Systems Il Theory — Separation Logic 25/46

I Failing executions AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Statement x := [10] must not be executed if 10 ¢ dom h.
State (3, 0) has no successor state in p(x := [10]).

How to distinguish between failed test 77y and memory violation?

Ulbrich — Formal Systems Il Theory — Separation Logic 26/46

I Failing executions AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Statement x := [10] must not be executed if 10 ¢ dom h.
State (3,0) has no successor state in p(x := [10]).

How to distinguish between failed test ?¢) and memory violation?

Model unallowed heap access:

fail : statement — 2°
s € fail(7) means: 7 started in s may cause memory violation.

Ulbrich — Formal Systems Il Theory — Separation Logic 26/46

I Failing executions

Model unallowed heap access:

fail : statement — 2°
s € fail(m) means: 7 started in s may cause memory violation

fail(x :=t) =
fail(ty) = 0

Ulbrich — Formal Systems Il Theory — Separation Logic 27/46

I Failing executions AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Model unallowed heap access:

fail : statement — 2°
s € fail(m) means: 7 started in s may cause memory violation

fail(x :=t) =
fail(ty) = 0

fail(x :=[t]) =
fail([t] := u) = {(B,h) | vals(t) & dom h}

Ulbrich — Formal Systems Il Theory — Separation Logic 27/46

I Failing executions AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Model unallowed heap access:

fail : statement — 2°
s € fail(m) means: 7 started in s may cause memory violation

fail(x :=t) =
fail(ty) = 0

fail(x :=[t]) =
fail([t] := u) = {(B,h) | vals(t) & dom h}

fail(my ;) = fail(m) U (p(m1) ; fail(m2))

fai/(7r1 U 71'2) = fail(7r1) U fai/(7T2)

Ulbrich — Formal Systems Il Theory — Separation Logic 27/46

I Failing executions AIT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Model unallowed heap access:

fail : statement — 2°
s € fail(m) means: 7 started in s may cause memory violation

fail(x :=t) =
fail(ty) = 0

fail(x :=[t]) =
fail([t] := u) = {(B,h) | vals(t) & dom h}

fail(my ;) = fail(m) U (p(m1) ; fail(m2))
fai/(7r1 U 71'2) = fail(7r1) U fai/(7T2)

fail(r*) = p(x*); fail(r)

Ulbrich — Formal Systems Il Theory — Separation Logic 27/46

I Failing executions IT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Model unallowed heap access:

fail : statement — 2°
s € fail(m) means: 7 started in s may cause memory violation

fail(x :=1t) =
fail(2¢) = 0
fail(x :=[t]) =
fail([t] := u) = {(B,h) | vals(t) & dom h}
fail(my ;) = fail(m) U (p(m1) ; fail(m2))
fai/(7r1 U 71'2) = fail(7r1) U fai/(7T2)
fail(7™) p(7*) ; fail(m)
with A; B = {x | ex y with (x,y) € Aand y € B}

Ulbrich — Formal Systems Il Theory — Separation Logic 27/46

I Fail-aware modality AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Remember:
skE[r]e iff ' Epforall (s,s') € p(n).

Problem:
emp — [[5] := 42| false is a valid formula.

New modality [-]
sk [rle iff s ¢ forall (s,s') € p(r) and s & fail(r)

Now:
emp — [[5] := 42]¢» s not valid for any ¢

Ulbrich — Formal Systems Il Theory — Separation Logic 28/46

I Dynamic Separation Logic

Valid formulas:
ax—b—=vi=[x;[x]=v+1]x—6

e (Fyx—=y)=[x]=7]x—7

ax—=5xy—>6 — [[x] =7)(x—7xy—06)

Ulbrich — Formal Systems Il Theory — Separation Logic 29/46

I A Calculus for Separation Logic AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Ulbrich — Formal Systems Il Theory — Separation Logic 30/46

I A Calculus for Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)
Operates on Hoare Triples: {P} m {Q}

A Hoare triple is valid if program m started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Ulbrich — Formal Systems Il Theory — Separation Logic 30/46

I A Calculus for Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)
Operates on Hoare Triples: {P} m {Q}

A Hoare triple is valid if program m started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P — [7]Q .

