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Different Questions to Ask

Deciding logics

Question: Is formula φ valid, i.e., φ satisfied in all possible
structures.

(∀x .p(x))→ p(f (x)) is valid.

x > y → y < x not valid (uninterpreted symbols!)

Deciding theories

Question: Is formula φ satisfied structures with fixed
interpretation for symbols.

∃x . 2 · x2 − x − 1 = 0 ∧ x < 0 holds in R, . . .

. . . but not in Z.
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Theories

Given a FOL signature Σ
FmlΣ . . . set of closed FOL-formulas over Σ.

Definition: Theory

A theory T ⊂ FmlΣ is a set of formulas such that

1 T is closed under consequence: If T |= φ then φ ∈ T

2 T is consistent: false 6∈ T

A FOL structure (D, I ) is called a T -model of ψ ∈ FmlΣ if

1 D, I |= ψ and

2 D, I |= φ for all φ ∈ T
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Theories II

A FOL structure (D, I ) is called a T -structure if D, I |= φ for
all φ ∈ T .

A T -structure (D, I ) is a T -model of ψ ∈ FmlΣ if D, I |= ψ.

ψ ∈ FmlΣ is called T -satisfiable if it has a T -model.

ψ ∈ FmlΣ is called T -valid if every T -structure is a T -model
of ψ. ⇐⇒ T |= ψ ⇐⇒ ψ ∈ T

T is called complete if: φ ∈ FmlΣ =⇒ φ ∈ T or ¬φ ∈ T

|=T is used instead of T |=: S |=T φ defined as S ∪ T |= φ
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Generating Theories

Axiomatisation

Theory T may be represented by a set Ax ⊂ FmlΣ of axioms.
T is the consequential closure of Ax, we write:

T = T (Ax) := {φ | Ax |= φ}

T is “axiomatisable”.

Fixing a structure

Theory T may be represented by one particular structure (D, I ).
T is the set of true formulas in (D, I ), we write:

T = T (D, I ) := {φ | (D, I ) |= φ}
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Discussion

Every theory T (D, I ) is complete.

If Ax is recursive enumerable, then T (Ax) is recursive
enumerable.

If Ax is decidable, then T (Ax) needs not be decidable.

T (D, I ) needs not be recursive enumerable.

(D, I ) is not the only T (D, I )-model.
(In general, two T (D, I )-models are not even isomorphic)
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Free variables

When dealing with theories, formulas often have free variables.

Open and closed (reminder)

φ1 = ∀x .∃y .p(x , y) is closed, has no free variables,
φ2 = ∃y .p(x , y) is open, has free variables FV (φ2) = {x}

FmloΣ ⊃ FmlΣ . . . set of open formulas

Existential closure ∃[·]
For φ ∈ FmloΣ with FV = {x1, ..., xn} define:

∃[φ] := ∃x1. . . .∃xn. φ

φ ∈ FmloΣ is called T-satisfiable if ∃[φ] is T-satisfiable.
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Axioms for Equality

Theorem

Equality can be axiomatised in first order logic.

This means: Given signature Σ, there is a set EqΣ ⊂ FmlΣ that
axiomatise equality:

φ≈ is formula φ with interpreted “=” replaced by uninterpred “≈”.

S |= φ ⇐⇒ S≈ |=T (EqΣ) φ
≈

FOL with equality cannot be more expressive than FOL without
built-in equality.
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Axioms for Equality

Axioms EqΣ:

∀x . x ≈ x (Reflexivity)

∀x1, x1, . . . , xn, x
′
n.

x1 ≈ x ′1 ∧ . . . ∧ xn ≈ x ′n → f (x1, ..., xn) ≈ f (x ′1, . . . , x
′
n)

for any function f in Σ with arity n. (Congruency)

∀x1, x1, . . . , xn, x
′
n.

x1 ≈ x ′1 ∧ . . . ∧ xn ≈ x ′n → p(x1, ..., xn)↔ p(x ′1, . . . , x
′
n)

for any predicate p in Σ with arity n. (Congruency)
(This includes predicate ≈)

Symmetry and transitivity of ≈ are consequences of EqΣ

 Exercise
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Satisfiability Modulo Theories

SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, . . .
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)

FmlQF ⊂ Fmlo . . . the set of quantifier-free formulas

Interesting questions for a theory T :

SAT: Is φ ∈ Fmlo a T -satisfiable formula?

QF-SAT: Is φ ∈ FmlQF a T -satisfiable formula?
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Decision Procedure

Decision Procedure

A decision procedure DPT for a theory T is a deterministic
algorithm that always terminates.
It takes a formula φ as input and returns SAT if φ is T -satisfiable,
UNSAT otherwise.

N.B.:

φ is T -valid ⇐⇒ ¬φ is not T -satisfiable.

DPT can also be used to decide validity!
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic
Linear arithmetic
Real arithmetic
Bitvectors YES YES
Floating points YES YES
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Natural Arithmetic – Goedel’s
(First) Incompleteness Theorem
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Natural Numbers

Standard model of natural numbers

Let ΣN = ({+, ∗, 0, 1}, {<}).

