

Formal Systems II: Theory

Separation Logic

SS 2022

Mattias Ulbrich Institute of Theoretical Informatics

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Motivation

Reminder ... Dynamic Logic

Given: a program with a contract:

- precondition, FOL formula pre
- 2 postcondition, FOL formula post
- (3) code, while program π

In program verification, one formally proves that

$$\mathbb{N}\models\textit{pre}\rightarrow[\pi]\textit{post}$$

If *pre* holds before execution of π then *post* holds after termination.

Reminder: weakest precondition calculus for DL.

Formal Software Verification

Prove what effects a program has.

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does *not* have.

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does *not* have.

You should not have to specify the latter explicitly.

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does *not* have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

P calls operator to ask for Q's number.

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

- P calls operator to ask for Q's number.
 - Precondition: *P* has a telephone.

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

- P calls operator to ask for Q's number.
 - Precondition: *P* has a telephone.
 - Postcondition: P knows the number of Q

Formal Software Verification

- Prove what effects a program has.
- Prove what effects a program does not have.

You should not have to specify the latter explicitly.

Example (after McCarthy and Hayes, 1969)

- P calls operator to ask for Q's number.
 - Precondition: *P* has a telephone.
 - Postcondition: P knows the number of Q
 - missing postcondition?
 Postcondition: P still has a telephone.


```
interface Account {
   void setBalance(int);
   int getBalance();
}
```



```
interface Account {
   void setBalance(int);
   int getBalance();
}
```

```
//@ ensures \result == 100;
int f(Account account1, Account account2) {
    account1.setBalance(100);
    account2.setBalance(200);
    return account1.getBalance();
}
```



```
interface Account {
  void setBalance(int);
  int getBalance();
}
//@ requires account1 != account2;
//@ ensures \result == 100;
int f(Account account1, Account account2) {
  account1.setBalance(100);
  account2.setBalance(200);
  return account1.getBalance();
}
```


Specify what does not change

```
interface Account {
   void setBalance(int);
   int getBalance();
}
```

```
//@ requires account1 !=
//@ ensures \result == 100;
int f(Account account1, Account account2) {
    account1.setBalance(100);
    account2.setBalance(200);
    return account1.getBalance();
}
```


Specify what does not change

 setBalance does not effect other accounts

```
Example in Java
```

```
interface Account {
   void setBalance(int);
   int getBalance();
}
```

```
//@ requires account1 !=
//@ ensures \result == 100;
int f(Account account1, Account account2) {
    account1.setBalance(100);
    account2.setBalance(200);
    return account1.getBalance();
}
```


Example in Java

```
interface Account {
   void setBalance(int);
   int getBalance();
}
```

Specify what does not change

- setBalance does not effect other accounts
- setBalance does not effect other customer objects

```
//@ requires account1 !=
//@ ensures \result == 100;
int f(Account account1, Account account2) {
    account1.setBalance(100);
    account2.setBalance(200);
    return account1.getBalance();
}
```


Example in Java

```
interface Account {
   void setBalance(int);
   int getBalance();
}
```

Specify what does not change

- setBalance does not effect other accounts
- setBalance does not effect other customer objects
- setBalance does not effect any object of any classes which may be added later.

```
//@ requires account1 != added later.
//@ ensures \result == 100;
int f(Account account1, Account account2) {
    account1.setBalance(100);
    account2.setBalance(200);
    return account1.getBalance();
}
```


Problem statement

In program verification, the framing problem is the problem to specify and verify that the effects of a program are limited to the data structure that is being operated on.

It is a challenge for the specifying user (needs to think about not-effects) and for reasoning engines (increased complexity).

Problem statement

In program verification, the framing problem is the problem to specify and verify that the effects of a program are limited to the data structure that is being operated on.

It is a challenge for the specifying user (needs to think about not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

- Ownership (Types) (Noble, Vitek and Potter 1998)
- Separation Logic

(Reynolds, 1999)

Dynamic Frames/Region Logic (Kassios 2006)

Ulbrich - Formal Systems II Theory - Separation Logic

Problem statement

In program verification, the framing problem is the problem to specify and verify that the effects of a program are limited to the data structure that is being operated on.

It is a challenge for the specifying user (needs to think about not-effects) and for reasoning engines (increased complexity).

Suggested solutions:

- Ownership (Types)
- Separation Logic

(Noble, Vitek and Potter 1998)

(Reynolds, 1999)

Dynamic Frames/Region Logic

(Kassios 2006)

Heap

Heaps and Heaplets

Modelling assumptions

- Every memory location holds a value in \mathbb{N} .
- There infinitely many memory locations.

Heap and Heaplet

A heap is a total function modelling memory: $heap: \mathbb{N} \to \mathbb{N}$

A **heaplet** is a finite partial function modelling footprints: $heaplet : \mathbb{N} \to \mathbb{N}$

Partial function:

Partial function $f : A \rightarrow B$ is a function $f : D \rightarrow B$ for $D \subseteq A$. The finite set D = dom f is called the domain of f.

Ulbrich - Formal Systems II Theory - Separation Logic

Operations and Heaps

Disjoint union of heaplets:

 $h = h_1 \uplus h_2$ iff dom $h_1 \cap \text{dom } h_2 = \emptyset$ and $h = h_1 \cup h_2$.

 $h_1 \uplus h_2$ is always a heaplet.

(Union \cup of heaplets does not always result in heaplets.)

Membership

For $(x, y) \in h$ write h(x) = y.

It means: Memory location x holds value y.

Empty Heap

The empty heaplet \emptyset is without allocated locations.