Ulbrich — Formal Systems Il Theory — Separation Logic 30/46

I A Calculus for Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)
Operates on Hoare Triples: {P} m {Q}

A Hoare triple is valid if program m started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P — [7]Q .

We present the calculus using dynamic logic notation.

Ulbrich — Formal Systems Il Theory — Separation Logic 30/46

I Reminder: Hoare Calculus (in DL notation) A\K"'

PlxE] — [x .= E]P [x<E] is substitution

P—[m]Q Q— [m]R PP P—=[r]Q@ Q— @
P — [m1; m]R P = [7]Q

PAC—[m]Q PA-C—[mr]Q
P — [if C then 1 else m]Q

PAC — [r]P
P — [while C do 7](P A —C)

P — [r]@Q
(Ix.P) = [r](3x.Q)

if x & Free(m)

Ulbrich — Formal Systems Il Theory — Separation Logic 31/46

I Separation Logic Rules for Assignments AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Axioms:

x=mAemp — [x:=E]x = E[xem]Aemp
x=mAEw—n — [x:=[E]](x=nA E[x<m]+— n)

(E—n) — [[E]:=F]E—F

Heap location must be accessible

Recall: s = [[n]¢ iff s’ |= ¢ for all (s,s’) € p() and s & fail(r).
All accessed heap locations (read or write) must be in domain.
Therefore: Precondition must ensure that.

Ulbrich — Formal Systems Il Theory — Separation Logic 32/46

I Separation Logic Rules for Assignments AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Axioms:

x=mAemp — [x:=E]x = E[xem]Aemp
x=mAEw—n — [x:=[E]](x=nA E[x<m]+— n)

(3n.E—n) — [[E] =F] E—~F

Heap location must be accessible

Recall: s = [[n]¢ iff s’ |= ¢ for all (s,s’) € p() and s & fail(r).
All accessed heap locations (read or write) must be in domain.
Therefore: Precondition must ensure that.

Ulbrich — Formal Systems Il Theory — Separation Logic 32/46

I The Frame Rule AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

P — [r] @
Px R — [r](Q = R)
Modifies(7) N Free(R) = ()

Ulbrich — Formal Systems Il Theory — Separation Logic 33/46

I The Frame Rule AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

P — [r] @
Px R — [r](Q = R)
Modifies(7) N Free(R) = ()

Separation in Proofs

Proof P — [r]Q using in P, Q the memory 7 refers to.
Get for free: Nothing besides these memory locations has changed.

Ulbrich — Formal Systems Il Theory — Separation Logic 33/46

I Remember: The Framing Problem ﬂ("'

stitute of Technology

Example in Java

//@ requires accl != acc2;

//@ ensures \result == 100;

int f(Account accl, Account acc2) {
accl.setBalance(100);
acc2.setBalance(200) ;
return accl.getBalance();

}

Rule for setBalance:
A+ x — [A.setBalance(y)]A— y

Ulbrich — Formal Systems Il Theory — Separation Logic 34/46

I Remember: The Framing Problem

Example in Java

//@ requires accl != acc2;

//@ ensures \result == 100;

int f(Account accl, Account acc2) {
accl.setBalance(100);
acc2.setBalance(200) ;
return accl.getBalance();

}

Rule for setBalance:
A+ x — [A.setBalance(y)]A— y

Use Frame Rule:

acc2—x — ...
... [acc2.setBalance(200); |acc2 — 200

Ulbrich — Formal Systems Il Theory — Separation Logic 34/46

I Remember: The Framing Problem

Example in Java

//@ requires accl != acc2;

//@ ensures \result == 100;

int f(Account accl, Account acc2) {
accl.setBalance(100);
acc2.setBalance(200) ;
return accl.getBalance();

