
Formal Systems II: Theory

Separation Logic

SS 2022

Mattias Ulbrich
Institute of Theoretical Informatics

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

http://www.kit.edu

Motivation

Ulbrich – Formal Systems II Theory – Separation Logic 2/46

Reminder . . . Dynamic Logic

Given: a program with a contract:

1 precondition, FOL formula pre

2 postcondition, FOL formula post

3 code, while program π

In program verification, one formally proves that

N |= pre → [π]post

If pre holds before execution of π then post holds after
termination.

Reminder: weakest precondition calculus for DL.

Ulbrich – Formal Systems II Theory – Separation Logic 3/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Formal Software Verification

Prove what effects a program has.

Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q’s number.

Precondition: P has a telephone.

Postcondition: P knows the number of Q

missing postcondition?
Postcondition: P still has a telephone.

Ulbrich – Formal Systems II Theory – Separation Logic 4/46

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ requires account1 != account2;

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ requires account1 != account2;

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

Specify what does not change

setBalance does not effect other
accounts

setBalance does not effect other
customer objects

setBalance does not effect any
object of any classes which may be
added later.

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ requires account1 != account2;

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

Specify what does not change

setBalance does not effect other
accounts

setBalance does not effect other
customer objects

setBalance does not effect any
object of any classes which may be
added later.

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ requires account1 != account2;

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

Specify what does not change

setBalance does not effect other
accounts

setBalance does not effect other
customer objects

setBalance does not effect any
object of any classes which may be
added later.

The Framing Problem

Example in Java

interface Account {

void setBalance(int);

int getBalance();

}

//@ requires account1 != account2;

//@ ensures \result == 100;

int f(Account account1, Account account2) {

account1.setBalance(100);

account2.setBalance(200);

return account1.getBalance();

}

Ulbrich – Formal Systems II Theory – Separation Logic 5/46

Specify what does not change

setBalance does not effect other
accounts

setBalance does not effect other
customer objects

setBalance does not effect any
object of any classes which may be
added later.

The Framing Problem

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

Ownership (Types) (Noble, Vitek and Potter 1998)

Separation Logic (Reynolds, 1999)

Dynamic Frames/Region Logic (Kassios 2006)

. . .

Ulbrich – Formal Systems II Theory – Separation Logic 6/46

The Framing Problem

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

Ownership (Types) (Noble, Vitek and Potter 1998)

Separation Logic (Reynolds, 1999)

Dynamic Frames/Region Logic (Kassios 2006)

. . .

Ulbrich – Formal Systems II Theory – Separation Logic 6/46

The Framing Problem

Problem statement

In program verification, the framing problem is the problem to
specify and verify that the effects of a program are limited to the
data structure that is being operated on.

It is a challenge for the specifying user (needs to think about
not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

Ownership (Types) (Noble, Vitek and Potter 1998)

Separation Logic (Reynolds, 1999)

Dynamic Frames/Region Logic (Kassios 2006)

. . .

Ulbrich – Formal Systems II Theory – Separation Logic 6/46

Heaps and “Footprints”

Heap

Ulbrich – Formal Systems II Theory – Separation Logic 7/46

Heaps and “Footprints”

Heap

account1

Ulbrich – Formal Systems II Theory – Separation Logic 7/46

Heaps and “Footprints”

Heap

account1

account2

Ulbrich – Formal Systems II Theory – Separation Logic 7/46

Heaps and “Footprints”

Heap

account1

account2

NO!

Ulbrich – Formal Systems II Theory – Separation Logic 7/46

Heaps and Heaplets

Modelling assumptions

Every memory location holds a value in N.

There infinitely many memory locations.

Heap and Heaplet

A heap is a total function modelling memory:
heap : N→ N

A heaplet is a finite partial function modelling footprints:
heaplet : N 7→ N

Partial function:
Partial function f : A 7→ B is a function f : D → B for D ⊆ A.
The finite set D = dom f is called the domain of f .

Ulbrich – Formal Systems II Theory – Separation Logic 8/46

Operations and Heaps

Disjoint union of heaplets:
h = h1 ∪+ h2 iff dom h1 ∩ dom h2 = ∅ and h = h1 ∪ h2.

h1 ∪+ h2 is always a heaplet.
(Union ∪ of heaplets does not always result in heaplets.)

Membership
For (x , y) ∈ h write h(x) = y .

It means: Memory location x holds value y .

Empty Heap
The empty heaplet ∅ is without allocated locations.

Singletons
Heaplet with exactly one allocated location x which holds value y :

write h = {(x , y)}
Ulbrich – Formal Systems II Theory – Separation Logic 9/46

Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 10/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Separation Logic – Syntax

Terms t:

FOL terms over N with +,−, ·, 0, 1

Formulae ϕ:

ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2

t1 = t2, t1 < t2, . . .

∀x .ϕ, ∃x .ϕ

ϕ1 ∗ ϕ2

emp

t1 7→ t2

ϕ1 −∗ ϕ2 (later)

new in Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 11/46

Operator Precedence

How are the implicit parentheses in
B −∗ C ∧ D ∨ A ∗ x 7→ y ?