Singletons

Heaplet with exactly one allocated location x which holds value y:

write
$$h = \{(x, y)\}$$

Ulbrich - Formal Systems II Theory - Separation Logic

Separation Logic

Terms *t*:

Terms *t*:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Terms *t*:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

Terms *t*:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

 $\ \ \, \varphi_1\wedge\varphi_2, \quad \varphi_1\vee\varphi_2, \quad \varphi_1\to\varphi_2$

Terms *t*:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

 $\ \ \, \varphi_1\wedge\varphi_2, \quad \varphi_1\vee\varphi_2, \quad \varphi_1\to\varphi_2$

•
$$t_1 = t_2, \quad t_1 < t_2, \ldots$$

Terms t:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

 $\ \ \, \varphi_1\wedge\varphi_2, \quad \varphi_1\vee\varphi_2, \quad \varphi_1\to\varphi_2$

•
$$t_1 = t_2, \quad t_1 < t_2, \ldots$$

•
$$\forall x.\varphi$$
, $\exists x.\varphi$

Terms t:

• FOL terms over $\mathbb N$ with $+, -, \cdot, 0, 1$

Formulae φ :

- $t_1 = t_2, \quad t_1 < t_2, \ldots$
- $\forall x.\varphi$, $\exists x.\varphi$
- $\varphi_1 * \varphi_2$

Terms t:

• FOL terms over $\mathbb N$ with $+, -, \cdot, 0, 1$

Formulae φ :

- $t_1 = t_2, \quad t_1 < t_2, \ldots$
- $\forall x.\varphi$, $\exists x.\varphi$
- φ₁ * φ₂
- emp

Terms t:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

- $t_1 = t_2, \quad t_1 < t_2, \ldots$
- $\forall x.\varphi, \exists x.\varphi$
- φ₁ * φ₂
- emp
- $t_1 \mapsto t_2$
Separation Logic – Syntax

Terms t:

• FOL terms over $\mathbb N$ with $+,-,\cdot,0,1$

Formulae φ :

- $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \to \varphi_2$
- $t_1 = t_2, \quad t_1 < t_2, \ldots$
- $\forall x.\varphi, \exists x.\varphi$
- $\varphi_1 * \varphi_2$
- emp
- $t_1 \mapsto t_2$
- $\varphi_1 \twoheadrightarrow \varphi_2$ (later)

new in Separation Logic

How are the implicit parentheses in $B \twoheadrightarrow C \land D \lor A * x \mapsto y$?

How are the implicit parentheses in $B \twoheadrightarrow C \land D \lor A * x \mapsto y$?

Binding force:

- * binds like \wedge
- \twoheadrightarrow binds like \rightarrow , \lor
- $\mapsto \quad \text{binds like} =$

How are the implicit parentheses in $B \twoheadrightarrow C \land D \lor A * x \mapsto y$?

Binding force:

- * binds like \wedge
- \twoheadrightarrow binds like \rightarrow , \lor
- \mapsto binds like =

Answer: $(B \twoheadrightarrow (C \land D)) \lor (A \ast (x \mapsto y))$ or $B \twoheadrightarrow ((C \land D) \lor (A \ast (x \mapsto y)))$

How are the implicit parentheses in $B \twoheadrightarrow C \land D \lor A * x \mapsto y$?

Binding force:

- * binds like \wedge
- \twoheadrightarrow binds like \rightarrow , \lor
- \mapsto binds like =

Answer:

$$\begin{pmatrix} B \twoheadrightarrow (C \land D) \end{pmatrix} \lor \begin{pmatrix} A * (x \mapsto y) \end{pmatrix}$$

or $B \twoheadrightarrow ((C \land D) \lor (A * (x \mapsto y)))$

Add explicit parentheses when combining $\vee/ \to / \twoheadrightarrow$ or \wedge/ \ast

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textbf{ 0 Variable assignment } \beta: \textit{Var} \rightarrow \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textbf{ 0 Variable assignment } \beta: \textit{Var} \rightarrow \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

Terms:

•
$$val_{\beta}(t_1 + t_2) = val_{\beta}(t_1) +_{\mathbb{N}} val_{\beta}(t_2)$$
, same for "."

•
$$\mathit{val}_{eta}(x) = eta(x)$$
 for variable x

Formulas in FOL:

- Operator $\beta, h \models$ is as expected for $\land, \lor, \rightarrow, \forall, \exists, <, =$.
- Example: $\beta, h \models \varphi_1 \land \varphi_2$ iff $\beta, h \models \varphi_1$ and $\beta, h \models \varphi_2$

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textcircled{0} \quad \mathsf{Variable assignment} \ \beta: \mathit{Var} \to \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$
 - $\beta, h \models emp \text{ iff } dom h = \emptyset$

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textcircled{0} \quad \mathsf{Variable assignment} \ \beta: \mathit{Var} \to \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

•
$$\beta, h \models \mathsf{emp}$$
 iff dom $h = \emptyset$

•
$$\beta, h \models t_1 \mapsto t_2$$
 iff $h = \{(val_\beta(t_1), val_\beta(t_2))\}$

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textcircled{0} \quad \mathsf{Variable assignment} \ \beta: \mathit{Var} \to \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

•
$$\beta, h \models \mathsf{emp}$$
 iff dom $h = \emptyset$

•
$$\beta, h \models t_1 \mapsto t_2$$
 iff $h = \{(val_\beta(t_1), val_\beta(t_2))\}$

• $\beta, h \models \varphi_1 * \varphi_2$ iff there exist heaplets $h_1, h_2 : \mathbb{N} \to \mathbb{N}$ with

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textcircled{0} \quad \mathsf{Variable assignment} \ \beta: \mathit{Var} \to \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

•
$$\beta, h \models \mathsf{emp}$$
 iff dom $h = \emptyset$

•
$$\beta, h \models t_1 \mapsto t_2$$
 iff $h = \{(val_\beta(t_1), val_\beta(t_2))\}$

•
$$\beta, h \models \varphi_1 * \varphi_2$$
 iff there exist heaplets $h_1, h_2 : \mathbb{N} \to \mathbb{N}$ with
• $h = h_1 \uplus h_2$ and

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textbf{ 0 Variable assignment } \beta: \textit{Var} \rightarrow \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

•
$$\beta, h \models \mathsf{emp}$$
 iff dom $h = \emptyset$

•
$$\beta, h \models t_1 \mapsto t_2$$
 iff $h = \{(val_\beta(t_1), val_\beta(t_2))\}$

•
$$\beta, h \models \varphi_1 * \varphi_2$$
 iff there exist heaplets $h_1, h_2 : \mathbb{N} \to \mathbb{N}$ with
(1) $h = h_1 \uplus h_2$ and
(2) $\beta, h_1 \models \varphi_1$ and

Structure

Fixed first order domain: \mathbb{N} .

