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Overview — a family of logics

Propositional Dynamic Logic

|

Dynamic Logic

/N

Hybrid DL

Beckert, Ulbrich — Formale Systeme |l: Theorie 2/36



I Motivation AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

First Order Dynamic Logic

Atomic programs are refined to assignments.
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First Order Dynamic Logic

Atomic programs are refined to assignments.

Example Formula

X=xAyp=y—|[x=x+y,y=x—y;x=x—yly
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I First Order Dynamic Logic T
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Inherit from FOL:

a Terms over function symbols and variables

m Predicate symbols

a Quantification over variables

Inherit from PDL
a Modalities

m Composite program constructors

Refine PDL

Unspecified atomic programs replaced by assignments var := term
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I Syntax

Syntactical material

Y =(F,P,«) ... signature
F ... function symbols
P ... predicate symbols
a: FUP — N ... arity function

Var ... set of variables

a No atomic programs like in PDL

a Same as for FOL
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I Syntax T
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As abstract grammar:
term = var | f(termy, ..., termys))

fml = true | false | p(termn, ..., termyp)) | termy = terms
| —=fml | fmly A fmb | fmh vV fmly | fmly — fmh

| 3var. fml | Vvar. fml

| [prog]fml | (prog)fml

prog = var := term
| var =«

| progy ; progs | progi U prog | prog”

for var € Var,f e F,pe P
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I Semantics — Kripke Structures AT
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First Order Structure (D, /)

D ... set of objects (domain) | ... Interpretation
I(f) : D) — D for function symbol f € F
I(p) € D™P) for predicate symbol p € P
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First Order Structure (D, /)

D ... set of objects (domain) | ... Interpretation
I(f) : D) — D for function symbol f € F
I(p) € D™P) for predicate symbol p € P

Kripke Frame (S, p)

S ... set of states p:prog — 2°%° . accessibility relation

FODL: Fixed Kripke Frame Kp = (Sp, pp)

which depends on the domain D
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I Semantics — Kripke Structures A\‘("'

The set of states Kp is the set of assignments of elements in the
universe D to variables in Var:

SD:Var—>D
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Semantics — Kripke Structures A\K"'

The set of states Kp is the set of assignments of elements in the
universe D to variables in Var:

SD:Var—>D

For every t € Termy we denote by
va/D’/’S(t)

the usual first-order evaluation of t in (D, /);
variables are interpreted via s.
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I Function Update Notation ST
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Notation: forse€ Sp, x € Var, a€ D

a if y =x
s(y) otherwise

stx/al(y) = {
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I Semantics of Programs AT
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Binary Relation

p :prog — Sp x Sp assigns accessiblity to programs
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Binary Relation
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I Semantics of Programs

Binary Relation

p :prog — Sp x Sp assigns accessiblity to programs

plx:=v) = {(s.t) | t=s[x/valps(v)]}
p(x:=x%) = {(s,t) | ex. a€ D with t = s[x/al]}
p(mUm) = p(m1)Up(m2)
p(myim2) = p(m)ip(m2)  is forward composition
— {(s,t) | ex. u € Sp with (s, u) € p(m1), (u, t) € p(m2)}
p(m*) = p(r)*  *is refl. transitive closure

= {(so0,5n) | ex. n > 0 with (s;,si+1) € p(7) f.a. i < n}
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Binary Relation

p :prog — Sp x Sp assigns accessiblity to programs

plx:=v) = {(s.t) | t=s[x/valps(v)]}
p(x:=x%) = {(s,t) | ex. a€ D with t = s[x/al]}
p(mUm) = p(m1)Up(m2)
p(myim2) = p(m)ip(m2)  is forward composition
— {(s,t) | ex. u € Sp with (s, u) € p(m1), (u, t) € p(m2)}
p(m*) = p(r)*  *is refl. transitive closure

= {(so0,5n) | ex. n > 0 with (s;,si+1) € p(7) f.a. i < n}

p(?e) = A(s;s) [ ;s k= ¢}
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l,s = p(te,... tn) iff (valjs(t1),...,vals(tn)) € I(p)
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l,s = p(te,... tn) iff (valjs(t1),...,vals(tn)) € I(p)

l,s ): ti = b iff Va//7s(t1) = va//7s(t2)
l,s E [x]F iff 1,s' = F for all s’ with (s,s) € p(7)
l,s E(m)F iff 1,s' = F for some s’ with (s,s’) € p(w)

= is as expected for =, A, V, —, Vx, Ix.

We write | = p iff ;s = ¢ forall s € S.
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T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation AT

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

@ If (s,s1) € p(m) then (s[x/a], s1[x/a]) € p(~)
forae D, x ¢ V(nm).
i.e., variables outside V() do not influence the program T;

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

@ If (s,s1) € p(m) then (s[x/a], s1[x/a]) € p(~)
forae D, x ¢ V(nm).
i.e., variables outside V() do not influence the program T;

@ more general: If (s,s1) € p(7) and s’ € Sp such that
s'(y) = s(y) for all y € V(x) then there is s| such that

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

@ If (s,s1) € p(m) then (s[x/a], s1[x/a]) € p(~)
forae D, x ¢ V(nm).
i.e., variables outside V() do not influence the program T;

@ more general: If (s,s1) € p(7) and s’ € Sp such that
s'(y) = s(y) for all y € V(x) then there is s| such that

