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I Different Questions to Ask AT
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Deciding logics

Question: Is formula ¢ valid, i.e., ¢ satisfied in all possible
structures.

a (Vx.p(x)) — p(f(x)) is valid.
® x >y — y < x not valid (uninterpreted symbols!)

Deciding theories

Question: Is formula ¢ satisfied structures with fixed
interpretation for symbols.

@ Ix.2-x2—x—1=0Ax<0holdsinR, ...
@ ...but notin Z.
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I Theories AT
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Given a FOL signature &
Fmls ... set of closed FOL-formulas over X.

Definition: Theory

A theory T C Fmls is a set of formulas such that
@ T is closed under consequence: If T = ¢ then ¢ € T
@ T is consistent: false ¢ T

A FOL structure (D, 1) is called a T-model of ¢ € Fmls if

@ D,/ =1 and
@ D,/ =¢forallpeT
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I Theories Il AT
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w A FOL structure (D, ) is called a T-structure if D,/ = ¢ for
allpeT.

w A T-structure (D, 1) is a T-model of » € Fmls if D, | |= 1.

w Y € Fmly is called T-satisfiable if it has a T-model.

w Y € Fmly is called T-valid if every T-structure is a T-model
of . — TEY <= yYveT

a T is called complete if: ¢ € Fmly — ¢p€ T or =p € T

w =7 is used instead of T |=: S =7 ¢ defined as SU T = ¢
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I Generating Theories IT
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Axiomatisation

Theory T may be represented by a set Ax C Fmly of axioms.
T is the consequential closure of Ax, we write:

T =T(Ax) :={¢| Ax = ¢}

T is “axiomatisable”.

Fixing a structure

Theory T may be represented by one particular structure (D, /).
T is the set of true formulas in (D, /), we write:

T=T(D,1):={¢|(D,]) = ¢}

Beckert, Ulbrich — Formale Systeme |l: Theorie 6/48



I Discussion AT
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w Every theory T(D, ) is complete.

w If Ax is recursive enumerable, then T (Ax) is recursive
enumerable.

w If Ax is decidable, then T (Ax) needs not be decidable.
w 7 (D, ) needs not be recursive enumerable.

w (D, 1) is not the only T(D, I)-model.

(In general, two T (D, I)-models are not even isomorphic)

Beckert, Ulbrich — Formale Systeme |l: Theorie 7/48



I Free variables AT
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When dealing with theories, formulas often have free variables.

Open and closed (reminder)

¢1 = Vx.3y.p(x,y) is closed, has no free variables,
¢2 = Jy.p(x, y) is open, has free variables FV(¢2) = {x}

FmI2 > Fmls .. .set of open formulas

Existential closure 3[-]

For ¢ € Fmlg with FV = {xq, ..., xp} define:
] :==Ixz. ... Ixn. @

¢ € FmlQ is called T-satisfiable if 3[¢] is T-satisfiable.
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I Axioms for Equality AT
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Theorem
Equality can be axiomatised in first order logic.

This means: Given signature X, there is a set Eqy C Fmly that
axiomatise equality:

¢~ is formula ¢ with interpreted “=" replaced by uninterpred "~".

SE¢ = ST Fr(Eg) ¢°

FOL with equality cannot be more expressive than FOL without
built-in equality.
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I Axioms for Equality

m Vx. x & x (Reflexivity)
® VX1, X1, - ey Xny X
XIR XA A Xy =X, = (X1, Xn) = F(X], ..., X))
for any function f in X with arity n. (Congruency)
® VX1, X1, - ey Xny X
X1 XA A Xy R X p(X1, e, Xn) < P(XT, -, X))
for any predicate p in X with arity n. (Congruency)

(This includes predicate ~)

Symmetry and transitivity of & are consequences of Eqy
~ Exercise

Beckert, Ulbrich — Formale Systeme |l: Theorie 10/48



| Satisfiability Modulo Theories (T
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SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, ...
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)
FmIQF < Fmi° .. .the set of quantifier-free formulas

Interesting questions for a theory T:
a SAT: Is ¢ € FmI® a T-satisfiable formula?
® QF-SAT: Is ¢ € Fm/®F a T-satisfiable formula?
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Decision Procedure

A decision procedure DP+ for a theory T is a deterministic
algorithm that always terminates.

It takes a formula ¢ as input and returns SAT if ¢ is T-satisfiable,
UNSAT otherwise.

N.B.:
m ¢is T-valid <= —¢ is not T-satisfiable.

a DPy can also be used to decide validity!
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I Decision Procedures

Theory QF-SAT ‘ SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic

Linear arithmetic

Real arithmetic

Bitvectors YES YES
Floating points YES YES
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Natural Arithmetic — Goedel’s
(First) Incompleteness Theorem
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I Natural Numbers AT
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Standard model of natural numbers
Let Tor = ({+,%,0,1}, {<}).
N = (N, Iy) with “obvious” meaning:

w({£ D@ b) =a{T} b, 1n(0) =0, 1y(1) =1

T(N) is the set of all sentences over ¥ which are true in the
natural numbers.