Terms and formulas are evaluated over:

- $\textcircled{0} \quad \mathsf{Variable assignment} \ \beta: \mathit{Var} \to \mathbb{N}$
- **2** Heaplet $h : \mathbb{N} \to \mathbb{N}$

•
$$\beta, h \models \mathsf{emp}$$
 iff dom $h = \emptyset$

•
$$\beta, h \models t_1 \mapsto t_2$$
 iff $h = \{(val_\beta(t_1), val_\beta(t_2))\}$

• $\beta, h \models \varphi_1 * \varphi_2$ iff there exist heaplets $h_1, h_2 : \mathbb{N} \to \mathbb{N}$ with (1) $h = h_1 \oplus h_2$ and (2) $\beta, h_1 \models \varphi_1$ and (3) $\beta, h_2 \models \varphi_2$

Connector * is called **Separating Conjunction**

A * B has the following intuitive semantics:

A * B is true

 \iff

A is true and B is true and A and B refer to disjoint sets of memory locations.

Idempotence

(idempotence for \land)

Idempotence

$$\bullet \models A \leftrightarrow A \land A$$
$$\bullet \stackrel{?}{\models} A \leftrightarrow A \ast A$$

(idempotence for \land)

(idempotence also for * ?)

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \models^? A \leftrightarrow A * A$
- NO! Counterexample:

(idempotence for \land)

(idempotence also for * ?)

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \models^? A \leftrightarrow A * A$

(idempotence also for * ?)

(idempotence for \land)

• NO! Counterexample:

 $\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \stackrel{?}{\models} A \leftrightarrow A * A$

(idempotence also for * ?)

(idempotence for \land)

• NO! Counterexample:

$$\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$$

Weakening

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \models^? A \leftrightarrow A * A$
- NO! Counterexample: $\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$

(idempotence for
$$\land$$
)

Weakening

$$\bullet \models A \land B \rightarrow A$$

(Weakining of conjunction)

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \models^? A \leftrightarrow A * A$
- NO! Counterexample: $\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$

(idempotence for
$$\land$$
)

Weakening

- $\bullet \models A \land B \rightarrow A$
- $\bullet \stackrel{?}{\models} A \ast B \rightarrow A$

(Weakining of conjunction)

(Weakining of separating conjunction?)

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \stackrel{?}{\models} A \leftrightarrow A * A$
- NO! Counterexample: $\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$

(idempotence for
$$\land$$
)

Weakening

- $\bullet \models A \land B \rightarrow A$
- $\bullet \models^? A \ast B \rightarrow A$

(Weakining of separating conjunction?)

(Weakining of conjunction)

• NO! Counterexample:

Idempotence

- $\bullet \models A \leftrightarrow A \land A$
- $\bullet \models^? A \leftrightarrow A * A$
- NO! Counterexample: $\models \neg (7 \mapsto 3 \rightarrow 7 \mapsto 3 * 7 \mapsto 3)$

(idempotence for
$$\land$$
)

Weakening

 $\bullet \models A \land B \rightarrow A$

- (Weakining of conjunction)
- $\models^{?} A * B \rightarrow A$ (Weakining of separating conjunction?)
- NO! Counterexample:
 - $\models \neg (7 \mapsto 3 * 6 \mapsto 4 \rightarrow 7 \mapsto 3)$

 $\beta, h \models A \mapsto B \text{ means that:}$ $\{(val(A), val(B))\} = h,$

• not only $(val(A), val(B)) \in h$

 $\beta, h \models A \mapsto B \text{ means that:}$ $\{(val(A), val(B))\} = h,$ $not only (val(A), val(B)) \in h$

On the other hand:

$$\beta, h \models ? \iff (val(A), val(B)) \in h$$

 $\beta, h \models A \mapsto B \text{ means that:}$ $\{(val(A), val(B))\} = h,$ $\text{not only } (val(A), val(B)) \in h$

On the other hand:

$$\beta, h \models A \mapsto B * true \iff (val(A), val(B)) \in h$$

 $\beta, h \models A \mapsto B \text{ means that:}$ $\{(val(A), val(B))\} = h,$ $\text{not only } (val(A), val(B)) \in h$

On the other hand:

$$\beta, h \models A \mapsto B * true \iff (val(A), val(B)) \in h$$

Notation sometimes: $A \hookrightarrow B : \leftrightarrow A \mapsto B * true$

• emp $\leftrightarrow \neg(\exists x, y. \ x \mapsto y * true)$

Ulbrich - Formal Systems II Theory - Separation Logic

• emp
$$\leftrightarrow \neg(\exists x, y. \ x \mapsto y * true)$$

$$\bullet \varphi \ast \psi \leftrightarrow \varphi \land \psi$$

if neither emp nor \mapsto occur.

• emp
$$\leftrightarrow \neg(\exists x, y. \ x \mapsto y * true)$$

$$\bullet \varphi \ast \psi \leftrightarrow \varphi \land \psi$$

if neither emp nor \mapsto occur.

$$x \mapsto y \land x \mapsto z \to y = z$$

• emp
$$\leftrightarrow \neg(\exists x, y. \ x \mapsto y * true)$$

•
$$\varphi * \psi \leftrightarrow \varphi \wedge \psi$$

if neither emp nor \mapsto occur.

$$x \mapsto y \land x \mapsto z \to y = z$$

$$\bullet P * (Q \lor R) \leftrightarrow (P * Q) \lor (P * R)$$

Are the following formulas valid/satisfiable/unsatisfiable?

