Formale Systeme II: Theorie

Theories

SS 2022

Prof. Dr. Bernhard Beckert • Dr. Mattias Ulbrich

Theories and Satisfiability Introduction

Different Questions to Ask

Deciding logics

Question: Is formula ϕ valid, i.e., ϕ satisfied in all possible structures.

- $(\forall x . p(x)) \rightarrow p(f(x))$ is valid.
- $x>y \rightarrow y<x$ not valid (uninterpreted symbols!)

Deciding theories

Question: Is formula ϕ satisfied structures with fixed interpretation for symbols.

- $\exists x .2 \cdot x^{2}-x-1=0 \wedge x<0$ holds in \mathbb{R}, \ldots
- ...but not in \mathbb{Z}.

Theories

Given a FOL signature Σ
$F m / \Sigma \ldots$ set of closed FOL-formulas over Σ.

Definition: Theory

A theory $T \subset F m / \Sigma$ is a set of formulas such that
(1) T is closed under consequence: If $T \models \phi$ then $\phi \in T$
(2) T is consistent: false $\notin T$

A FOL structure (D, I) is called a T-model of $\psi \in F m I_{\Sigma}$ if
(1) $D, I \models \psi$ and
(2) $D, I \models \phi$ for all $\phi \in T$

Theories II

- A FOL structure (D, I) is called a T-structure if $D, I \models \phi$ for all $\phi \in T$.
- A T-structure (D, I) is a T-model of $\psi \in F m / \Sigma$ if $D, I \models \psi$.
- $\psi \in F m I_{\Sigma}$ is called T-satisfiable if it has a T-model.
- $\psi \in F m I_{\Sigma}$ is called T-valid if every T-structure is a T-model of ψ. $\quad \Longleftrightarrow T \models \psi \Longleftrightarrow \psi \in T$
- T is called complete if: $\phi \in F m I_{\Sigma} \Longrightarrow \phi \in T$ or $\neg \phi \in T$
- \models_{T} is used instead of $T \models: S \models T \phi$ defined as $S \cup T \models \phi$

Generating Theories

Axiomatisation

Theory T may be represented by a set $A x \subset F m / \Sigma$ of axioms. T is the consequential closure of Ax , we write:

$$
T=\mathcal{T}(A x):=\{\phi \mid A x \models \phi\}
$$

T is "axiomatisable".

Fixing a structure

Theory T may be represented by one particular structure (D, I). T is the set of true formulas in (D, I), we write:

$$
T=\mathcal{T}(D, I):=\{\phi \mid(D, I) \models \phi\}
$$

Discussion

- Every theory $\mathcal{T}(D, I)$ is complete.
- If $A x$ is recursive enumerable, then $\mathcal{T}(A x)$ is recursive enumerable.
- If $A x$ is decidable, then $\mathcal{T}(A x)$ needs not be decidable.
- $\mathcal{T}(D, I)$ needs not be recursive enumerable.
- (D, I) is not the only $\mathcal{T}(D, I)$-model.
(In general, two $\mathcal{T}(D, I)$-models are not even isomorphic)

Free variables

When dealing with theories, formulas often have free variables.

> Open and closed (reminder)
> $\phi_{1}=\forall x \cdot \exists y \cdot p(x, y)$ is closed, has no free variables,
> $\phi_{2}=\exists y \cdot p(x, y)$ is open, has free variables $F V\left(\phi_{2}\right)=\{x\}$

Fmi $\sum_{\Sigma}^{\circ} \supset F m / \Sigma \ldots$ set of open formulas

Existential closure $\exists[\cdot]$

For $\phi \in F m I_{\Sigma}^{\circ}$ with $F V=\left\{x_{1}, \ldots, x_{n}\right\}$ define:

$$
\exists[\phi]:=\exists x_{1} \ldots . \exists x_{n} . \phi
$$

$\phi \in F m I_{\Sigma}^{\circ}$ is called T-satisfiable if $\exists[\phi]$ is T-satisfiable.

Axioms for Equality

Theorem

Equality can be axiomatised in first order logic.
This means: Given signature Σ, there is a set $E q_{\Sigma} \subset F m I_{\Sigma}$ that axiomatise equality:
$\phi \approx$ is formula ϕ with interpreted " $=$ " replaced by uninterpred " \approx ".

$$
S \models \phi \Longleftrightarrow S^{\approx} \models_{\mathcal{T}\left(E q_{\Sigma}\right)} \phi^{\approx}
$$

FOL with equality cannot be more expressive than FOL without built-in equality.

