

Formale Systeme II: Theorie Theories

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Theories and Satisfiability – Introduction

Different Questions to Ask

Deciding logics

Question: Is formula ϕ valid, i.e., ϕ satisfied in all possible structures.

- $(\forall x.p(x)) \rightarrow p(f(x))$ is valid.
- $x > y \rightarrow y < x$ not valid (uninterpreted symbols!)

Deciding theories

Question: Is formula ϕ satisfied structures with fixed interpretation for symbols.

•
$$\exists x. \ 2 \cdot x^2 - x - 1 = 0 \land x < 0$$
 holds in \mathbb{R}, \ldots

• ... but not in \mathbb{Z} .

Theories

Given a FOL signature Σ Fml_{Σ} ... set of closed FOL-formulas over Σ .

Definition: Theory

A theory ${\mathcal T} \subset {\textit{Fml}}_{\Sigma}$ is a set of formulas such that

- **(1)** *T* is closed under consequence: If $T \models \phi$ then $\phi \in T$
- **2** *T* is **consistent**: *false* \notin *T*
- A FOL structure (D, I) is called a *T*-model of $\psi \in Fml_{\Sigma}$ if

$$D, I \models \psi \text{ and }$$

2
$$D, I \models \phi$$
 for all $\phi \in T$

Theories II

- A FOL structure (D, I) is called a *T*-structure if $D, I \models \phi$ for all $\phi \in T$.
- A *T*-structure (D, I) is a *T*-model of $\psi \in Fml_{\Sigma}$ if $D, I \models \psi$.
- $\psi \in Fml_{\Sigma}$ is called *T*-satisfiable if it has a *T*-model.
- $\psi \in Fml_{\Sigma}$ is called *T*-valid if every *T*-structure is a *T*-model of ψ . $\iff T \models \psi \iff \psi \in T$

- T is called complete if: $\phi \in Fml_{\Sigma} \implies \phi \in T$ or $\neg \phi \in T$
- \models_T is used instead of $T \models: S \models_T \phi$ defined as $S \cup T \models \phi$

Generating Theories

Axiomatisation

Theory T may be represented by a **set** $Ax \subset Fml_{\Sigma}$ of axioms. T is the consequential closure of Ax, we write:

$$T = \mathcal{T}(Ax) := \{\phi \mid Ax \models \phi\}$$

T is "axiomatisable".

Fixing a structure

Theory T may be represented by one **particular structure** (D, I). T is the set of true formulas in (D, I), we write:

$$T = \mathcal{T}(D, I) := \{ \phi \mid (D, I) \models \phi \}$$

Discussion

- Every theory $\mathcal{T}(D, I)$ is complete.
- If Ax is recursive enumerable, then $\mathcal{T}(Ax)$ is recursive enumerable.
- If Ax is decidable, then $\mathcal{T}(Ax)$ needs not be decidable.
- $\mathcal{T}(D, I)$ needs not be recursive enumerable.
- (D, I) is not the only T(D, I)-model.
 (In general, two T(D, I)-models are not even isomorphic)

Free variables

When dealing with theories, formulas often have free variables.

Open and closed (reminder)

$$\phi_1 = \forall x. \exists y. p(x, y)$$
 is closed, has no free variables,
 $\phi_2 = \exists y. p(x, y)$ is open, has free variables $FV(\phi_2) = \{x\}$

 $Fml_{\Sigma}^{o} \supset Fml_{\Sigma} \dots$ set of **open** formulas

Existential closure $\exists [\cdot]$

For $\phi \in Fml_{\Sigma}^{o}$ with $FV = \{x_1, ..., x_n\}$ define: $\exists [\phi] := \exists x_1, ..., \exists x_n, \phi$

 $\phi \in Fml_{\Sigma}^{o}$ is called T-satisfiable if $\exists [\phi]$ is T-satisfiable.

Axioms for Equality

Theorem

Equality can be axiomatised in first order logic.

This means: Given signature Σ , there is a set $Eq_{\Sigma} \subset Fml_{\Sigma}$ that axiomatise equality:

 ϕ^\approx is formula ϕ with interpreted "=" replaced by uninterpred " \approx ".

$$S \models \phi \iff S^{\approx} \models_{\mathcal{T}(\mathsf{Eq}_{\Sigma})} \phi^{\approx}$$

FOL with equality cannot be more expressive than FOL without built-in equality.