(here: A formula φ is satisfiable iff are there β and h such that $\beta, h \models \varphi$.)

 $x \mapsto y * x \mapsto z$

Are the following formulas valid/satisfiable/unsatisfiable?

(here: A formula φ is satisfiable iff are there β and h such that $\beta, h \models \varphi$.)

 $x \mapsto y \land x \mapsto z$

Are the following formulas valid/satisfiable/unsatisfiable?

(here: A formula φ is satisfiable iff are there β and h such that $\beta, h \models \varphi$.)

$$x \mapsto y * x \mapsto z x \mapsto y \land x \mapsto z (x \mapsto 0 \land y \mapsto 0) \rightarrow x = y$$

Are the following formulas valid/satisfiable/unsatisfiable?

(here: A formula φ is satisfiable iff are there β and h such that $\beta, h \models \varphi$.)

$$x \mapsto y * x \mapsto z x \mapsto y \land x \mapsto z (x \mapsto 0 \land y \mapsto 0) \rightarrow x = y (x \mapsto 0 * y \mapsto 0) \rightarrow x = y$$

Are the following formulas valid/satisfiable/unsatisfiable?

(here: A formula φ is satisfiable iff are there β and h such that $\beta, h \models \varphi$.)

$$\begin{array}{l} \textbf{1} \quad x \mapsto y * x \mapsto z \\ \textbf{2} \quad x \mapsto y \wedge x \mapsto z \\ \textbf{3} \quad (x \mapsto 0 \wedge y \mapsto 0) \rightarrow x = y \\ \textbf{4} \quad (x \mapsto 0 * y \mapsto 0) \rightarrow x = y \\ \textbf{5} \quad (x \mapsto 0 * y \mapsto 0) \rightarrow \neg (x = y) \end{array}$$

Are the following formulas valid/satisfiable/unsatisfiable?

1
$$x \mapsto y * x \mapsto z$$

2 $x \mapsto y \wedge x \mapsto z$
3 $(x \mapsto 0 \wedge y \mapsto 0) \rightarrow x = y$
4 $(x \mapsto 0 * y \mapsto 0) \rightarrow x = y$
5 $(x \mapsto 0 * y \mapsto 0) \rightarrow \neg (x = y)$
6 $(x \mapsto a \wedge y \mapsto b) \rightarrow a = b$

Are the following formulas valid/satisfiable/unsatisfiable?

1
$$x \mapsto y * x \mapsto z$$

2 $x \mapsto y \land x \mapsto z$
3 $(x \mapsto 0 \land y \mapsto 0) \rightarrow x = y$
4 $(x \mapsto 0 * y \mapsto 0) \rightarrow x = y$
5 $(x \mapsto 0 * y \mapsto 0) \rightarrow \neg(x = y)$
6 $(x \mapsto a \land y \mapsto b) \rightarrow a = b$
7 $\varphi * emp \rightarrow \varphi$

Are the following formulas valid/satisfiable/unsatisfiable?

Are the following formulas valid/satisfiable/unsatisfiable?

Are the following formulas valid/satisfiable/unsatisfiable?

The Magic Wand

Modus Ponens for classical logic

$$\frac{A \land (A \to B)}{B}$$

Ulbrich - Formal Systems II Theory - Separation Logic

The Magic Wand

$$\frac{A \land (A \to B)}{B}$$

Corresponding rule for separating conjunction *?

The Magic Wand

Modus Ponens for classical logic

$$\frac{A \land (A \to B)}{B}$$

Corresponding rule for separating conjunction *?

Modus Ponens for separation logic	
$\frac{A * (A \twoheadrightarrow B)}{B}$	

The magic wand operator A -* B, aka separating implication:

$$\beta, h \models A \twoheadrightarrow B$$

for all $h', h^+ : \mathbb{N} \to \mathbb{N}$: If $h^+ = h \uplus h'$ and $h' \models A$, then $h^+ \models B$

Separating Operators

• $\models_{SL} f * g$ when there are \P and \square such that $\P = \P$, as well as $\P \models_{SL} f$ and $\square \models g$.

 $D \models_{SL} f \twoheadrightarrow g$ when any \P such that $\P \models_{SL} f$ is also such that $\P \models g$.

Figure 1.5: Visual representation of the semantics of separation operators

Taken from: Separation Logic: Expressiveness, Complexity, Temporal Extension Rémi Brochenin, PhD Thesis. 2013

Programs and Separation Logic

Programming Language

statement	::=	while formula do statement	
		if formula then statement else statement	
		statement ; statement	
		var := term	
		[term] := term	
		var := [term]	
(later)		<pre>var := cons(term,, term)</pre>	
(later)		dispose(var)	

Restriction: formula are the arithmetic formulas that do not contain \mapsto or emp.

Kripke Frames with Heaps

- Every state is a pair (β, h) with $\beta: Var \to \mathbb{N}$ and $h: \mathbb{N} \to \mathbb{N}$
- Kripke state transition the program semantics $\rho(st) \in S \times S$ for any statement *st*.

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

 $\rho(\pi_1\cup\pi_2) = \rho(\pi_1)\cup\rho(\pi_2)$

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

 $\rho(\pi_1\cup\pi_2) = \rho(\pi_1)\cup\rho(\pi_2)$

 $\rho(\pi_1; \pi_2) = \rho(\pi_1); \rho(\pi_2)$; is forward composition

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

$$\begin{array}{lll} \rho(\pi_1 \cup \pi_2) &=& \rho(\pi_1) \cup \rho(\pi_2) \\ \\ \rho(\pi_1 \, ; \, \pi_2) &=& \rho(\pi_1) \, ; \, \rho(\pi_2) & ; \, \text{is forward composition} \\ \\ &=& \{(s,t) \mid \text{ex. } u \in S \text{ with } (s,u) \in \rho(\pi_1), (u,t) \in \rho(\pi_2)\} \end{array}$$