Axioms for Equality

Axioms $E q_{\Sigma}$:

- $\forall x . x \approx x$
(Reflexivity)
- $\forall x_{1}, x_{1}, \ldots, x_{n}, x_{n}^{\prime}$.

$$
x_{1} \approx x_{1}^{\prime} \wedge \ldots \wedge x_{n} \approx x_{n}^{\prime} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \approx f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

for any function f in Σ with arity n.
(Congruency)

- $\forall x_{1}, x_{1}, \ldots, x_{n}, x_{n}^{\prime}$.

$$
x_{1} \approx x_{1}^{\prime} \wedge \ldots \wedge x_{n} \approx x_{n}^{\prime} \rightarrow p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

for any predicate p in Σ with arity n.
(Congruency)
(This includes predicate \approx)
Symmetry and transitivity of \approx are consequences of $E q_{\Sigma}$
\rightsquigarrow Exercise

Satisfiability Modulo Theories

SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, ...
Some for many theories, others only for a single theory.
(Common input format SMT-Lib 2)
$F m l^{Q F} \subset F m I^{\circ} \ldots$ the set of quantifier-free formulas

Interesting questions for a theory T :

- SAT: Is $\phi \in F m I^{\circ}$ a T-satisfiable formula?
- QF-SAT: Is $\phi \in F m I^{Q F}$ a T-satisfiable formula?

Decision Procedure

Decision Procedure

A decision procedure $D P_{T}$ for a theory T is a deterministic algorithm that always terminates.
It takes a formula ϕ as input and returns SAT if ϕ is T-satisfiable, UNSAT otherwise.

N.B.:

- ϕ is T-valid $\Longleftrightarrow \neg \phi$ is not T-satisfiable.
- $D P_{T}$ can also be used to decide validity!

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic		
Linear arithmetic		
Real arithmetic		
Bitvectors	YES	YES
Floating points	YES	YES

Natural Arithmetic - Goedel's (First) Incompleteness Theorem

Natural Numbers

Standard model of natural numbers

$$
\begin{aligned}
& \text { Let } \Sigma_{\mathcal{N}}=(\{+, *, 0,1\},\{<\}) . \\
& \mathcal{N}=\left(\mathbb{N}, I_{\mathcal{N}}\right) \text { with "obvious" meaning: } \\
& \operatorname{I}_{\mathcal{N}}\left(\left\{\begin{array}{l}
+ \\
+ \\
\dot{c}
\end{array}\right\}\right)(a, b)=a\left\{\begin{array}{l}
+ \\
\dot{c}
\end{array}\right\} b, I_{\mathcal{N}}(0)=0, I_{\mathcal{N}}(1)=1
\end{aligned}
$$

$\mathcal{T}(\mathcal{N})$ is the set of all sentences over $\Sigma_{\mathcal{N}}$ which are true in the natural numbers.

Gödel's Incompleteness Theorem

"Any consistent formal system within which a certain amount of elementary arithmetic can be carried out is incomplete."

Peano Arithmetic

Natural number arithmetic is not axiomatisable (with a r.e. set) Let's approximate.

The Peano Axioms PA
(1) $\forall x(x+1 \neq 0)$
(2) $\forall x \forall y(x+1 \doteq y+1 \rightarrow x \doteq y)$
(3) $\forall x(x+0 \doteq x)$
(44 $\forall x \forall y(x+(y+1) \doteq(x+y)+1)$
(5) $\forall x(x * 0 \doteq 0)$
(0) $\forall x \forall y(x *(y+1) \doteq(x * y)+x)$
(7) For any $\phi \in F m \Sigma_{\Sigma_{\mathcal{N}}}$

$$
(\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(x+1))) \rightarrow \forall x(\phi)
$$

That's an infinite (yet recursive) set of Axioms.

Peano Arithmetic

- Peano arithmetic approximates natural arithmetic.
- More $\mathcal{T}(P A)$-models than $\mathcal{T}(\mathcal{N})$-models
- $\mathcal{T}(P A)$ is not complete.

There are $\mathcal{T}(\mathcal{N})$-valid formulas that are not $\mathcal{T}(P A)$-valid formulas.

There are artificial examples in $\mathcal{T}(\mathcal{N}) \backslash \mathcal{T}(P A)$, but also actual mathematical theorems:

The first result is an improvement of a theorem of Goodstein [2]. Let m and n be natural numbers, $n>1$. We define the base n representation of m as follows:

First write m as the sum of powers of n. (For example, if $m=266, n=2$, write $266=2^{8}+2^{3}+2^{1}$.) Now write each exponent as the sum of powers of n. (For example, $266=2^{2^{3}}+2^{2+1}+2^{1}$.) Repeat with exponents of exponents and so on until the representation stabilizes. For example, 266 stabilizes at the representation $2^{22^{2+1}}+2^{2+1}+2^{1}$.