}

Rule for setBalance:
A+ x — [A.setBalance(y)]A— y

Use Frame Rule:

acc2 — x * accl — 100 — ...
... [acc2.setBalance(200); Jacc2 + 200 * accl — 100

Ulbrich — Formal Systems Il Theory — Separation Logic 34/46

I On the board ... AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Av.X—=»vxY—=v) - X=X; Y =[] X=Y

Ulbrich — Formal Systems Il Theory — Separation Logic 35/46

I Soundness of Frame Rule A\KIT

P—[r]Q or equivalently
P xR — [r](Q * R) E([7]Q) *x R — [7](Q * R)

if Modifies(m) N Free(R) = ()

Ulbrich — Formal Systems Il Theory — Separation Logic 36/46

I Soundness of Frame Rule A\KIT

P—[r]Q or equivalently
P xR — [r](Q * R) E([7]Q) *x R — [7](Q * R)

if Modifies(m) N Free(R) = ()

—
Instantiate left rule with P := [7] Q.

Premiss: trivially true, conclusion: desired implication.

Ulbrich — Formal Systems Il Theory — Separation Logic 36/46

I Soundness of Frame Rule A\KIT

P—[r]Q or equivalently
P xR — [r](Q * R) E([7]Q) *x R — [7](Q * R)

if Modifies(m) N Free(R) = ()

—
Instantiate left rule with P := [7] Q.

Premiss: trivially true, conclusion: desired implication.

<—
Let B,h|= P %R, i.e., B,h |= P and 8, hy = R with h = hy & hy.

By premiss: 5, by |= [1]@ and 4, h = ([x]Q) * R
Right rule gives: 8, h = [7](Q * R)

Ulbrich — Formal Systems Il Theory — Separation Logic 36/46

I Soundness of Frame Rule A\KIT

P—[r]Q or equivalently
P xR — [r](Q * R) E([7]Q) *x R — [7](Q * R)

if Modifies(m) N Free(R) = ()

—
Instantiate left rule with P := [7] Q.

Premiss: trivially true, conclusion: desired implication.

<—
Let B,h|= P %R, i.e., B,h |= P and 8, hy = R with h = hy & hy.

By premiss: 5, by |= [1]@ and 4, h = ([x]Q) * R
Right rule gives: 8, h = [7](Q * R)

Ulbrich — Formal Systems Il Theory — Separation Logic 36/46

| Lemma ST

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Let hy, by, hp, h, : N+ N be heaplets, dom h; N'dom hy = ()
B, : Var — N be variable assignments. Then:

By 5B, = (B.mWhy D B H YRy <= hy = h))

s = s’ means (s,s') € p(n)

Ulbrich — Formal Systems Il Theory — Separation Logic 37/46

I Lemma

T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Let hy, by, hp, h, : N+ N be heaplets, dom h; N'dom hy = ()
B, : Var — N be variable assignments. Then:

By 5B, = (B.mWhy D B H YRy <= hy = h))

By structural induction:

m variable assignment v :=t
w heap store [t1] :=

w heap load v := [t]
u first-order test ?¢p

a Ty Ump, 1 mo, T

Ulbrich — Formal Systems Il Theory — Separation Logic

(heap |rre|eva nt

(val(t) E dom hy

(heap irrelevant

)
)
(val(t) E dom hy)
)
(appeal to ind. hyp)

)

s = s’ means (s,s') € p(n

37/46

I Soundness of Frame Rule AT

= ([7]Q) * R — [xl(Q x R) if Modifies()Free(R) = 0 (x)

Let 5, h): ([[WHQ) * R, ie, B,): [[’R']]Q and ﬁ,h2):R, h=h14hs.

B E([7]Q) ———— e F Q

A N

B,h = ([7]Q) * R BlohoWh EQxR

& (%) V

B R———— b ER

Lemma, lang. is deterministic = (,h |= [7](Q * R)

Ulbrich — Formal Systems Il Theory — Separation Logic 38/46

I Memory Allocation and Deallocation AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Ulbrich — Formal Systems Il Theory — Separation Logic 39/46

I Memory Allocation and Deallocation AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

((8,h), (B, 1)) € p(v := cons(t))
iff
B" = Blv/loc] and i = h {(loc, valz(t))} and loc & dom h
fail(v := cons(t)) = ()

cons allocates n consecutive unused memory locations, stores the
argument values there and returns the first memory location.