Binding force:

∗ binds like ∧
−∗ binds like →, ∨
7→ binds like =

Answer:(
B −∗ (C ∧ D)

)
∨
(
A ∗ (x 7→ y)

)
or B −∗

(
(C ∧ D) ∨

(
A ∗ (x 7→ y)

))
Add explicit parentheses when combining ∨/→ / −∗ or ∧/ ∗

Ulbrich – Formal Systems II Theory – Separation Logic 12/46

Operator Precedence

How are the implicit parentheses in
B −∗ C ∧ D ∨ A ∗ x 7→ y ?

Binding force:

∗ binds like ∧
−∗ binds like →, ∨
7→ binds like =

Answer:(
B −∗ (C ∧ D)

)
∨
(
A ∗ (x 7→ y)

)
or B −∗

(
(C ∧ D) ∨

(
A ∗ (x 7→ y)

))
Add explicit parentheses when combining ∨/→ / −∗ or ∧/ ∗

Ulbrich – Formal Systems II Theory – Separation Logic 12/46

Operator Precedence

How are the implicit parentheses in
B −∗ C ∧ D ∨ A ∗ x 7→ y ?

Binding force:

∗ binds like ∧
−∗ binds like →, ∨
7→ binds like =

Answer:(
B −∗ (C ∧ D)

)
∨
(
A ∗ (x 7→ y)

)
or B −∗

(
(C ∧ D) ∨

(
A ∗ (x 7→ y)

))

Add explicit parentheses when combining ∨/→ / −∗ or ∧/ ∗

Ulbrich – Formal Systems II Theory – Separation Logic 12/46

Operator Precedence

How are the implicit parentheses in
B −∗ C ∧ D ∨ A ∗ x 7→ y ?

Binding force:

∗ binds like ∧
−∗ binds like →, ∨
7→ binds like =

Answer:(
B −∗ (C ∧ D)

)
∨
(
A ∗ (x 7→ y)

)
or B −∗

(
(C ∧ D) ∨

(
A ∗ (x 7→ y)

))
Add explicit parentheses when combining ∨/→ / −∗ or ∧/ ∗

Ulbrich – Formal Systems II Theory – Separation Logic 12/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

Terms:
valβ(t1 + t2) = valβ(t1) +N valβ(t2), same for “·”
valβ(x) = β(x) for variable x

Formulas in FOL:
Operator β, h |= is as expected for ∧,∨,→,∀,∃, <,=.
Example: β, h |= ϕ1 ∧ ϕ2 iff β, h |= ϕ1 and β, h |= ϕ2

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with

1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with
1 h = h1 ∪+ h2 and

2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with
1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and

3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic – Semantics

Structure

Fixed first order domain: N.
Terms and formulas are evaluated over:

1 Variable assignment β : Var → N
2 Heaplet h : N 7→ N

β, h |= emp iff dom h = ∅

β, h |= t1 7→ t2 iff h = {(valβ(t1), valβ(t2))}

β, h |= ϕ1 ∗ ϕ2 iff there exist heaplets h1, h2 : N 7→ N with
1 h = h1 ∪+ h2 and
2 β, h1 |= ϕ1 and
3 β, h2 |= ϕ2

Ulbrich – Formal Systems II Theory – Separation Logic 13/46

Separation Logic

Connector ∗ is called Separating Conjunction

A ∗ B has the following intuitive semantics:

A ∗ B is true
⇐⇒

A is true
and B is true

and A and B refer to
disjoint sets of memory locations.

Ulbrich – Formal Systems II Theory – Separation Logic 14/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)

?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)

?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Properties of Separation Logic

Idempotence

|= A ↔ A ∧ A (idempotence for ∧)
?|= A ↔ A ∗ A (idempotence also for ∗ ?)

NO! Counterexample:

|= ¬(7 7→ 3 → 7 7→ 3 ∗ 7 7→ 3)

Weakening

|= A ∧ B → A (Weakining of conjunction)
?|= A ∗ B → A (Weakining of separating conjunction?)

NO! Counterexample:

|= ¬(7 7→ 3 ∗ 6 7→ 4 → 7 7→ 3)

Ulbrich – Formal Systems II Theory – Separation Logic 15/46

Caution

β, h |= A 7→ B means that:{
(val(A), val(B))

}
= h,

not only (val(A), val(B)) ∈ h

On the other hand:

β, h |=? ⇐⇒ (val(A), val(B)) ∈ h

Notation sometimes: A ↪→ B :↔ A 7→ B ∗ true

Ulbrich – Formal Systems II Theory – Separation Logic 16/46

Caution

β, h |= A 7→ B means that:{
(val(A), val(B))

}
= h,

not only (val(A), val(B)) ∈ h

On the other hand:

β, h |=? ⇐⇒ (val(A), val(B)) ∈ h

Notation sometimes: A ↪→ B :↔ A 7→ B ∗ true

Ulbrich – Formal Systems II Theory – Separation Logic 16/46

Caution

β, h |= A 7→ B means that:{
(val(A), val(B))