N = (N, IN ) with “obvious” meaning:

IN (
{

+
∗
<

}
)(a, b) = a

{
+
·
<

}
b, IN (0) = 0, IN (1) = 1

T (N ) is the set of all sentences over ΣN which are true in the
natural numbers.

Gödel’s Incompleteness Theorem

“Any consistent formal system within which a certain amount of
elementary arithmetic can be carried out is incomplete.”
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Peano Arithmetic

Natural number arithmetic is not axiomatisable (with a r.e. set)
Let’s approximate.

The Peano Axioms PA
1 ∀x(x + 1 6 .= 0)

2 ∀x∀y(x + 1
.

= y + 1→ x
.

= y)

3 ∀x(x + 0
.

= x)

4 ∀x∀y(x + (y + 1)
.

= (x + y) + 1)

5 ∀x(x ∗ 0
.

= 0)

6 ∀x∀y(x ∗ (y + 1)
.

= (x ∗ y) + x)

7 For any φ ∈ FmlΣN

(φ(0) ∧ ∀x(φ(x)→ φ(x + 1)))→ ∀x(φ)

That’s an infinite (yet recursive) set of Axioms.
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Peano Arithmetic

Peano arithmetic approximates natural arithmetic.

More T (PA)-models than T (N )-models

T (PA) is not complete.

=⇒ There are T (N )-valid formulas that are not T (PA)-valid
formulas.

There are artificial examples in T (N ) \ T (PA),
but also actual mathematical theorems:
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from: L. KIRBY and J. PARIS, ’Accessible Independence Results for Peano Arithmetic’ (1982)
[2] R. L. GOODSTEIN, ’On the restricted ordinal theorem’, J. Symbolic Logic (1944)
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic NO1 NO
Linear arithmetic
Real arithmetic
Bitvectors YES YES
Floating points YES YES

1 Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic
Mathematics, 1970.
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Natural Arithmetic – Presburger
Arithmetic and its Decidability
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Presburger Arithmetic

Let ΣP = ({0, 1,+}, {<}), the signature w/o multiplication.

The Presburger Axioms P

1 ∀x(x + 1 6 .= 0)

2 ∀x∀y(x + 1
.

= y + 1→ x
.

= y)

3 ∀x(x + 0
.

= x)

4 ∀x∀y(x + (y + 1)
.

= (x + y) + 1)

5 For any φ ∈ FmlΣN

(φ(0) ∧ ∀x(φ(x)→ φ(x + 1)))→ ∀x(φ)

A subset of the Peano axioms (w/o those for multiplication).

Conventions:
3

def
= 1 + 1 + 1, 3x

def
= x + x + x , etc.
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Presburger Arithmetic

Mojżesz Presburger. Über die Vollständigkeit eines gewissen
Systems der Arithmetik, Warsaw 1929

Theorem

He proved Presburger arithmetic to be

consistent,

complete, and

decidable.

We are interested in the 3rd property!
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Quantifier Elimination

Definition

A theory T admits quantifier elimination (QE) if any formula

Q1x1 . . .Qnxn. φ(x1, . . . , xn, y1, . . . , ym) ∈ Fmlo

is T -equivalent to a quantifier-free formula

ψ(y1, . . . , ym) ∈ Fmlo .

Qi ∈ {∀,∃}

If T -ground instances in FmlQF ∩ Fml can be decided, QE gives us
a decision procedure for T .
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Quantifier Elimination

Lemma

If T admits QE for any formula

∃x . φ1(x , y1, . . . , ym) ∧ . . . ∧ φn(x , y1, . . . , ym) ∈ Fmlo

with φi literals, then T admits QE for any formula in Fmlo .

Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.
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Presburger and Quantifier Elimination

Does Presburger Arithmetic admits QE?

Almost ... However

∃x .y = x + x has no quantifier-free P-equivalent

Add predicates: {k |· : k ∈ N>0} “k divides ...”

∃x .y = x + x ↔ 2|y is P-valid

Presburger Arithmetic with divisibility admits QE.

 Cooper’s algorithm ... Blackboard
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic
Bitvectors YES YES
Floating points YES YES
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Real Arithmetic
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Real arithmetic is decidable

Σ = ({+,−, ·, 0, 1}, {≤}), ϕ ∈ FmlΣ

Reminder:

N |= ϕ is not decidable, not even recursive enumerable (Gödel).