Axioms for Equality

Axioms Eq_{Σ} :

• $\forall x. \ x \approx x$

(Reflexivity)

• $\forall x_1, x_1, \dots, x_n, x'_n$. $x_1 \approx x'_1 \land \dots \land x_n \approx x'_n \to f(x_1, \dots, x_n) \approx f(x'_1, \dots, x'_n)$ for any function f in Σ with arity n. (Congruency)

• $\forall x_1, x_1, \dots, x_n, x'_n$. $x_1 \approx x'_1 \land \dots \land x_n \approx x'_n \rightarrow p(x_1, \dots, x_n) \leftrightarrow p(x'_1, \dots, x'_n)$ for any predicate p in Σ with arity n. (Congruency) (This includes predicate \approx)

Symmetry and transitivity of \approx are consequences of \textit{Eq}_{Σ} \rightsquigarrow Exercise

SMT solvers

A lot of research in recent years: (Simplify), Z3, CVC4, Yices, MathSAT, SPT, ... Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)

 $Fml^{QF} \subset Fml^{o} \dots$ the set of quantifier-free formulas

Interesting questions for a theory T:

- SAT: Is $\phi \in Fml^o$ a *T*-satisfiable formula?
- **QF-SAT:** Is $\phi \in Fml^{QF}$ a *T*-satisfiable formula?

Decision Procedure

Decision Procedure

A decision procedure DP_T for a theory T is a deterministic algorithm that always terminates. It takes a formula ϕ as input and returns SAT if ϕ is T-satisfiable, UNSAT otherwise.

N.B.:

- ϕ is *T*-valid $\iff \neg \phi$ is not *T*-satisfiable.
- DP_T can also be used to decide validity!

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co- SEMI
Integer arithmetic		<u>'</u>
Linear arithmetic		
Real arithmetic		
Bitvectors	YES	YES
Floating points	YES	YES

Natural Arithmetic – Goedel's (First) Incompleteness Theorem

Natural Numbers

Standard model of natural numbers

Let
$$\Sigma_{\mathcal{N}} = (\{+, *, 0, 1\}, \{<\}).$$

$$\mathcal{N} = (\mathbb{N}, \mathit{I}_{\mathcal{N}})$$
 with "obvious" meaning:

$$I_{\mathcal{N}}\left(\left\{\begin{smallmatrix}+*\\\\-\end{smallmatrix}\right\}\right)(a,b) = a\left\{\begin{smallmatrix}+\\\\\cdot\\\\-\end{smallmatrix}\right\}b, I_{\mathcal{N}}(0) = 0, I_{\mathcal{N}}(1) = 1$$

 $\mathcal{T}(\mathcal{N})$ is the set of all sentences over $\Sigma_{\mathcal{N}}$ which are true in the natural numbers.

Gödel's Incompleteness Theorem

"Any consistent formal system within which a certain amount of elementary arithmetic can be carried out is incomplete."

Peano Arithmetic

Natural number arithmetic is not axiomatisable (with a r.e. set) Let's **approximate**.

The Peano Axioms PA

$$1 \forall x(x+1 \neq 0)$$

$$\forall x(x*0 \doteq 0)$$

$$\begin{array}{l} \textbf{For any } \phi \in \textit{Fml}_{\Sigma_{\mathcal{N}}} \\ (\phi(0) \land \forall x(\phi(x) \rightarrow \phi(x+1))) \rightarrow \forall x(\phi) \end{array}$$

That's an infinite (yet recursive) set of Axioms.

Peano Arithmetic

- Peano arithmetic approximates natural arithmetic.
- More $\mathcal{T}(PA)$ -models than $\mathcal{T}(\mathcal{N})$ -models
- $\mathcal{T}(PA)$ is not complete.
- \implies There are $\mathcal{T}(\mathcal{N})$ -valid formulas that are **not** $\mathcal{T}(PA)$ -valid formulas.