}
= h,

not only (val(A), val(B)) ∈ h

On the other hand:

β, h |= A 7→ B ∗ true ⇐⇒ (val(A), val(B)) ∈ h

Notation sometimes: A ↪→ B :↔ A 7→ B ∗ true

Ulbrich – Formal Systems II Theory – Separation Logic 16/46

Caution

β, h |= A 7→ B means that:{
(val(A), val(B))

}
= h,

not only (val(A), val(B)) ∈ h

On the other hand:

β, h |= A 7→ B ∗ true ⇐⇒ (val(A), val(B)) ∈ h

Notation sometimes: A ↪→ B :↔ A 7→ B ∗ true

Ulbrich – Formal Systems II Theory – Separation Logic 16/46

Some Valid Formulas

emp ↔ ¬(∃x , y . x 7→ y ∗ true)

ϕ ∗ ψ ↔ ϕ ∧ ψ
if neither emp nor 7→ occur.

x 7→ y ∧ x 7→ z → y = z

P ∗ (Q ∨ R) ↔ (P ∗ Q) ∨ (P ∗ R)

Ulbrich – Formal Systems II Theory – Separation Logic 17/46

Some Valid Formulas

emp ↔ ¬(∃x , y . x 7→ y ∗ true)

ϕ ∗ ψ ↔ ϕ ∧ ψ
if neither emp nor 7→ occur.

x 7→ y ∧ x 7→ z → y = z

P ∗ (Q ∨ R) ↔ (P ∗ Q) ∨ (P ∗ R)

Ulbrich – Formal Systems II Theory – Separation Logic 17/46

Some Valid Formulas

emp ↔ ¬(∃x , y . x 7→ y ∗ true)

ϕ ∗ ψ ↔ ϕ ∧ ψ
if neither emp nor 7→ occur.

x 7→ y ∧ x 7→ z → y = z

P ∗ (Q ∨ R) ↔ (P ∗ Q) ∨ (P ∗ R)

Ulbrich – Formal Systems II Theory – Separation Logic 17/46

Some Valid Formulas

emp ↔ ¬(∃x , y . x 7→ y ∗ true)

ϕ ∗ ψ ↔ ϕ ∧ ψ
if neither emp nor 7→ occur.

x 7→ y ∧ x 7→ z → y = z

P ∗ (Q ∨ R) ↔ (P ∗ Q) ∨ (P ∗ R)

Ulbrich – Formal Systems II Theory – Separation Logic 17/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ

a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

Quiz!

Are the following formulas valid/satisfiable/unsatisfiable?
(here: A formula ϕ is satisfiable iff are there β and h such that β, h |= ϕ.)

1 x 7→ y ∗ x 7→ z

2 x 7→ y ∧ x 7→ z

3 (x 7→ 0 ∧ y 7→ 0)→ x = y

4 (x 7→ 0 ∗ y 7→ 0)→ x = y

5 (x 7→ 0 ∗ y 7→ 0)→ ¬(x = y)

6 (x 7→ a ∧ y 7→ b)→ a = b

7 ϕ ∗ emp→ ϕ

8 ϕ ∗ ¬ϕ
a. ψ ∗ ¬ψ for ψ without 7→, emp

b. x 7→ y ∗ ¬(x 7→ y)

Ulbrich – Formal Systems II Theory – Separation Logic 18/46

The Magic Wand

Modus Ponens for classical logic

A ∧ (A→ B)

B

Corresponding rule for separating conjunction ∗?

Modus Ponens for separation logic

A ∗ (A −∗ B)

B

The magic wand operator A −∗ B, aka separating implication:

β, h |= A −∗ B

⇐⇒
for all h′, h+ : N 7→ N : If h+ = h ∪+ h′ and h′ |= A, then h+ |= B

Ulbrich – Formal Systems II Theory – Separation Logic 19/46

The Magic Wand

Modus Ponens for classical logic

A ∧ (A→ B)

B

Corresponding rule for separating conjunction ∗?

Modus Ponens for separation logic

A ∗ (A −∗ B)

B

The magic wand operator A −∗ B, aka separating implication:

β, h |= A −∗ B

⇐⇒
for all h′, h+ : N 7→ N : If h+ = h ∪+ h′ and h′ |= A, then h+ |= B

Ulbrich – Formal Systems II Theory – Separation Logic 19/46

The Magic Wand

Modus Ponens for classical logic

A ∧ (A→ B)

B

Corresponding rule for separating conjunction ∗?