(See literature for general n-ary version)

Ulbrich — Formal Systems Il Theory — Separation Logic 39/46

I Memory Allocation and Deallocation AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

((B,h),(B',H)) € @F(diSPOSG(V))
' =B and B(v) € domh and ' = h\ {(B(v), h(B(v))}
fail(dispose(v)) = {(B, h) | B(v) & dom h}

dispose deallocates the allocated memory location v;
fails if an unallocated location is disposed.

Ulbrich — Formal Systems Il Theory — Separation Logic 40/46

I Soundness of Frame Rule

(I7]Q) x R
[~](Q * R)

Proof by structural induction over 7.

if Modifies(m) N Free(R) = ()

see Reynolds p.77ff

Ulbrich — Formal Systems Il Theory — Separation Logic 41/46

I Decidability of Separation Logic AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Decidable

Some restricted logics from Separation Logic are decidable.
@ Restricted arithmetic
@ No magic wand —
They can be reduced to Monadic Second Order Logic over N.
Equivalent to word emptiness of Biichi Automata.

The separating implication — makes undecidable.

Relatively complete

The calculus for Separation Logic is relatively complete.
Every correct program can be proved using an oracle for N.

Ulbrich — Formal Systems Il Theory — Separation Logic 42/46

Application of Separation Logic

Ulbrich — Formal Systems Il Theory — Separation Logic 43/46

I Abstraction Predicates AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Use predicate symbols to abstract away from data structures

Example: Lists

21

X @— 17

Ulbrich — Formal Systems Il Theory — Separation Logic 44/46

I Abstraction Predicates AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Use predicate symbols to abstract away from data structures

Example: Lists

list(x,(17,21,9)) <> (x—=>17)* (x+1— v) * (v —21) ...
ok (vl w)x (w—9)x (w+1—0)

21

X @— 17

Ulbrich — Formal Systems Il Theory — Separation Logic 44/46

I Abstraction Predicates AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Use predicate symbols to abstract away from data structures

Example: Lists

list(x,(17,21,9)) <« (x+—17) % (x+1+— v)* (v —21) *...
ok (v+le w)x(w—9)x (w+1+—0)

General:

Recursive predicate list:

Vx, vi, V. list(x, (v, 7)) <> 3n. ((x = v1) * (x+1 +— n) * list(n, ¥))

Ulbrich — Formal Systems Il Theory — Separation Logic 44/46

w Verifast — Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Ulbrich — Formal Systems Il Theory — Separation Logic

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

w Verifast — Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

w Infer (Peter O'Hearn et al., Facebook)
http://fbinfer.com/

Ulbrich — Formal Systems Il Theory — Separation Logic

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

w Verifast — Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

w Infer (Peter O'Hearn et al., Facebook)
http://fbinfer.com/

w jStar (M. Parkinson, now MS)

Ulbrich — Formal Systems Il Theory — Separation Logic

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

w Verifast — Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

w Infer (Peter O'Hearn et al., Facebook)
http://fbinfer.com/

w jStar (M. Parkinson, now MS)

w Viper (P. Miiller, ETH Zurich)
concurrency

Ulbrich — Formal Systems Il Theory — Separation Logic

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

w Verifast — Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O'Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Miiller, ETH Zurich)
concurrency

Spacelnvader, YNot, HOLFoot, ..., ...

Ulbrich — Formal Systems Il Theory — Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Advantages of Separation Logic

+ Functional and frame specification combined — no extra
consideration needed

I Discussion AT

+ Frame rulel
+ Abstraction Predicates are nice way of abstraction

Disadvantages of Separation Logic

— Functional and frame specification combined — no separation
of concerns!
— All data must be hierarchically structured

— Complicated semantics of Sep Logic (c.f. —)

Ulbrich — Formal Systems Il Theory — Separation Logic 46/46