Godel's Incompleteness Theorem

“Any consistent formal system within which a certain amount of
elementary arithmetic can be carried out is incomplete.”
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I Peano Arithmetic AT
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Natural number arithmetic is not axiomatisable (with a r.e. set)
Let's approximate.

@ Vx(x+1#0)
@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)
@ VxVy(x+(y+1)=(x+y)+1)
@ Vx(xx0=0)
@ VxVy(xx(y+1)=(x*xy)+x)
@ Forany ¢ € Fmls,,
(0(0) A Vx(p(x) = ¢(x +1))) = Vx(4)

That's an infinite (yet recursive) set of Axioms.
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I Peano Arithmetic AT
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m Peano arithmetic approximates natural arithmetic.
® More T(PA)-models than T (N')-models
a T (PA) is not complete.

= There are T(N)-valid formulas that are not 7 (PA)-valid
formulas.

There are artificial examples in T(N') \ T(PA),
but also actual mathematical theorems:
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The first result is an improvement of a theorem of Goodstein [2]. Let m and n be
natural numbers, n > 1. We define the base n representation of m as follows:

First write m as the sum of powers of n. (For example, if m = 266, n = 2, write
266 = 28+23+2')) Now write each exponent as the sum of powers of n. (For
example, 266 = 22 +22*1 42! ) Repeat with exponents of exponents and so on until
the representation stabilizes. For example, 266 stabilizes at the representation
22t 2% 40t

We now define the number G,(m) as follows. If m = 0 set G,(m) = 0. Otherwise
set G,(m) to be the number produced by replacing every n in the base n
representation of m by n+1 and then subtracting 1. (For example,
G,(266) = 3¥*'+33+14.2),

Now define the Goodstein sequence for m starting at 2 by

mg = m, m; = Gy(mg), my = Gy(m,), my = Gy(my), ...

Beckert, Ulbrich — Formale Systeme |l: Theorie 18/48



So, for example,
266, = 266 = 27" 42+ 42

266, = 3P 433142 ~ 10%
266, = 44" +4% 141 ~ 1086
2663 — 555+’+55+1 ~ 1010,000'

Similarly we can define the Goodstein sequence for m starting at n for any n > 1.

THEOREM 1. (i) (Goodstein [2]) Vm 3k m, = 0. More generally for any m,n > 1
the Goodstein sequence for m starting at n eventually hits zero.

(ii) Vm3km, = O (formalized in the language of first order arithmetic) is not provable
inP.

from: L. KIRBY and J. PARIS, 'Accessible Independence Results for Peano Arithmetic’ (1982)
[2] R. L. GOODSTEIN, 'On the restricted ordinal theorem’, J. Symbolic Logic (1944)
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I Decision Procedures

Theory QF-SAT| SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic NO! NO
Linear arithmetic

Real arithmetic

Bitvectors YES YES
Floating points YES YES

1 Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic

Mathematics, 1970.
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Natural Arithmetic — Presburger
Arithmetic and its Decidability

Beckert, Ulbrich — Formale Systeme |l: Theorie 21/48



I Presburger Arithmetic T
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Let ¥p = ({0,1,+},{<}), the signature w/o multiplication.

@ Vx(x+1#0)
@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)
@ VxVy(x+(y+1)=(x+y)+1)
@ For any ¢ € Fmly,,
(6(0) A Vx((x) = ¢(x +1))) — Vx(¢)

A subset of the Peano axioms (w/o those for multiplication).

Conventions:
3d§fl+1—|—1, 3xd§fx+x+x, etc.
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I Presburger Arithmetic AT
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Mojzesz Presburger. Uber die Vollstindigkeit eines gewissen
Systems der Arithmetik, Warsaw 1929

Theorem
He proved Presburger arithmetic to be

a consistent,
m complete, and

m decidable.

We are interested in the 3rd property!
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I Quantifier Elimination AT

A theory T admits quantifier elimination (QE) if any formula
@Q1x1 -« QnXn- A(X1, -y Xny Y15+ -5 Ym) € FmI®
is T-equivalent to a quantifier-free formula
YY1y, Ym) € Fml® .

Q; € {V7 3}

If T-ground instances in Fm/QF N Fml can be decided, QE gives us
a decision procedure for T.
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I Quantifier Elimination AT
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If T admits QE for any formula

Ix. P10, Y1y Ym) Ao A n(Xy1, oo Ym) € Fml®
with ¢; literals, then T admits QE for any formula in Fm/°.

Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.
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I Presburger and Quantifier Elimination AT
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Does Presburger Arithmetic admits QE?

Almost ... However

Jx.y = x + x has no quantifier-free P-equivalent

Add predicates: {k|-: k € N5o} "k divides ..."

Ixy=x+x < 2y is P-valid

Presburger Arithmetic with divisibility admits QE.