Modus Ponens for separation logic

A ∗ (A −∗ B)

B

The magic wand operator A −∗ B, aka separating implication:

β, h |= A −∗ B

⇐⇒
for all h′, h+ : N 7→ N : If h+ = h ∪+ h′ and h′ |= A, then h+ |= B

Ulbrich – Formal Systems II Theory – Separation Logic 19/46

Separating Operators

Taken from:
Separation Logic: Expressiveness, Complexity, Temporal Extension

Rémi Brochenin, PhD Thesis. 2013

Ulbrich – Formal Systems II Theory – Separation Logic 20/46

Programs and Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 21/46

Programming Language

statement ::= while formula do statement

| if formula then statement else statement

| statement ; statement

| var := term

| [term] := term

| var := [term]

(later) | var := cons(term, ..., term)

(later) | dispose(var)

Restriction: formula are the arithmetic formulas that do not contain 7→
or emp.

Ulbrich – Formal Systems II Theory – Separation Logic 22/46

Kripke Frames with Heaps

Every state is a pair (β, h) with β : Var → N and h : N 7→ N
Kripke state transition the program semantics ρ(st) ∈ S × S
for any statement st.

β1, h1
β2, h2

β3, h3

. . .

. . .

ρ

ρ
ρ

ρ

ρ

Ulbrich – Formal Systems II Theory – Separation Logic 23/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (repetition from FODL)

Accessiblity Relation for Programs

ρ : statement→ S × S

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ S with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | s |= ϕ}

Reminder: IF and WHILE

if ϕ then α else β =
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α = (?ϕ ; α)∗ ; ?¬ϕ

Ulbrich – Formal Systems II Theory – Separation Logic 24/46

Program semantics (with heap)

Accessiblity Relation for Programs

ρ : statement→ S × S
A state s ∈ S is a pair (β, h) with β : Var → N and h : N 7→ N

(
(β, h), (β′, h′)

)
∈ ρ(v := t) ⇐⇒ β′ = β[v/valβ(t)] and h′ = h

(
(β, h), (β′, h′)

)
∈ ρ(v := [t]) ⇐⇒ valβ(t) ∈ dom h and h′ = h and

β′ = β
[
v/h[valβ(t)]

]
(
(β, h), (β′, h′)

)
∈ ρ([t] := u) ⇐⇒ valβ(t) ∈ dom h and β′ = β and

h′ = h[valβ(t)/valβ(u)]

(Remember: f [a/b](a) = b and f [a/b](x) = f (x) for x 6= a)

Ulbrich – Formal Systems II Theory – Separation Logic 25/46

Program semantics (with heap)

Accessiblity Relation for Programs

ρ : statement→ S × S
A state s ∈ S is a pair (β, h) with β : Var → N and h : N 7→ N

(
(β, h), (β′, h′)

)
∈ ρ(v := t) ⇐⇒ β′ = β[v/valβ(t)] and h′ = h

(
(β, h), (β′, h′)

)
∈ ρ(v := [t]) ⇐⇒ valβ(t) ∈ dom h and h′ = h and

β′ = β
[
v/h[valβ(t)]

]
(
(β, h), (β′, h′)

)
∈ ρ([t] := u) ⇐⇒ valβ(t) ∈ dom h and β′ = β and

h′ = h[valβ(t)/valβ(u)]

(Remember: f [a/b](a) = b and f [a/b](x) = f (x) for x 6= a)

Ulbrich – Formal Systems II Theory – Separation Logic 25/46

Program semantics (with heap)

Accessiblity Relation for Programs

ρ : statement→ S × S
A state s ∈ S is a pair (β, h) with β : Var → N and h : N 7→ N

(
(β, h), (β′, h′)

)
∈ ρ(v := t) ⇐⇒ β′ = β[v/valβ(t)] and h′ = h

(
(β, h), (β′, h′)

)
∈ ρ(v := [t]) ⇐⇒ valβ(t) ∈ dom h and h′ = h and

β′ = β
[
v/h[valβ(t)]

]

(
(β, h), (β′, h′)

)
∈ ρ([t] := u) ⇐⇒ valβ(t) ∈ dom h and β′ = β and

h′ = h[valβ(t)/valβ(u)]

(Remember: f [a/b](a) = b and f [a/b](x) = f (x) for x 6= a)

Ulbrich – Formal Systems II Theory – Separation Logic 25/46

Program semantics (with heap)

Accessiblity Relation for Programs

ρ : statement→ S × S
A state s ∈ S is a pair (β, h) with β : Var → N and h : N 7→ N

(
(β, h), (β′, h′)

)
∈ ρ(v := t) ⇐⇒ β′ = β[v/valβ(t)] and h′ = h

(
(β, h), (β′, h′)

)
∈ ρ(v := [t]) ⇐⇒ valβ(t) ∈ dom h and h′ = h and

β′ = β
[
v/h[valβ(t)]

]
(
(β, h), (β′, h′)

)
∈ ρ([t] := u) ⇐⇒ valβ(t) ∈ dom h and β′ = β and

h′ = h[valβ(t)/valβ(u)]

(Remember: f [a/b](a) = b and f [a/b](x) = f (x) for x 6= a)

Ulbrich – Formal Systems II Theory – Separation Logic 25/46

Failing executions

Statement x := [10] must not be executed if 10 6∈ dom h.

State (β, ∅) has no successor state in ρ(x := [10]).