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

$$\begin{split} \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \rho(\pi_1; \pi_2) &= \rho(\pi_1); \rho(\pi_2) \quad ; \text{ is forward composition} \\ &= \{(s, t) \mid \text{ex. } u \in S \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\} \\ \rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \end{split}$$

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

$$\begin{split} \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \rho(\pi_1 ; \pi_2) &= \rho(\pi_1) ; \rho(\pi_2) \quad ; \text{ is forward composition} \\ &= \{(s, t) \mid \text{ex. } u \in S \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2) \} \\ \rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \\ &= \{(s_o, s_n) \mid \text{ex. } n \ge 0 \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ f.a. } i < n \} \end{split}$$

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

$$\begin{split} \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \rho(\pi_1; \pi_2) &= \rho(\pi_1); \rho(\pi_2) \quad ; \text{ is forward composition} \\ &= \{(s, t) \mid \text{ex. } u \in S \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\} \\ \rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \\ &= \{(s_o, s_n) \mid \text{ex. } n \ge 0 \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ f.a. } i < n\} \\ \rho(\mathbf{?}\varphi) &= \{(s, s) \mid s \models \varphi\} \end{split}$$

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

$$\begin{split} \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \rho(\pi_1; \pi_2) &= \rho(\pi_1); \rho(\pi_2) \quad ; \text{ is forward composition} \\ &= \{(s, t) \mid \text{ex. } u \in S \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\} \\ \rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \\ &= \{(s_o, s_n) \mid \text{ex. } n \ge 0 \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ f.a. } i < n\} \\ \rho(?\varphi) &= \{(s, s) \mid s \models \varphi\} \end{split}$$

Reminder: IF and WHILE

$$\begin{array}{rcl} \text{if } \varphi \text{ then } \alpha \text{ else } \beta & = & (?\varphi;\alpha) \cup (?\neg\varphi;\beta) \\ & \text{while } \varphi \text{ do } \alpha & = & (?\varphi;\alpha)^*;?\neg\varphi \end{array}$$

Ulbrich - Formal Systems II Theory - Separation Logic

Accessiblity Relation for Programs

ho: statement
ightarrow S imes S

A state $s \in S$ is a pair (β, h) with $\beta: Var \to \mathbb{N}$ and $h: \mathbb{N} \to \mathbb{N}$

Accessiblity Relation for Programs

 $\rho : \texttt{statement} \to S \times S$ A state $s \in S$ is a pair (β, h) with $\beta : Var \to \mathbb{N}$ and $h : \mathbb{N} \to \mathbb{N}$

$$ig((eta, h), (eta', h')ig) \in
ho(v := t) \quad \Longleftrightarrow \quad eta' = eta[v/val_eta(t)] ext{ and } h' = h$$

Accessiblity Relation for Programs

 $\rho : \texttt{statement} \to S \times S$ A state $s \in S$ is a pair (β, h) with $\beta : Var \to \mathbb{N}$ and $h : \mathbb{N} \to \mathbb{N}$

$$ig((eta,h),(eta',h')ig)\in
ho(extbf{v}:=t) \quad \Longleftrightarrow \quad eta'=eta[extbf{v}/ extbf{val}_eta(t)] extbf{ and } h'=h$$

 $((\beta, h), (\beta', h')) \in \rho(v := [t]) \iff val_{\beta}(t) \in \text{dom } h \text{ and } h' = h \text{ and}$ $\beta' = \beta [v/h[val_{\beta}(t)]]$

Accessiblity Relation for Programs

 $\begin{array}{l} \rho: \texttt{statement} \to \mathcal{S} \times \mathcal{S} \\ \texttt{A state } s \in \mathcal{S} \text{ is a pair } (\beta, h) \text{ with } \beta: \textit{Var} \to \mathbb{N} \text{ and } h: \mathbb{N} \to \mathbb{N} \end{array}$

$$ig((eta,h),(eta',h')ig)\in
ho(v:=t) \quad \Longleftrightarrow \quad eta'=eta[v/val_eta(t)] ext{ and } h'=h$$

 $((\beta, h), (\beta', h')) \in \rho(v := [t]) \iff val_{\beta}(t) \in \text{dom } h \text{ and } h' = h \text{ and}$ $\beta' = \beta [v/h[val_{\beta}(t)]]$

 $((\beta, h), (\beta', h')) \in \rho([t] := u) \iff val_{\beta}(t) \in \text{dom } h \text{ and } \beta' = \beta \text{ and}$ $h' = h[val_{\beta}(t)/val_{\beta}(u)]$

(Remember: f[a/b](a) = b and f[a/b](x) = f(x) for $x \neq a$)

Statement x := [10] must not be executed if $10 \notin \text{dom } h$.

State (β, \emptyset) has no successor state in $\rho(x := [10])$.

How to distinguish between failed test $?\psi$ and memory violation?

Statement x := [10] must not be executed if $10 \notin \text{dom } h$.

State (β, \emptyset) has no successor state in $\rho(x := [10])$.

How to distinguish between failed test $?\psi$ and memory violation?

Model unallowed heap access:

fail : statement $\rightarrow 2^{S}$ s \in fail (π) means: π started in s may cause memory violation.