We now define the number $G_{n}(m)$ as follows. If $m=0$ set $G_{n}(m)=0$. Otherwise set $G_{n}(m)$ to be the number produced by replacing every n in the base n representation of m by $n+1$ and then subtracting 1. (For example, $G_{2}(266)=3^{3+1}+3^{3+1}+2$).

Now define the Goodstein sequence for m starting at 2 by

$$
m_{0}=m, m_{1}=G_{2}\left(m_{0}\right), m_{2}=G_{3}\left(m_{1}\right), m_{3}=G_{4}\left(m_{2}\right), \ldots
$$

So, for example,

$$
\begin{aligned}
& 266_{0}=266=2^{22^{2+1}}+2^{2+1}+2 \\
& 266_{1}=3^{3+1}+3^{3+1}+2 \sim 10^{38} \\
& 266_{2}=4^{4^{4+1}}+4^{4+1}+1 \sim 10^{616} \\
& 266_{3}=5^{55+1}+5^{5+1} \sim 10^{10,000} .
\end{aligned}
$$

Similarly we can define the Goodstein sequence for m starting at n for any $n>1$.

Theorem 1. (i) (Goodstein [2]) $\forall m \exists k m_{k}=0$. More generally for any $m, n>1$ the Goodstein sequence for m starting at n eventually hits zero.
(ii) $\forall m \exists k m_{k}=0$ (formalized in the language of first order arithmetic) is not provable in P.
from: L. KIRBY and J. PARIS, 'Accessible Independence Results for Peano Arithmetic' (1982)
[2] R. L. GOODSTEIN, 'On the restricted ordinal theorem', J. Symbolic Logic (1944)

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic	NO 1	NO
Linear arithmetic		
Real arithmetic		
Bitvectors	YES	YES
Floating points	YES	YES

${ }^{1}$ Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic Mathematics, 1970.

Natural Arithmetic - Presburger Arithmetic and its Decidability

Presburger Arithmetic

Let $\Sigma_{P}=(\{0,1,+\},\{<\})$, the signature $w /$ o multiplication.
The Presburger Axioms P
(1) $\forall x(x+1 \neq 0)$
(2) $\forall x \forall y(x+1 \doteq y+1 \rightarrow x \doteq y)$
(3) $\forall x(x+0 \doteq x)$
(4) $\forall x \forall y(x+(y+1) \doteq(x+y)+1)$
(5) For any $\phi \in F m \Sigma_{\Sigma_{\mathcal{N}}}$

$$
(\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(x+1))) \rightarrow \forall x(\phi)
$$

A subset of the Peano axioms (w / o those for multiplication).
Conventions:

$$
3 \stackrel{\text { def }}{=} 1+1+1, \quad 3 x \stackrel{\text { def }}{=} x+x+x, \quad \text { etc. }
$$

Presburger Arithmetic

Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik, Warsaw 1929

Theorem
He proved Presburger arithmetic to be

- consistent,
- complete, and
- decidable.

We are interested in the 3rd property!

Quantifier Elimination

Definition

A theory T admits quantifier elimination (QE) if any formula

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} . \phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in F m I^{\circ}
$$

is T-equivalent to a quantifier-free formula

$$
\psi\left(y_{1}, \ldots, y_{m}\right) \in F m I^{\circ}
$$

$Q_{i} \in\{\forall, \exists\}$

If T-ground instances in $\mathrm{Fm} l^{Q F} \cap \mathrm{Fm} /$ can be decided, QE gives us a decision procedure for T.

Quantifier Elimination

Lemma
If T admits QE for any formula

$$
\exists x \cdot \phi_{1}\left(x, y_{1}, \ldots, y_{m}\right) \wedge \ldots \wedge \phi_{n}\left(x, y_{1}, \ldots, y_{m}\right) \in F m I^{\circ}
$$

with ϕ_{i} literals, then T admits QE for any formula in $\mathrm{Fm} l^{\circ}$.
Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.

Presburger and Quantifier Elimination

Does Presburger Arithmetic admits QE?