How to distinguish between failed test ?ψ and memory violation?

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation.

Ulbrich – Formal Systems II Theory – Separation Logic 26/46

Failing executions

Statement x := [10] must not be executed if 10 6∈ dom h.

State (β, ∅) has no successor state in ρ(x := [10]).

How to distinguish between failed test ?ψ and memory violation?

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation.

Ulbrich – Formal Systems II Theory – Separation Logic 26/46

Failing executions

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation

fail(x := t) =

fail(?ψ) = ∅

fail(x := [t]) =

fail([t] := u) = {(β, h) | valβ(t) 6∈ dom h}

fail(π1 ; π2) = fail(π1) ∪
(
ρ(π1) ; fail(π2)

)
fail(π1 ∪ π2) = fail(π1) ∪ fail(π2)

fail(π∗) = ρ(π∗) ; fail(π)

with A ; B = {x | ex y with (x , y) ∈ A and y ∈ B}

Ulbrich – Formal Systems II Theory – Separation Logic 27/46

Failing executions

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation

fail(x := t) =

fail(?ψ) = ∅

fail(x := [t]) =

fail([t] := u) = {(β, h) | valβ(t) 6∈ dom h}

fail(π1 ; π2) = fail(π1) ∪
(
ρ(π1) ; fail(π2)

)
fail(π1 ∪ π2) = fail(π1) ∪ fail(π2)

fail(π∗) = ρ(π∗) ; fail(π)

with A ; B = {x | ex y with (x , y) ∈ A and y ∈ B}

Ulbrich – Formal Systems II Theory – Separation Logic 27/46

Failing executions

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation

fail(x := t) =

fail(?ψ) = ∅

fail(x := [t]) =

fail([t] := u) = {(β, h) | valβ(t) 6∈ dom h}

fail(π1 ; π2) = fail(π1) ∪
(
ρ(π1) ; fail(π2)

)
fail(π1 ∪ π2) = fail(π1) ∪ fail(π2)

fail(π∗) = ρ(π∗) ; fail(π)

with A ; B = {x | ex y with (x , y) ∈ A and y ∈ B}

Ulbrich – Formal Systems II Theory – Separation Logic 27/46

Failing executions

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation

fail(x := t) =

fail(?ψ) = ∅

fail(x := [t]) =

fail([t] := u) = {(β, h) | valβ(t) 6∈ dom h}

fail(π1 ; π2) = fail(π1) ∪
(
ρ(π1) ; fail(π2)

)
fail(π1 ∪ π2) = fail(π1) ∪ fail(π2)

fail(π∗) = ρ(π∗) ; fail(π)

with A ; B = {x | ex y with (x , y) ∈ A and y ∈ B}

Ulbrich – Formal Systems II Theory – Separation Logic 27/46

Failing executions

Model unallowed heap access:

fail : statement→ 2S

s ∈ fail(π) means: π started in s may cause memory violation

fail(x := t) =

fail(?ψ) = ∅

fail(x := [t]) =

fail([t] := u) = {(β, h) | valβ(t) 6∈ dom h}

fail(π1 ; π2) = fail(π1) ∪
(
ρ(π1) ; fail(π2)

)
fail(π1 ∪ π2) = fail(π1) ∪ fail(π2)

fail(π∗) = ρ(π∗) ; fail(π)

with A ; B = {x | ex y with (x , y) ∈ A and y ∈ B}
Ulbrich – Formal Systems II Theory – Separation Logic 27/46

Fail-aware modality

Remember:

s |= [π]ϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π).

Problem:
emp→

[
[5] := 42

]
false is a valid formula.

New modality J·K
s |= JπKϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π) and s 6∈ fail(π)

Now:
emp→ J[5] := 42

y
ψ is not valid for any ψ

Ulbrich – Formal Systems II Theory – Separation Logic 28/46

Dynamic Separation Logic

Valid formulas:

x 7→ 5→ Jv := [x] ; [x] := v + 1Kx 7→ 6

(∃y .x 7→ y)→ J[x] := 7Kx 7→ 7

x 7→ 5 ∗ y 7→ 6 → J[x] := 7K(x 7→ 7 ∗ y 7→ 6)

Ulbrich – Formal Systems II Theory – Separation Logic 29/46

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: {P} π {Q}

A Hoare triple is valid if program π started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P → JπKQ .

We present the calculus using dynamic logic notation.

Ulbrich – Formal Systems II Theory – Separation Logic 30/46

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: {P} π {Q}

A Hoare triple is valid if program π started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P → JπKQ .

We present the calculus using dynamic logic notation.

Ulbrich – Formal Systems II Theory – Separation Logic 30/46

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: {P} π {Q}

A Hoare triple is valid if program π started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P → JπKQ .

We present the calculus using dynamic logic notation.

Ulbrich – Formal Systems II Theory – Separation Logic 30/46

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: {P} π {Q}

A Hoare triple is valid if program π started in a state that satisfies
precondition P terminates in a state which satisfies
postcondition Q (it it terminates).