There are artificial examples in $\mathcal{T}(\mathcal{N}) \setminus \mathcal{T}(\mathcal{P}A)$, but also actual mathematical theorems:

The first result is an improvement of a theorem of Goodstein [2]. Let m and n be natural numbers, n > 1. We define the base *n* representation of *m* as follows:

First write *m* as the sum of powers of *n*. (For example, if m = 266, n = 2, write $266 = 2^8 + 2^3 + 2^1$.) Now write each exponent as the sum of powers of *n*. (For example, $266 = 2^{2^3} + 2^{2+1} + 2^1$.) Repeat with exponents of exponents and so on until the representation stabilizes. For example, 266 stabilizes at the representation $2^{2^{2+1}} + 2^{2+1} + 2^1$.

We now define the number $G_n(m)$ as follows. If m = 0 set $G_n(m) = 0$. Otherwise set $G_n(m)$ to be the number produced by replacing every n in the base n representation of m by n+1 and then subtracting 1. (For example, $G_2(266) = 3^{3^{3+1}} + 3^{3+1} + 2$).

Now define the Goodstein sequence for m starting at 2 by

$$m_0 = m, m_1 = G_2(m_0), m_2 = G_3(m_1), m_3 = G_4(m_2), \dots$$

So, for example,

$$\begin{aligned} 266_0 &= 266 = 2^{2^{2+1}} + 2^{2+1} + 2 \\ 266_1 &= 3^{3^{3+1}} + 3^{3+1} + 2 \sim 10^{38} \\ 266_2 &= 4^{4^{4+1}} + 4^{4+1} + 1 \sim 10^{616} \\ 266_3 &= 5^{5^{5+1}} + 5^{5+1} \sim 10^{10,000} \,. \end{aligned}$$

Similarly we can define the Goodstein sequence for m starting at n for any n > 1.

THEOREM 1. (i) (Goodstein [2]) $\forall m \exists k \ m_k = 0$. More generally for any m, n > 1 the Goodstein sequence for m starting at n eventually hits zero.

(ii) $\forall m \exists k m_k = 0$ (formalized in the language of first order arithmetic) is not provable in P.

from: L. KIRBY and J. PARIS, 'Accessible Independence Results for Peano Arithmetic' (1982) [2] R. L. GOODSTEIN, 'On the restricted ordinal theorem', J. Symbolic Logic (1944)

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic	NO ¹	NO
Linear arithmetic		
Real arithmetic		
Bitvectors	YES	YES
Floating points	YES	YES

¹ Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic Mathematics, 1970.

Natural Arithmetic – Presburger Arithmetic and its Decidability

Presburger Arithmetic

Let
$$\Sigma_P = (\{0, 1, +\}, \{<\})$$
, the signature w/o multiplication.

The Presburger Axioms P

- $(x+1 \neq 0)$
- $(2) \forall x \forall y (x+1 \doteq y+1 \rightarrow x \doteq y)$

$$\exists \forall x(x+0 \doteq x)$$

$$\begin{array}{ll} \textbf{S} \quad \text{For any } \phi \in \textit{Fml}_{\Sigma_{\mathcal{N}}} \\ (\phi(0) \land \forall x(\phi(x) \rightarrow \phi(x+1))) \rightarrow \forall x(\phi) \end{array}$$

A subset of the Peano axioms (w/o those for multiplication).

Conventions:

$$3 \stackrel{def}{=} 1 + 1 + 1, \qquad 3x \stackrel{def}{=} x + x + x, \qquad \text{etc.}$$

Presburger Arithmetic

Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik, Warsaw 1929

Theorem

He proved Presburger arithmetic to be

- consistent,
- complete, and
- decidable.

We are interested in the 3rd property!

Quantifier Elimination

Definition

A theory T admits quantifier elimination (QE) if any formula

$$Q_1x_1\ldots Q_nx_n. \ \phi(x_1,\ldots,x_n,y_1,\ldots,y_m) \in {\sf Fml}^o$$

is T-equivalent to a quantifier-free formula

$$\psi(y_1,\ldots,y_m)\in Fml^o$$

 $Q_i \in \{\forall, \exists\}$

If *T*-ground instances in $FmI^{QF} \cap FmI$ can be decided, QE gives us a decision procedure for *T*.