Model unallowed heap access:

fail : statement $\rightarrow 2^S$

1

 $s \in fail(\pi)$ means: π started in s may cause memory violation

$$fail(x := t) = fail(?\psi) = \emptyset$$

Model unallowed heap access:

fail : statement $\rightarrow 2^S$ s \in fail(π) means: π started in s may cause memory violation

$$fail(x := t) =$$

$$fail(?\psi) = \emptyset$$

$$fail(x := [t]) =$$

$$fail([t] := u) = \{(\beta, h) \mid val_{\beta}(t) \notin \text{dom } h\}$$

Model unallowed heap access:

fail : statement $\rightarrow 2^{S}$ s \in fail(π) means: π started in s may cause memory violation

$$fail(x := t) =$$

$$fail(?\psi) = \emptyset$$

$$fail(x := [t]) =$$

$$fail([t] := u) = \{(\beta, h) \mid val_{\beta}(t) \notin \text{dom } h\}$$

$$fail(\pi_1; \pi_2) = fail(\pi_1) \cup (\rho(\pi_1); fail(\pi_2))$$

$$fail(\pi_1 \cup \pi_2) = fail(\pi_1) \cup fail(\pi_2)$$

Model unallowed heap access:

fail : statement $\rightarrow 2^S$ s \in fail(π) means: π started in s may cause memory violation

$$fail(x := t) =$$

$$fail(?\psi) = \emptyset$$

$$fail(x := [t]) =$$

$$fail([t] := u) = \{(\beta, h) | val_{\beta}(t) \notin \text{dom } h\}$$

$$fail(\pi_{1}; \pi_{2}) = fail(\pi_{1}) \cup (\rho(\pi_{1}); fail(\pi_{2}))$$

$$fail(\pi_{1} \cup \pi_{2}) = fail(\pi_{1}) \cup fail(\pi_{2})$$

$$fail(\pi^{*}) = \rho(\pi^{*}); fail(\pi)$$

Model unallowed heap access:

fail : statement $\rightarrow 2^S$ s \in fail(π) means: π started in s may cause memory violation

$$fail(x := t) =$$

$$fail(?\psi) = \emptyset$$

$$fail(x := [t]) =$$

$$fail([t] := u) = \{(\beta, h) \mid val_{\beta}(t) \notin \text{dom } h\}$$

$$fail(\pi_{1}; \pi_{2}) = fail(\pi_{1}) \cup (\rho(\pi_{1}); fail(\pi_{2}))$$

$$fail(\pi_{1} \cup \pi_{2}) = fail(\pi_{1}) \cup fail(\pi_{2})$$

$$fail(\pi^{*}) = \rho(\pi^{*}); fail(\pi)$$
with $A; B = \{x \mid ex \ y \text{ with } (x, y) \in A \text{ and } y \in B\}$

Ulbrich - Formal Systems II Theory - Separation Logic

Fail-aware modality

Remember:

$$s \models [\pi] \varphi$$
 iff $s' \models \varphi$ for all $(s, s') \in \rho(\pi)$.

Problem:
emp
$$\rightarrow$$
 [[5] := 42] *false* is a valid formula.

New modality [.]

 $s \models \llbracket \pi \rrbracket \varphi$ iff $s' \models \varphi$ for all $(s, s') \in \rho(\pi)$ and $s \notin fail(\pi)$

Now:

 $\mathsf{emp} \to \llbracket [\![5]] := 42 \rrbracket \psi \quad \text{ is not valid for any } \psi$

Dynamic Separation Logic

Valid formulas:

•
$$x \mapsto 5 \rightarrow \llbracket v := [x]$$
; $[x] := v + 1 \rrbracket x \mapsto 6$

•
$$(\exists y.x \mapsto y) \to \llbracket [x] := 7 \rrbracket x \mapsto 7$$

•
$$x \mapsto 5 * y \mapsto 6 \rightarrow \llbracket [x] := 7 \rrbracket (x \mapsto 7 * y \mapsto 6)$$

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Ulbrich - Formal Systems II Theory - Separation Logic

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a *Hoare* calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: $\{P\} \ \pi \ \{Q\}$

A Hoare triple is valid if program π started in a state that satisfies precondition P terminates in a state which satisfies postcondition Q (it it terminates).

A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: $\{P\} \ \pi \ \{Q\}$

A Hoare triple is valid if program π started in a state that satisfies precondition P terminates in a state which satisfies postcondition Q (it it terminates).

Semantically the same as $P o \llbracket \pi
rbracket Q$.
A Calculus for Separation Logic

Hoare Calculus

Separation Logic originally formulated as rules for a Hoare calculus.

Hoare Calculus (1969, Hoare and Floyd)

Operates on Hoare Triples: $\{P\} \ \pi \ \{Q\}$

A Hoare triple is valid if program π started in a state that satisfies precondition P terminates in a state which satisfies postcondition Q (it it terminates).

Semantically the same as $P o \llbracket \pi
rbracket Q$.

We present the calculus using dynamic logic notation.

Reminder: Hoare Calculus (in DL notation)

$$P[x \leftarrow E] \rightarrow [x := E]P \quad [x \leftarrow E] \text{ is substitution}$$

$$\frac{P \to \llbracket \pi_1 \rrbracket Q \quad Q \to \llbracket \pi_2 \rrbracket R}{P \to \llbracket \pi_1 ; \pi_2 \rrbracket R} \quad \frac{P' \to P \quad P \to \llbracket \pi \rrbracket Q \quad Q \to Q'}{P' \to \llbracket \pi \rrbracket Q'}$$

$$\frac{P \land C \to \llbracket \pi_1 \rrbracket Q \quad P \land \neg C \to \llbracket \pi_2 \rrbracket Q}{P \to \llbracket \text{if } C \text{ then } \pi_1 \text{ else } \pi_2 \rrbracket Q}$$

$$\frac{P \land C \to \llbracket \pi \rrbracket P}{P \to \llbracket \text{while } C \text{ do } \pi \rrbracket (P \land \neg C)}$$
$$\frac{P \to \llbracket \pi \rrbracket Q}{(\exists x.P) \to \llbracket \pi \rrbracket (\exists x.Q)} \text{if } x \notin Free(\pi)$$

Axioms:

$$x = m \land emp \rightarrow [x := E] x = E[x \leftarrow m] \land emp$$

$$x = m \land E \mapsto n \rightarrow [x := [E]](x = n \land E[x \leftarrow m] \mapsto n)$$

$$(E \mapsto n) \rightarrow \llbracket [E] := F \rrbracket E \mapsto F$$

Heap location must be accessible

Recall: $s \models [\![\pi]\!] \varphi$ iff $s' \models \varphi$ for all $(s, s') \in \rho(\pi)$ and $s \notin fail(\pi)$. All accessed heap locations (read or write) must be in domain. Therefore: Precondition must ensure that.