Semantically the same as P → JπKQ .

We present the calculus using dynamic logic notation.

Ulbrich – Formal Systems II Theory – Separation Logic 30/46

Reminder: Hoare Calculus (in DL notation)

P[x�E]→ Jx := EKP
[x�E] is substitution

P → Jπ1KQ Q → Jπ2KR
P → Jπ1 ; π2KR

P ′ → P P → JπKQ Q → Q ′

P ′ → JπKQ ′

P ∧ C → Jπ1KQ P ∧ ¬C → Jπ2KQ
P → Jif C then π1 else π2KQ

P ∧ C → JπKP
P → Jwhile C do πK(P ∧ ¬C)

P → JπKQ
(∃x .P)→ JπK(∃x .Q)

if x 6∈ Free(π)

Ulbrich – Formal Systems II Theory – Separation Logic 31/46

Separation Logic Rules for Assignments

Axioms:

x = m ∧ emp → Jx := EKx = E [x�m] ∧ emp

x = m ∧ E 7→ n → Jx := [E]K(x = n ∧ E [x�m] 7→ n)

(E 7→ n) → J[E] := F K E 7→ F

Heap location must be accessible

Recall: s |= JπKϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π) and s 6∈ fail(π).
All accessed heap locations (read or write) must be in domain.
Therefore: Precondition must ensure that.

Ulbrich – Formal Systems II Theory – Separation Logic 32/46

Separation Logic Rules for Assignments

Axioms:

x = m ∧ emp → Jx := EKx = E [x�m] ∧ emp

x = m ∧ E 7→ n → Jx := [E]K(x = n ∧ E [x�m] 7→ n)

(∃n.E 7→ n) → J[E] := F K E 7→ F

Heap location must be accessible

Recall: s |= JπKϕ iff s ′ |= ϕ for all (s, s ′) ∈ ρ(π) and s 6∈ fail(π).
All accessed heap locations (read or write) must be in domain.
Therefore: Precondition must ensure that.

Ulbrich – Formal Systems II Theory – Separation Logic 32/46

The Frame Rule

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

P → JπK Q

P ∗ R → JπK(Q ∗ R)

Modifies(π) ∩ Free(R) = ∅

Separation in Proofs

Proof P → JπKQ using in P,Q the memory π refers to.
Get for free: Nothing besides these memory locations has changed.

Ulbrich – Formal Systems II Theory – Separation Logic 33/46

The Frame Rule

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

P → JπK Q

P ∗ R → JπK(Q ∗ R)

Modifies(π) ∩ Free(R) = ∅

Separation in Proofs

Proof P → JπKQ using in P,Q the memory π refers to.
Get for free: Nothing besides these memory locations has changed.

Ulbrich – Formal Systems II Theory – Separation Logic 33/46

Remember: The Framing Problem

Example in Java

//@ requires acc1 != acc2;

//@ ensures \result == 100;

int f(Account acc1, Account acc2) {

acc1.setBalance(100);

acc2.setBalance(200);

return acc1.getBalance();

}

Rule for setBalance:
A 7→ x → JA.setBalance(y)KA 7→ y

Use Frame Rule:

acc2 7→ x → . . .

. . . Jacc2.setBalance(200); Kacc2 7→ 200

Ulbrich – Formal Systems II Theory – Separation Logic 34/46

Remember: The Framing Problem

Example in Java

//@ requires acc1 != acc2;

//@ ensures \result == 100;

int f(Account acc1, Account acc2) {

acc1.setBalance(100);

acc2.setBalance(200);

return acc1.getBalance();

}

Rule for setBalance:
A 7→ x → JA.setBalance(y)KA 7→ y

Use Frame Rule:

acc2 7→ x → . . .

. . . Jacc2.setBalance(200); Kacc2 7→ 200

Ulbrich – Formal Systems II Theory – Separation Logic 34/46

Remember: The Framing Problem

Example in Java

//@ requires acc1 != acc2;

//@ ensures \result == 100;

int f(Account acc1, Account acc2) {

acc1.setBalance(100);

acc2.setBalance(200);

return acc1.getBalance();

}

Rule for setBalance:
A 7→ x → JA.setBalance(y)KA 7→ y

Use Frame Rule:

acc2 7→ x ∗ acc1 7→ 100 → . . .

. . . Jacc2.setBalance(200); Kacc2 7→ 200 ∗ acc1 7→ 100

Ulbrich – Formal Systems II Theory – Separation Logic 34/46

On the board ...

(∃v . X 7→ v ∗ Y 7→ v) → JX := [X] ; Y := [Y]K X = Y

Ulbrich – Formal Systems II Theory – Separation Logic 35/46

Soundness of Frame Rule

P → JπKQ
P ∗ R → JπK(Q ∗ R)

or equivalently
|= (JπKQ) ∗ R → JπK(Q ∗ R)

if Modifies(π) ∩ Free(R) = ∅

=⇒
Instantiate left rule with P := JπKQ.

Premiss: trivially true, conclusion: desired implication.