Tarski-Seidenberg theorem (c. 1948)

R |= ϕ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that (∃x .ϕ(x , y))↔ ψ(y).
Computer algebra systems do this: Redlog, Mathematica, (Z3)
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Real arithmetic – Axioms

Real arithmetic has a recursive axiomatisation R

+ is an Abelian group, · is an Abelian semigroup:

∀x , y , z . (x + y) + z = x + (y + z) ∀x , y , z . (x · y) · z = x · (y · z)
∀x , y . x + y = y + x ∀x , y . x · y = y · x
∀x . x + 0 = x ∧ 0 + x = x ∀x . x · 1 = x ∧ 1 · x = x
∀x . x + (−x) = 0 ∧ (−x) + x = 0

Distributive Laws
∀x , y , z . (x + y) · z = x · z + y · z ∧ z · (x + y) = z · x + z · y

Ordering
∀x , y , z . x ≤ y → x + z ≤ y + z
∀x , y . 0 ≤ x ∧ 0 ≤ y → 0 ≤ xy

Roots
∀x∃y . (y · y = x ∨ y · y = −x)
∀a0 . . . ∀an. an 6= 0→ ∃x . (anx

n + . . .+ a0 = 0) for all odd n ∈ N

Beckert, Ulbrich – Formale Systeme II: Theorie 30/48



Real closed fields

T (R) = T (R) is the set of FOL sentences that are true in R.

But there are also other interesting models of T (R):

Real numbers R,

Real algebraic numbers R ∩ Q̄
(real numbers that are roots of polynomials with integer coeffs.)

Computable numbers
(real numbers that can be approximated arbitrarily precisely.)

. . .
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Semialgebraic sets

Semialgebraic set

S ⊆ Rn is called semialgebraic if it defined by a boolean
combination of polynomial equations and inequalitites.

Boolean combination means: ∪,∩, {

Observation:

S is semialgebaric iff there is a quantifier-free FOL-formula ϕ(S)
with n free variables x1, . . . , xn such that

(s1, . . . , sn) ∈ S ⇐⇒ R, [x1 7→ s1, . . . , xn 7→ sn] |= ϕ(S)
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Tarski-Seidenberg Theorem

Definition: Projection πn : Rn → Rn−1

πn((s1, . . . , sn)) := (s1, . . . , sn−1)

πn(S) := {πn(s̄) | s̄ ∈ S} (extended to 2R)

(s1, . . . , sn−1) ∈ πn(S) ⇐⇒ R, [x1 7→ s1, . . . , xn−1 7→ sn−1] |= ∃xn. ϕ(S)

Tarski-Seidenberg Theorem (Projektionssatz)

Let S ⊆ Rn be semialgebraic.
Then πn(S) ∈ Rn−1 is also semialgebraic.
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Example

Single variable, single quadratic equation

Let Squad be the solutions of ax2 + bx + c = 0.
(is semialgebraic: ax2 + bx + c ∈ R[a, b, c , x ])

Due to Tarski-Seidenberg, there must be an equiv. quantifier-free
formula ϕ(π4(Squad)) with free variables a, b, c .

∃x .ax2 + bx + c = 0

⇐⇒

(a 6= 0 ∧ b2 − 4ac ≥ 0)

∨ (a = 0 ∧ (b = 0→ c = 0))

(
∃x .x3 + a2x

2 + a1x + a0 = 0 is trivally equivalent to true.
)
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Quantifier Elimination – Algorithm

1 Sufficient to look at ∃x .
∧

i φi (ȳ , x) for atomic φi .→ Excercise

2 Sufficient to consider φi of shape p(ȳ , x)
{
<
>
=

}
0

for p ∈ R[ȳ ][x ] → Why?

3 Every polynomial p ∈ R[x ] has finitely many connected
regions with same sign. → Board
Choose a set Rep of representatives.

4 ∃x .
∧
i

φi (x , ȳ)↔
∨

r∈Rep

∧
i

φi (r , ȳ)

Decision Technique

Cylindrical Algebraic Decomposition (CAD)
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Quantifier Elimination – Linear Example

In R[z , x ]:
ψ := ∃x .x > 2 ∧ x < 3 ∧ x > z

Interesting points for x : I = {2, 3, z}
Interesting intervals: (−∞, 2), (2, 3), (3,∞), (2, z), . . .

Representatives:
Rep =

{
2, 3, z , “−∞”, “+∞”, 2+3

2 , 2+z
2 , 3+z

2

}
=
{

i1+i2
2 | i1, i2 ∈ I

}
∪ {“−∞”, “+∞”}

For the example:
ψ ↔

∨
r∈Rep r > 2 ∧ r < 3 ∧ r > z

↔ 2.5 > z ∨ (z > 2 ∧ z < 4 ∧ 2 > z) ∨ (z > 1 ∧ z < 3 ∧ 3 > z)
↔ z < 3
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic YES YES
Bitvectors YES YES
Floating points YES YES
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Divison

Adding division (the inverse ·−1) does not increase expressive
power.

Consider Σdiv = Σ ∪ {·−1}.
Let quantifier-free ϕ ∈ FmlqfΣdiv

contain a division by t:

ϕ[t−1] ↔
(
(∃y .y = t−1 ∧ ϕ[y ]) ∨ (t = 0 ∧ ϕ[n])

)
(1)

n is a fresh free variable for the value of “0−1”

Let ψ ∈ FmlΣdiv
contain divisions.

Obtain ψ′ ∈ FmlΣ by applying (1) to literals in ψ.

R |= ψ ⇐⇒ R |= ∀n.ψ′

Underspecification: ψ is true in R if it is true for all possible
valuations of “0−1”: R |= 1

0 = 1
0 , R 6|= 1

0 = 2
0
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