Almost ... However

$$
\exists x . y=x+x \text { has no quantifier-free } P \text {-equivalent }
$$

Add predicates: $\left\{k \mid \cdot: k \in \mathbb{N}_{>0}\right\}$ " k divides ..."

$$
\exists x \cdot y=x+x \leftrightarrow 2 \mid y \quad \text { is } P \text {-valid }
$$

Presburger Arithmetic with divisibility admits QE.
\rightsquigarrow Cooper's algorithm ... Blackboard

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic	NO	NO
Linear arithmetic	YES	YES
Real arithmetic		
Bitvectors	YES	YES
Floating points	YES	YES

Real Arithmetic

Real arithmetic is decidable

$$
\Sigma=(\{+,-, \cdot, 0,1\},\{\leq\}), \quad \varphi \in F m I_{\Sigma}
$$

Reminder:

$\mathbb{N} \models \varphi$ is not decidable, not even recursive enumerable (Gödel).

Tarski-Seidenberg theorem (c. 1948)

$\mathbb{R} \models \varphi$ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that $(\exists x . \varphi(x, y)) \leftrightarrow \psi(y)$.
Computer algebra systems do this: Redlog, Mathematica, (Z3)

Real arithmetic - Axioms

Real arithmetic has a recursive axiomatisation R

- + is an Abelian group, • is an Abelian semigroup:

$$
\begin{array}{ll}
\forall x, y, z \cdot(x+y)+z=x+(y+z) & \forall x, y, z \cdot(x \cdot y) \cdot z=x \cdot(y \cdot z) \\
\forall x, y \cdot x+y=y+x & \forall x, y \cdot x \cdot y=y \cdot x \\
\forall x \cdot x+0=x \wedge 0+x=x & \forall x \cdot x \cdot 1=x \wedge 1 \cdot x=x \\
\forall x \cdot x+(-x)=0 \wedge(-x)+x=0 &
\end{array}
$$

- Distributive Laws
$\forall x, y, z \cdot(x+y) \cdot z=x \cdot z+y \cdot z \wedge z \cdot(x+y)=z \cdot x+z \cdot y$
- Ordering
$\forall x, y, z . x \leq y \rightarrow x+z \leq y+z$
$\forall x, y .0 \leq x \wedge 0 \leq y \rightarrow 0 \leq x y$
- Roots
$\forall x \exists y .(y \cdot y=x \vee y \cdot y=-x)$
$\forall a_{0} \ldots \forall a_{n} . a_{n} \neq 0 \rightarrow \exists x .\left(a_{n} x^{n}+\ldots+a_{0}=0\right)$ for all odd $n \in \mathbb{N}$

Real closed fields

$\mathcal{T}(\mathbb{R})=\mathcal{T}(R)$ is the set of FOL sentences that are true in \mathbb{R}.

But there are also other interesting models of $\mathcal{T}(R)$:

- Real numbers \mathbb{R},
- Real algebraic numbers $\mathbb{R} \cap \overline{\mathbb{Q}}$ (real numbers that are roots of polynomials with integer coeffs.)
- Computable numbers (real numbers that can be approximated arbitrarily precisely.)

Semialgebraic sets

Semialgebraic set

$S \subseteq \mathbb{R}^{n}$ is called semialgebraic if it defined by a boolean combination of polynomial equations and inequalitites.

$$
\text { Boolean combination means: } \cup, \cap, \complement
$$

Observation:

S is semialgebaric iff there is a quantifier-free FOL-formula $\varphi(S)$ with n free variables x_{1}, \ldots, x_{n} such that

$$
\left(s_{1}, \ldots, s_{n}\right) \in S \Longleftrightarrow \mathbb{R},\left[x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right] \models \varphi(S)
$$

Tarski-Seidenberg Theorem

Definition: Projection $\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$

$$
\begin{aligned}
\pi_{n}\left(\left(s_{1}, \ldots, s_{n}\right)\right) & :=\left(s_{1}, \ldots, s_{n-1}\right) \\
\pi_{n}(S) & :=\left\{\pi_{n}(\bar{s}) \mid \bar{s} \in S\right\} \quad \text { (extended to } 2^{\mathbb{R}} \text {) }
\end{aligned}
$$

$\left(s_{1}, \ldots, s_{n-1}\right) \in \pi_{n}(S) \Longleftrightarrow \mathbb{R},\left[x_{1} \mapsto s_{1}, \ldots, x_{n-1} \mapsto s_{n-1}\right] \models \exists x_{n} . \varphi(S)$

Tarski-Seidenberg Theorem (Projektionssatz)

Let $S \subseteq \mathbb{R}^{n}$ be semialgebraic.
Then $\pi_{n}(S) \in \mathbb{R}^{n-1}$ is also semialgebraic.