⇐=
Let β, h |= P ∗ R, i.e., β, h1 |= P and β, h2 |= R with h = h1 ∪+ h2.

By premiss: β, h1 |= JπKQ and β, h |= (JπKQ) ∗ R
Right rule gives: β, h |= JπK(Q ∗ R)

�

Ulbrich – Formal Systems II Theory – Separation Logic 36/46

Soundness of Frame Rule

P → JπKQ
P ∗ R → JπK(Q ∗ R)

or equivalently
|= (JπKQ) ∗ R → JπK(Q ∗ R)

if Modifies(π) ∩ Free(R) = ∅

=⇒
Instantiate left rule with P := JπKQ.

Premiss: trivially true, conclusion: desired implication.

⇐=
Let β, h |= P ∗ R, i.e., β, h1 |= P and β, h2 |= R with h = h1 ∪+ h2.

By premiss: β, h1 |= JπKQ and β, h |= (JπKQ) ∗ R
Right rule gives: β, h |= JπK(Q ∗ R)

�

Ulbrich – Formal Systems II Theory – Separation Logic 36/46

Soundness of Frame Rule

P → JπKQ
P ∗ R → JπK(Q ∗ R)

or equivalently
|= (JπKQ) ∗ R → JπK(Q ∗ R)

if Modifies(π) ∩ Free(R) = ∅

=⇒
Instantiate left rule with P := JπKQ.

Premiss: trivially true, conclusion: desired implication.

⇐=
Let β, h |= P ∗ R, i.e., β, h1 |= P and β, h2 |= R with h = h1 ∪+ h2.

By premiss: β, h1 |= JπKQ and β, h |= (JπKQ) ∗ R
Right rule gives: β, h |= JπK(Q ∗ R)

�

Ulbrich – Formal Systems II Theory – Separation Logic 36/46

Soundness of Frame Rule

P → JπKQ
P ∗ R → JπK(Q ∗ R)

or equivalently
|= (JπKQ) ∗ R → JπK(Q ∗ R)

if Modifies(π) ∩ Free(R) = ∅

=⇒
Instantiate left rule with P := JπKQ.

Premiss: trivially true, conclusion: desired implication.

⇐=
Let β, h |= P ∗ R, i.e., β, h1 |= P and β, h2 |= R with h = h1 ∪+ h2.

By premiss: β, h1 |= JπKQ and β, h |= (JπKQ) ∗ R
Right rule gives: β, h |= JπK(Q ∗ R)

�

Ulbrich – Formal Systems II Theory – Separation Logic 36/46

Lemma

Let h1, h
′
1, h2, h

′
2 : N 7→ N be heaplets, dom h1 ∩ dom h2 = ∅

β, β′ : Var → N be variable assignments. Then:

β, h1
π−→ β′, h′1 =⇒

(
β, h1 ∪+ h2

π−→ β′, h′1 ∪+ h′2 ⇐⇒ h2 = h′2
)

By structural induction:

variable assignment v := t (heap irrelevant)

heap store [t1] := t2 (val(t)
!
∈ dom h1)

heap load v := [t] (val(t)
!
∈ dom h1)

first-order test ?ϕ (heap irrelevant)

π1 ∪ π2, π1 ; π2, π∗ (appeal to ind. hyp)

s
π−→ s ′ means (s, s ′) ∈ ρ(π)

Ulbrich – Formal Systems II Theory – Separation Logic 37/46

Lemma

Let h1, h
′
1, h2, h

′
2 : N 7→ N be heaplets, dom h1 ∩ dom h2 = ∅

β, β′ : Var → N be variable assignments. Then:

β, h1
π−→ β′, h′1 =⇒

(
β, h1 ∪+ h2

π−→ β′, h′1 ∪+ h′2 ⇐⇒ h2 = h′2
)

By structural induction:

variable assignment v := t (heap irrelevant)

heap store [t1] := t2 (val(t)
!
∈ dom h1)

heap load v := [t] (val(t)
!
∈ dom h1)

first-order test ?ϕ (heap irrelevant)

π1 ∪ π2, π1 ; π2, π∗ (appeal to ind. hyp)

s
π−→ s ′ means (s, s ′) ∈ ρ(π)

Ulbrich – Formal Systems II Theory – Separation Logic 37/46

Soundness of Frame Rule

|= (JπKQ) ∗ R → JπK(Q ∗ R) if Modifies(π)∩Free(R) = ∅ (?)

Let β, h |= (JπKQ) ∗ R, i.e., β, h1 |= JπKQ and β, h2|=R, h=h1∪+h2.

β, h |= (JπKQ) ∗ R

β, h1 |= (JπKQ)

β, h2 |= R

β′, h1Q |= Q

β′, h2 |= R

β′, h1Q ∪+ h2 |= Q ∗ R

∪+

∪+

π

(?)