Axioms:

$$x = m \land emp \rightarrow [x := E] x = E[x \leftarrow m] \land emp$$

$$x = m \land E \mapsto n \rightarrow [x := [E]](x = n \land E[x \leftarrow m] \mapsto n)$$

$$(\exists n. E \mapsto n) \rightarrow \llbracket [E] := F \rrbracket E \mapsto F$$

Heap location must be accessible

Recall: $s \models [\![\pi]\!] \varphi$ iff $s' \models \varphi$ for all $(s, s') \in \rho(\pi)$ and $s \notin fail(\pi)$. All accessed heap locations (read or write) must be in domain. Therefore: Precondition must ensure that.

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

$$\frac{P \longrightarrow \llbracket \pi \rrbracket \ Q}{P \ast R \rightarrow \llbracket \pi \rrbracket (Q \ast R)}$$

 $Modifies(\pi) \cap Free(R) = \emptyset$

THIS IS THE KEY POINT ABOUT SEPARATION LOGIC

$$\frac{P \longrightarrow \llbracket \pi \rrbracket \ Q}{P \ast R \rightarrow \llbracket \pi \rrbracket (Q \ast R)}$$

 $Modifies(\pi) \cap Free(R) = \emptyset$

Separation in Proofs

Proof $P \to [\![\pi]\!]Q$ using in P, Q the memory π refers to. Get for free: Nothing besides these memory locations has changed.

Remember: The Framing Problem

Example in Java

```
//@ requires acc1 != acc2;
//@ ensures \result == 100;
int f(Account acc1, Account acc2) {
   acc1.setBalance(100);
   acc2.setBalance(200);
   return acc1.getBalance();
}
```

Rule for setBalance:

 $A \mapsto x \rightarrow [A.setBalance(y)]A \mapsto y$

Remember: The Framing Problem

Example in Java

```
//@ requires acc1 != acc2;
//@ ensures \result == 100;
int f(Account acc1, Account acc2) {
   acc1.setBalance(100);
   acc2.setBalance(200);
   return acc1.getBalance();
}
```

Rule for setBalance:

```
A \mapsto x \rightarrow [[A.setBalance(y)]]A \mapsto y
```

Use Frame Rule:

 $acc2 \mapsto x \rightarrow \ldots$

 $\dots [acc2.setBalance(200);]acc2 \mapsto 200$

Remember: The Framing Problem

Example in Java

```
//@ requires acc1 != acc2;
//@ ensures \result == 100;
int f(Account acc1, Account acc2) {
   acc1.setBalance(100);
   acc2.setBalance(200);
   return acc1.getBalance();
}
```

Rule for setBalance:

```
A \mapsto x \rightarrow [[A.setBalance(y)]]A \mapsto y
```

Use Frame Rule:

```
acc2 \mapsto x * acc1 \mapsto 100 \rightarrow \dots
\dots [acc2.setBalance(200); ]acc2 \mapsto 200 * acc1 \mapsto 100
```

On the board ...

$(\exists v. X \mapsto v * Y \mapsto v) \rightarrow \llbracket X := [X]; Y := [Y] \rrbracket X = Y$

Ulbrich - Formal Systems II Theory - Separation Logic

if $Modifies(\pi) \cap Free(R) = \emptyset$

$$\begin{array}{ccc} P \to \llbracket \pi \rrbracket Q & \text{or equivalently} \\ \hline P * R \to \llbracket \pi \rrbracket (Q * R) & \models (\llbracket \pi \rrbracket Q) * R \to \llbracket \pi \rrbracket (Q * R) \end{array}$$

if $Modifies(\pi) \cap Free(R) = \emptyset$

Instantiate left rule with $P := \llbracket \pi \rrbracket Q$.

Premiss: trivially true, conclusion: desired implication.

$$\begin{array}{c} P \to \llbracket \pi \rrbracket Q & \text{or equivalently} \\ \hline P \ast R \to \llbracket \pi \rrbracket (Q \ast R) & \models (\llbracket \pi \rrbracket Q) \ast R \to \llbracket \pi \rrbracket (Q \ast R) \end{array}$$

if $Modifies(\pi) \cap Free(R) = \emptyset$

Instantiate left rule with $P := [\![\pi]\!]Q$. Premiss: trivially true, conclusion: desired implication.

$$\begin{array}{c} P \to \llbracket \pi \rrbracket Q & \text{or equivalently} \\ \hline P \ast R \to \llbracket \pi \rrbracket (Q \ast R) & \models (\llbracket \pi \rrbracket Q) \ast R \to \llbracket \pi \rrbracket (Q \ast R) \end{array}$$

if $Modifies(\pi) \cap Free(R) = \emptyset$

Instantiate left rule with $P := [\![\pi]\!]Q$. Premiss: trivially true, conclusion: desired implication.

Lemma

Let $h_1, h'_1, h_2, h'_2 : \mathbb{N} \to \mathbb{N}$ be heaplets, dom $h_1 \cap \text{dom } h_2 = \emptyset$ $\beta, \beta' : Var \to \mathbb{N}$ be variable assignments. Then:

 $\beta, h_1 \xrightarrow{\pi} \beta', h_1' \implies (\beta, h_1 \uplus h_2 \xrightarrow{\pi} \beta', h_1' \uplus h_2' \Longleftrightarrow h_2 = h_2')$

$$s \xrightarrow{\pi} s'$$
 means $(s, s') \in \rho(\pi)$

Lemma

Let $h_1, h'_1, h_2, h'_2 : \mathbb{N} \to \mathbb{N}$ be heaplets, dom $h_1 \cap \text{dom } h_2 = \emptyset$ $\beta, \beta' : Var \to \mathbb{N}$ be variable assignments. Then:

 $\beta, h_1 \xrightarrow{\pi} \beta', h_1' \implies (\beta, h_1 \uplus h_2 \xrightarrow{\pi} \beta', h_1' \uplus h_2' \Longleftrightarrow h_2 = h_2')$