Example

Single variable, single quadratic equation

Let $S_{\text {quad }}$ be the solutions of $a x^{2}+b x+c=0$.
(is semialgebraic: $a x^{2}+b x+c \in \mathbb{R}[a, b, c, x]$)
Due to Tarski-Seidenberg, there must be an equiv. quantifier-free formula $\varphi\left(\pi_{4}\left(S_{\text {quad }}\right)\right)$ with free variables a, b, c.

$$
\begin{gathered}
\exists x \cdot a x^{2}+b x+c=0 \\
\Longleftrightarrow \\
\left(a \neq 0 \wedge b^{2}-4 a c \geq 0\right) \\
\vee(a=0 \wedge(b=0 \rightarrow c=0))
\end{gathered}
$$

$\left(\exists x \cdot x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0\right.$ is trivally equivalent to true. $)$

Quantifier Elimination - Algorithm

(1) Sufficient to look at $\exists x . \bigwedge_{i} \phi_{i}(\bar{y}, x)$ for atomic $\phi_{i} . \rightarrow$ Excercise
(2) Sufficient to consider ϕ_{i} of shape $p(\bar{y}, x)\left\{\begin{array}{l}< \\ \underset{~}{<}\end{array}\right\} 0$ for $p \in \mathbb{R}[\bar{y}][x]$
(3) Every polynomial $p \in R[x]$ has finitely many connected regions with same sign.
\rightarrow Board
Choose a set Rep of representatives.
(4) $\exists x . \bigwedge_{i} \phi_{i}(x, \bar{y}) \leftrightarrow \bigvee_{r \in \operatorname{Rep}} \bigwedge_{i} \phi_{i}(r, \bar{y})$

Decision Technique
Cylindrical Algebraic Decomposition (CAD)

Quantifier Elimination - Linear Example

$\ln \mathbb{R}[z, x]$:

$$
\psi:=\quad \exists x . x>2 \wedge x<3 \wedge x>z
$$

- Interesting points for $x: I=\{2,3, z\}$
- Interesting intervals: $(-\infty, 2),(2,3),(3, \infty),(2, z), \ldots$
- Representatives:
$\operatorname{Rep}=\left\{2,3, z, "-\infty ", "+\infty ", \frac{2+3}{2}, \frac{2+z}{2}, \frac{3+z}{2}\right\}$
$=\left\{\left.\frac{i_{1}+i_{2}}{2} \right\rvert\, i_{1}, i_{2} \in I\right\} \cup\{"-\infty ", "+\infty "\}$

For the example:

$$
\begin{aligned}
\psi & \leftrightarrow \bigvee_{r \in \operatorname{Rep}} r>2 \wedge r<3 \wedge r>z \\
& \leftrightarrow 2.5>z \vee(z>2 \wedge z<4 \wedge 2>z) \vee(z>1 \wedge z<3 \wedge 3>z) \\
& \leftrightarrow z<3
\end{aligned}
$$

Decision Procedures

Theory	QF-SAT	SAT
Equality	YES	YES
Uninterpreted functions	YES	co-SEMI
Integer arithmetic	NO	NO
Linear arithmetic	YES	YES
Real arithmetic	YES	YES
Bitvectors	YES	YES
Floating points	YES	YES

Divison

Adding division (the inverse.$^{-1}$) does not increase expressive power.

Consider $\Sigma_{\text {div }}=\Sigma \cup\left\{.^{-1}\right\}$.
Let quantifier-free $\left.\varphi \in F m\right|_{\sum_{\text {div }}} ^{q f}$ contain a division by t :

$$
\begin{equation*}
\varphi\left[t^{-1}\right] \leftrightarrow\left(\left(\exists y \cdot y=t^{-1} \wedge \varphi[y]\right) \vee(t=0 \wedge \varphi[n])\right) \tag{1}
\end{equation*}
$$

n is a fresh free variable for the value of " 0^{-1} "
Let $\psi \in F m I_{\Sigma_{\text {div }}}$ contain divisions.
Obtain $\psi^{\prime} \in F m / \Sigma$ by applying (1) to literals in ψ.

$$
\mathbb{R} \models \psi \Longleftrightarrow \mathbb{R} \models \forall n \cdot \psi^{\prime}
$$

Underspecification: ψ is true in \mathbb{R} if it is true for all possible valuations of " $0^{-1 \text { " }: ~} \mathbb{R} \models \frac{1}{0}=\frac{1}{0}, \mathbb{R} \not \vDash \frac{1}{0}=\frac{2}{0}$