∪+

∪+

Lemma, lang. is deterministic =⇒ β, h |= JπK(Q ∗ R)

Ulbrich – Formal Systems II Theory – Separation Logic 38/46

Memory Allocation and Deallocation

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Semantics: ρ and fail(
(β, h), (β′, h′)

)
∈ ρ(v := cons(t))

iff
β′ = β[v/loc] and h′ = h ∪+ {(loc, valβ(t))} and loc 6∈ dom h

fail(v := cons(t)) = ∅

cons allocates n consecutive unused memory locations, stores the
argument values there and returns the first memory location.

(See literature for general n-ary version)

Ulbrich – Formal Systems II Theory – Separation Logic 39/46

Memory Allocation and Deallocation

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Semantics: ρ and fail(
(β, h), (β′, h′)

)
∈ ρ(v := cons(t))

iff
β′ = β[v/loc] and h′ = h ∪+ {(loc, valβ(t))} and loc 6∈ dom h

fail(v := cons(t)) = ∅

cons allocates n consecutive unused memory locations, stores the
argument values there and returns the first memory location.

(See literature for general n-ary version)

Ulbrich – Formal Systems II Theory – Separation Logic 39/46

Memory Allocation and Deallocation

Syntax: Two statements

var := cons(term, ..., term) and dispose(var)

Semantics: ρ and fail

((β, h), (β′, h′)) ∈ ρ(dispose(v))
iff

β′ = β and β(v) ∈ dom h and h′ = h \ {(β(v), h(β(v))}

fail(dispose(v)) = {(β, h) | β(v) 6∈ dom h}

dispose deallocates the allocated memory location v ;
fails if an unallocated location is disposed.

Ulbrich – Formal Systems II Theory – Separation Logic 40/46

Soundness of Frame Rule

(JπKQ) ∗ R

JπK(Q ∗ R)
if Modifies(π) ∩ Free(R) = ∅

Proof by structural induction over π.

see Reynolds p.77ff

Ulbrich – Formal Systems II Theory – Separation Logic 41/46

Decidability of Separation Logic

Decidable

Some restricted logics from Separation Logic are decidable.

1 Restricted arithmetic

2 No magic wand −∗
They can be reduced to Monadic Second Order Logic over N.
Equivalent to word emptiness of Büchi Automata.

The separating implication −∗ makes undecidable.

Relatively complete

The calculus for Separation Logic is relatively complete.
Every correct program can be proved using an oracle for N.

Ulbrich – Formal Systems II Theory – Separation Logic 42/46

Application of Separation Logic

Ulbrich – Formal Systems II Theory – Separation Logic 43/46

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

list(x , 〈17, 21, 9〉) ↔ (x 7→ 17) ∗ (x+1 7→ v) ∗ (v 7→ 21) ∗ . . .
. . . ∗ (v + 1 7→ w) ∗ (w 7→ 9) ∗ (w + 1 7→ 0)

17

21

9

x

Ulbrich – Formal Systems II Theory – Separation Logic 44/46

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

list(x , 〈17, 21, 9〉) ↔ (x 7→ 17) ∗ (x+1 7→ v) ∗ (v 7→ 21) ∗ . . .
. . . ∗ (v + 1 7→ w) ∗ (w 7→ 9) ∗ (w + 1 7→ 0)

17

21

9

x

Ulbrich – Formal Systems II Theory – Separation Logic 44/46

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

list(x , 〈17, 21, 9〉) ↔ (x 7→ 17) ∗ (x+1 7→ v) ∗ (v 7→ 21) ∗ . . .
. . . ∗ (v + 1 7→ w) ∗ (w 7→ 9) ∗ (w + 1 7→ 0)

General:

Recursive predicate list:

∀x , v1, v̄ . list(x , 〈v1, v̄〉)↔ ∃n. ((x 7→ v1) ∗ (x +1 7→ n) ∗ list(n, v̄))

Ulbrich – Formal Systems II Theory – Separation Logic 44/46

Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .

Ulbrich – Formal Systems II Theory – Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .

Ulbrich – Formal Systems II Theory – Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .

Ulbrich – Formal Systems II Theory – Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .

Ulbrich – Formal Systems II Theory – Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

Program Verification Using Separation Logic

Verifast → Demo! (Bart Jacobs et al., U Leuven)
https://www.cs.kuleuven.be/~bartj/verifast/

Infer (Peter O’Hearn et al., Facebook)
http://fbinfer.com/

jStar (M. Parkinson, now MS)

Viper (P. Müller, ETH Zurich)
concurrency

SpaceInvader, YNot, HOLFoot, . . . , . . .

Ulbrich – Formal Systems II Theory – Separation Logic 45/46

https://www.cs.kuleuven.be/~bartj/verifast/
http://fbinfer.com/

Discussion

Advantages of Separation Logic

+ Functional and frame specification combined – no extra
consideration needed

+ Frame rule!

+ Abstraction Predicates are nice way of abstraction

Disadvantages of Separation Logic

– Functional and frame specification combined – no separation
of concerns!

– All data must be hierarchically structured

– Complicated semantics of Sep Logic (c.f. −∗)

Ulbrich – Formal Systems II Theory – Separation Logic 46/46