Quantifier Elimination

Lemma

If T admits QE for any formula

$$\exists x. \ \phi_1(x, y_1, \dots, y_m) \land \dots \land \phi_n(x, y_1, \dots, y_m) \in Fml^{o}$$

with ϕ_i literals, then T admits QE for any formula in Fml^o .

Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.

Presburger and Quantifier Elimination

Does Presburger Arithmetic admits QE?

Almost ... However

 $\exists x.y = x + x$ has no quantifier-free *P*-equivalent

Add predicates: $\{k | \cdot : k \in \mathbb{N}_{>0}\}$ "k divides ..."

 $\exists x.y = x + x \leftrightarrow 2 | y$ is *P*-valid

Presburger Arithmetic with divisibility admits QE.

→ Cooper's algorithm ... Blackboard

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic	NO	NO
Linear arithmetic	YES	YES
Real arithmetic		I
Bitvectors	YES	YES
Floating points	YES	YES

Real Arithmetic

Real arithmetic is decidable

$$\boldsymbol{\Sigma} = \big(\{+,-,\cdot,\mathbf{0},\mathbf{1}\},\{\leq\}\big), \qquad \varphi \in \textit{Fml}_{\boldsymbol{\Sigma}}$$

Reminder:

 $\mathbb{N} \models \varphi$ is not decidable, not even recursive enumerable (Gödel).

Tarski-Seidenberg theorem (c. 1948)

 $\mathbb{R} \models \varphi$ is decidable. Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that $(\exists x.\varphi(x,y)) \leftrightarrow \psi(y)$. Computer algebra systems do this: REDLOG, Mathematica, (Z3)

Real arithmetic – Axioms

Real arithmetic has a recursive axiomatisation R

• + is an Abelian group, \cdot is an Abelian semigroup:

$$\begin{aligned} \forall x, y, z. & (x + y) + z = x + (y + z) & \forall x, y, z. & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ \forall x, y. & x + y = y + x & \forall x, y. & x \cdot y = y \cdot x \\ \forall x. & x + 0 = x \land 0 + x = x & \forall x. & x \cdot 1 = x \land 1 \cdot x = x \\ \forall x. & x + (-x) = 0 \land (-x) + x = 0 \end{aligned}$$

- Distributive Laws $\forall x, y, z. (x + y) \cdot z = x \cdot z + y \cdot z \land z \cdot (x + y) = z \cdot x + z \cdot y$
- Ordering $\forall x, y, z. \ x \leq y \rightarrow x + z \leq y + z$ $\forall x, y. \ 0 \leq x \land 0 \leq y \rightarrow 0 \leq xy$

• Roots $\forall x \exists y. (y \cdot y = x \lor y \cdot y = -x)$ $\forall a_0 \dots \forall a_n, a_n \neq 0 \rightarrow \exists x. (a_n x^n + \dots + a_0 = 0) \text{ for all odd } n \in \mathbb{N}$

Real closed fields

 $\mathcal{T}(\mathbb{R}) = \mathcal{T}(R)$ is the set of FOL sentences that are true in \mathbb{R} .

But there are also other interesting models of $\mathcal{T}(R)$:

- Real numbers ℝ,
- Real algebraic numbers ℝ ∩ Q
 (real numbers that are roots of polynomials with integer coeffs.)
- Computable numbers (real numbers that can be approximated arbitrarily precisely.)

• • • •

Semialgebraic sets

Semialgebraic set

 $S \subseteq \mathbb{R}^n$ is called *semialgebraic* if it defined by a boolean combination of polynomial equations and inequalitites.

Boolean combination means: $\cup,\cap,\boldsymbol{\complement}$

Observation:

S is semialgebaric iff there is a quantifier-free FOL-formula $\varphi(S)$ with n free variables x_1, \ldots, x_n such that

$$(s_1,\ldots,s_n)\in S\iff \mathbb{R}, [x_1\mapsto s_1,\ldots,x_n\mapsto s_n]\models \varphi(S)$$

Definition: Projection
$$\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}$$

 $\pi_n((s_1, \dots, s_n)) := (s_1, \dots, s_{n-1})$
 $\pi_n(S) := \{\pi_n(\bar{s}) \mid \bar{s} \in S\}$ (extended to $2^{\mathbb{R}}$)

$$(s_1,\ldots,s_{n-1})\in \pi_n(S)\iff \mathbb{R}, [x_1\mapsto s_1,\ldots,x_{n-1}\mapsto s_{n-1}]\models \exists x_n. \varphi(S)$$

Tarski-Seidenberg Theorem (Projektionssatz)

Let $S \subseteq \mathbb{R}^n$ be semialgebraic. Then $\pi_n(S) \in \mathbb{R}^{n-1}$ is also semialgebraic.