By structural induction:

- variable assignment v := t
- heap store $[t_1] := t_2$
- heap load v := [t]
- first-order test $?\varphi$
- $\pi_1 \cup \pi_2$, π_1 ; π_2 , π^*

(heap irrelevant) $(val(t) \stackrel{!}{\in} \text{dom } h_1)$ $(val(t) \stackrel{!}{\in} \text{dom } h_1)$ (heap irrelevant) (appeal to ind. hyp)

 $s \xrightarrow{\pi} s'$ means $(s, s') \in
ho(\pi)$

$$\models (\llbracket \pi \rrbracket Q) * R \rightarrow \llbracket \pi \rrbracket (Q * R) \quad \text{if } Modifies(\pi) \cap Free(R) = \emptyset (\star)$$

Let β , $h \models (\llbracket \pi \rrbracket Q) * R$, i.e., β , $h_1 \models \llbracket \pi \rrbracket Q$ and β , $h_2 \models R$, $h = h_1 \uplus h_2$.

Memory Allocation and Deallocation

Syntax: Two statements			
var := cons(term,, term)	and	dispose(var)	

Memory Allocation and Deallocation

Syntax: Two statements		
var := cons(term,, term)	and	dispose(var)

Semantics: ρ and *fail*

$$ig((eta, h), (eta', h')ig) \in
ho(extbf{v} := extbf{cons}(t))$$
iff

$$eta'=eta[v/\mathit{loc}]$$
 and $h'=h \uplus \{(\mathit{loc},\mathit{val}_eta(t))\}$ and $\mathit{loc}
ot\in \mathsf{dom}\ h$

$$fail(v := cons(t)) = \emptyset$$

cons allocates n consecutive unused memory locations, stores the argument values there and returns the first memory location.

(See literature for general *n*-ary version)

Memory Allocation and Deallocation

Syntax: Two statements		
var := cons(term,, term)	and	dispose(var)

Semantics: ρ and *fail*

В

$$egin{aligned} &((eta,h),(eta',h'))\in
ho(\mathtt{dispose}(v))\ & ext{iff}\ &'=eta ext{ and }eta(v)\in ext{dom }h ext{ and }h'=h\setminus\{(eta(v),h(eta(v)))\} \end{aligned}$$

 $fail(\texttt{dispose}(v)) = \{(\beta, h) \mid \beta(v) \notin \texttt{dom } h\}$

dispose deallocates the allocated memory location v; fails if an unallocated location is disposed.

$$\frac{(\llbracket \pi \rrbracket Q) \ast R}{\llbracket \pi \rrbracket (Q \ast R)} \text{ if } \textit{Modifies}(\pi) \cap \textit{Free}(R) = \emptyset$$

Proof by structural induction over π .

see Reynolds p.77ff

Decidability of Separation Logic

Decidable

Some restricted logics from Separation Logic are decidable.

- Restricted arithmetic
- 2 No magic wand \rightarrow

They can be reduced to Monadic Second Order Logic over $\mathbb N.$ Equivalent to word emptiness of Büchi Automata.

The separating implication -* makes undecidable.

Relatively complete

The calculus for Separation Logic is relatively complete. Every correct program can be proved using an oracle for \mathbb{N} .

Application of Separation Logic

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

$$\begin{array}{rcl} \textit{list}(x,\langle 17,21,9\rangle) &\leftrightarrow & (x\mapsto 17)*(x+1\mapsto v)*(v\mapsto 21)*\ldots\\ & \dots*(v+1\mapsto w)*(w\mapsto 9)*(w+1\mapsto 0) \end{array}$$

Abstraction Predicates

Use predicate symbols to abstract away from data structures

Example: Lists

$$\begin{array}{rcl} \textit{list}(x,\langle 17,21,9\rangle) &\leftrightarrow & (x\mapsto 17)*(x+1\mapsto v)*(v\mapsto 21)*\ldots\\ & \dots*(v+1\mapsto w)*(w\mapsto 9)*(w+1\mapsto 0)\end{array}$$

General:

Recursive predicate list:

$$\forall x, v_1, \bar{v}. \ \textit{list}(x, \langle v_1, \bar{v} \rangle) \leftrightarrow \exists n. \ ((x \mapsto v_1) * (x + 1 \mapsto n) * \textit{list}(n, \bar{v}))$$

■ Verifast → Demo! (Bart Jacobs et al., U Leuven) https://www.cs.kuleuven.be/~bartj/verifast/

- Verifast → Demo! (Bart Jacobs et al., U Leuven) https://www.cs.kuleuven.be/~bartj/verifast/
- Infer (Peter O'Hearn et al., Facebook) http://fbinfer.com/

- Verifast → Demo! (Bart Jacobs et al., U Leuven) https://www.cs.kuleuven.be/~bartj/verifast/
- Infer (Peter O'Hearn et al., Facebook)
 http://fbinfer.com/
- jStar (M. Parkinson, now MS)

- Verifast → Demo! (Bart Jacobs et al., U Leuven) https://www.cs.kuleuven.be/~bartj/verifast/
- Infer (Peter O'Hearn et al., Facebook) http://fbinfer.com/
- jStar (M. Parkinson, now MS)
- Viper (P. Müller, ETH Zurich) concurrency

- Verifast → Demo! (Bart Jacobs et al., U Leuven) https://www.cs.kuleuven.be/~bartj/verifast/
- Infer (Peter O'Hearn et al., Facebook) http://fbinfer.com/
- jStar (M. Parkinson, now MS)
- Viper (P. Müller, ETH Zurich) concurrency
- SpaceInvader, YNot, HOLFoot, ..., ...

Discussion

Advantages of Separation Logic

- + Functional and frame specification combined no extra consideration needed
- + Frame rule!
- + Abstraction Predicates are nice way of abstraction

Disadvantages of Separation Logic

- Functional and frame specification combined no separation of concerns!
- All data must be hierarchically structured
- Complicated semantics of Sep Logic (c.f. -*)