~» Cooper's algorithm ... Blackboard
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I Decision Procedures

Theory QF-SAT | SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic

Bitvectors YES YES
Floating points YES YES
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Real Arithmetic
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I Real arithmetic is decidable AT
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Y={+—-0,1}{<}), ¢€Fmk

N [= ¢ is not decidable, not even recursive enumerable (Godel).

Tarski-Seidenberg theorem (c. 1948)

R | ¢ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination
Find formula ¢ such that (Ix.¢(x,y)) < ¥(y).
Computer algebra systems do this: REDLOG, Mathematica, (Z3)
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I Real arithmetic — Axioms AT
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Real arithmetic has a recursive axiomatisation R

m + is an Abelian group, - is an Abelian semigroup:

Vx,v,z. (x+y)+z=x+(y+2) Vx,y,z. (x-y)-z=x-(y-2)
VX, y. x+y=y+x VX, y. x-y=y-x

Vx. x+0=xA0+x=x Vx. x-1=xA1-x=x

Vx. x+(—x) =0A(—x)+x=0

a Distributive Laws
Vx,v,z. (x+y)-z=x-z+y-z N z-(x+y)=z-x+2z-y

a Ordering
Vx,y,z. x<y—>x+z<y+z
Vx,y. 0 < xA0<y—0<xy

a Roots
Vx3dy. (y -y =xVy y=—x)
Vag...Va,. a, #0 — 3x. (apx" + ...+ 3o =0) for all odd n € N
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I Real closed fields AT
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T(R) = T(R) is the set of FOL sentences that are true in R.

But there are also other interesting models of 7 (R):

a Real numbers R,

» Real algebraic numbers RN Q
(real numbers that are roots of polynomials with integer coeffs.)

a Computable numbers
(real numbers that can be approximated arbitrarily precisely.)
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I Semialgebraic sets AIT
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Semialgebraic set

S CR" is called semialgebraic if it defined by a boolean
combination of polynomial equations and inequalitites.

Boolean combination means: U, N,C

Observation:

S is semialgebaric iff there is a quantifier-free FOL-formula ¢(S)
with n free variables xi, ..., x, such that

(51,...,5,,)65 <~ R,[X1I—>51,...,Xn'—>5n] ):SO(S)
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I Tarski-Seidenberg Theorem T
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Definition: Projection 7, : R" — R"1
Tn((S1,---y5n)) == (S1,---,5n-1)
mn(S) == {mn(5) | 5€ S} (extended to 2%)

(51, . ,S,,_l) S 7Tn(5) < R, [X1 = S1,...,Xp—1 > S,,_l] ): E|X,,. (p(S)

Tarski-Seidenberg Theorem (Projektionssatz)

Let S C R" be semialgebraic.
Then 7,(S) € R"1 is also semialgebraic.
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I Example T
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Single variable, single quadratic equation

Let Squaq be the solutions of ax? + bx+c=0.
(is semialgebraic: ax?> + bx + ¢ € R]a, b, ¢, x])

Due to Tarski-Seidenberg, there must be an equiv. quantifier-free
formula ¢(m4(Squad)) with free variables a, b, c.

Ix.ax’ + bx+c¢c =0
<
(a# 0 A b* — 4ac > 0)
V(@a=0A(b=0—c=0))
(Elx.x3 + aox? + a1x + ap = 0 is trivally equivalent to true.)
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I Quantifier Elimination — Algorithm AT
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@ Sufficient to look at 3x. A; ¢i(y, x) for atomic ¢;. — Excercise
@ Sufficient to consider ¢; of shape p(y, x) {;} 0
for p € R[y][x] — Why?

@ Every polynomial p € R[x] has finitely many connected
regions with same sign. — Board
Choose a set Rep of representatives.

oaxA¢,xy V' Aéilr.7)

réRep i

Decision Technique

Cylindrical Algebraic Decomposition (CAD)
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I Quantifier Elimination — Linear Example AT

In R[z, x]:
= Ixx>2AXx<3AXx>z

w Interesting points for x: | = {2,3, z}
w Interesting intervals: (—o0,2), (2,3), (3,0), (2,2), ...
m Representatives:
Rep ={2,3,z,"—o0", “+00", 43 24z 3tz
= {% | i, lr € I} U{"—o0", “+o0"}

For the example:

Y Vierep! >2ANr<3Ar>z
< 25>zV(z>2Nz<4AN2>2)V(z>1ANz<3AN3>2)
< z<3
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I Decision Procedures

Theory QF-SAT | SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic YES YES
Bitvectors YES YES
Floating points YES YES
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I Divison AT
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Adding division (the inverse -71) does not increase expressive
power.

Consider gy, = X U {-71}.
Let quantifier-free ¢ € le'g;v contain a division by t:

Plt™!] & (Bry =t Aely)V(E=0Ag[) (1)
nis a fresh free variable for the value of “0~1"

Let ¢» € Fmls,, contain divisions.
Obtain ¢’ € Fmls by applying (1) to literals in 1.

Ry < REVny

Underspecification: 1 is true in R if it is true for all possible
H un—1mn, 1 1 1_2
valuations of "0 R =5, R}E§5=3
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