Example

Single variable, single quadratic equation

Let S_{quad} be the solutions of $ax^2 + bx + c = 0$. (is semialgebraic: $ax^2 + bx + c \in \mathbb{R}[a, b, c, x]$)

Due to Tarski-Seidenberg, there must be an equiv. quantifier-free formula $\varphi(\pi_4(S_{quad}))$ with free variables *a*, *b*, *c*.

$$\exists x.ax^2 + bx + c = 0$$
 \iff
 $(a \neq 0 \land b^2 - 4ac \ge 0)$
 $\lor (a = 0 \land (b = 0 \rightarrow c = 0))$

 $(\exists x.x^3 + a_2x^2 + a_1x + a_0 = 0$ is trivally equivalent to true.)

Quantifier Elimination – Algorithm

- **Q** Sufficient to look at $\exists x. \bigwedge_i \phi_i(\bar{y}, x)$ for atomic $\phi_i. \rightarrow \text{Excercise}$
- 2 Sufficient to consider ϕ_i of shape $p(\bar{y}, x) \left\{ \stackrel{\leq}{=} \right\} 0$ for $p \in \mathbb{R}[\bar{y}][x] \longrightarrow Why?$
- Severy polynomial p ∈ R[x] has finitely many connected regions with same sign. → Board Choose a set Rep of representatives.

Decision Technique

Cylindrical Algebraic Decomposition (CAD)

Quantifier Elimination – Linear Example

In $\mathbb{R}[z, x]$:

$$\psi := \qquad \exists x.x > 2 \land x < 3 \land x > z$$

• Interesting points for x: $I = \{2, 3, z\}$

Interesting intervals: $(-\infty, 2)$, (2, 3), $(3, \infty)$, (2, z), \ldots

• Representatives:

$$Rep = \{2, 3, z, "-\infty", "+\infty", \frac{2+3}{2}, \frac{2+z}{2}, \frac{3+z}{2}\} = \{\frac{i_1+i_2}{2} \mid i_1, i_2 \in I\} \cup \{"-\infty", "+\infty"\}$$

For the example:

$$\psi \leftrightarrow \bigvee_{r \in Rep} r > 2 \land r < 3 \land r > z$$

$$\leftrightarrow 2.5 > z \lor (z > 2 \land z < 4 \land 2 > z) \lor (z > 1 \land z < 3 \land 3 > z)$$

$$\leftrightarrow z < 3$$

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co- SEMI
Integer arithmetic	NO	NO
Linear arithmetic	YES	YES
Real arithmetic	YES	YES
Bitvectors	YES	YES
Floating points	YES	YES

Divison

Adding division (the inverse $\cdot^{-1})$ does not increase expressive power.

Consider $\Sigma_{div} = \Sigma \cup \{\cdot^{-1}\}$. Let quantifier-free $\varphi \in Fml_{\Sigma_{div}}^{qf}$ contain a division by t:

$$\varphi[t^{-1}] \; \leftrightarrow \; \left((\exists y.y = t^{-1} \land \varphi[y]) \lor (t = 0 \land \varphi[n]) \right) \tag{1}$$

n is a fresh free variable for the value of " 0^{-1} "

Let $\psi \in Fml_{\Sigma_{div}}$ contain divisions. Obtain $\psi' \in Fml_{\Sigma}$ by applying (1) to literals in ψ .

$$\mathbb{R} \models \psi \iff \mathbb{R} \models \forall \mathbf{n}.\psi'$$

Underspecification: ψ is true in \mathbb{R} if it is true for all possible valuations of "0⁻¹": $\mathbb{R} \models \frac{1}{0} = \frac{1}{0}$, $\mathbb{R} \not\models \frac{1}{0} = \frac{2}{0}$