@ (s.s) € p(r) and

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

@ If (s,s1) € p(m) then (s[x/a], s1[x/a]) € p(n)
forae D, x ¢ V(nm).
i.e., variables outside V() do not influence the program T;

@ more general: If (s,s1) € p(7) and s’ € Sp such that
s'(y) = s(y) for all y € V(x) then there is s| such that

® (5'5{) € p(r) and
@ si(x) =s'(x) for all x & V(n)

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation

T € prog a program
FV(m) = {x € Var | ex. t such that x := t or x := % occurs in 7}
V(m) = {x € Var | x occurs in 7}

@ If (s,s1) € p(m) then s(x) = s1(x) for all x & FV/(m).
i.e., program 7 only changes variables in FV/(7);

@ If (s,s1) € p(m) then (s[x/a], s1[x/a]) € p(n)
forae D, x ¢ V(nm).
i.e., variables outside V() do not influence the program T;

@ more general: If (s,s1) € p(7) and s’ € Sp such that
s'(y) = s(y) for all y € V(x) then there is s| such that

@ (s',s1) € p(7) and
@ si(x) =s'(x) for all x ¢ V()
@ si(y) =si(y) for all y € V(n).

Beckert, Ulbrich — Formale Systeme |l: Theorie 12/36



I Basic Observation AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

(s,51) € p(m) and s" with s'(y) = s(y) for all y € V(7)
then there is s] with

(<'.50) € (), s;(x):{ﬂx) for all x # V(r).

si(x) for all x € V()

s— 59§
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(s,51) € p(m) and s" with s'(y) = s(y) for all y € V(7)
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V(r
FV(m)
/

S—)Sl s > 5

Beckert, Ulbrich — Formale Systeme |l: Theorie 13/36



I Basic Observation AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(s,51) € p(m) and s" with s'(y) = s(y) for all y € V(7)
then there is s] with

(s',s1) € p(m), sl(x) = 5'(X) for all x & V(r)

sl(x) for all x € V()

V(r
FV(m)

S—)Sl s ’51
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All PDL tautologies
eg. [mi7]le < [r]lr]e
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I Interesting Tautologies

All PDL tautologies
eg. [mi7]le < [r]lr]e

[x :=tlp & (x:=t)p
[x :=x]p & Vx.p
(x =% < Ixgp

¢ a FO formula w/o quantification over x:
[x:=tlp < olx/t]

Beckert, Ulbrich — Formale Systeme |l: Theorie
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Is this a tautology?

Vx.[rle < [7]Vx.p if x ¢ V(7)
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Is this a tautology?

Vx.[rle < [7]Vx.p if x ¢ V(7)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).
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I Constant Domain Assumption

Is this a tautology?

Vx.[rle < [7]Vx.p if x ¢ V(7)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[0 := new]Vx.0 — Vx.[o:= new]y

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendtetal., FM 2009]
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Is this a tautology? —"Barcan Formula”

Vx.[rle < [7]Vx.p if x ¢ V(7)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[0 := new]Vx.0 — Vx.[o:= new]y

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendtetal., FM 2009]
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= [y=eW) Ky :=fy))y=2
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z=y A Vx. f(g(x)) =x
= [y=eW) Ky :=fy))y=2

z=y N ¥x. f(g(x)) =x
—  [while p(y) do y := g(y)]{while y # z do y := f(y))true
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I Indeterminism A\‘("'

DL programs can be indeterminstic
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DL programs can be indeterminstic

Sources of indeterminsm

» Non-deterministic choice U
a Non-deterministic iteration *

a Non-deterministic assignment v := x

Example for v := x:

choose x such that p(x) > x:=3x%;?p(x)

Beckert, Ulbrich — Formale Systeme |l: Theorie 17/36
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A DL program m € prog is called a while-program if:
@ U occurs only within the patterns of if,
@ * occurs only within the patterns of while,

@ var := x does not occur for any variable var € Var
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A DL program 7 € prog is called a while-program if:
@ U occurs only within the patterns of if,
@ * occurs only within the patterns of while,

@ var := x does not occur for any variable var € Var

if © then « else 5
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A DL program 7 € prog is called a while-program if:
@ U occurs only within the patterns of if,
@ * occurs only within the patterns of while,

@ var := x does not occur for any variable var € Var

if o thenavelse B = (2¢;0a)U(?7-¢;B)
while ¢ do
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I Deterministic programs (T
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A DL program 7 € prog is called a while-program if:
@ U occurs only within the patterns of if,
@ * occurs only within the patterns of while,

@ var := x does not occur for any variable var € Var

if o thenavelse B = (2¢;0a)U(?7-¢;B)
while p do v == (?¢;a)*; 7—p

Beckert, Ulbrich — Formale Systeme |l: Theorie 18/36
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Semantic Definition

A program m € prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (S7 tl),(s, 1.'2) S p(’/T) — 1 =1
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Semantic Definition

A program m € prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (S7 tl),(s, t2) S p(’/T) — 1 =1

Characterisation of deterministic programs

A program 7 € prog is deterministic iff (1) — [7]p is a
tautology for every formula ¢ € fml.
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Semantic Definition

A program m € prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (S7 tl),(s, tz) S p(’/T) — 1 =1

Characterisation of deterministic programs

A program 7 € prog is deterministic iff (1) — [7]p is a
tautology for every formula ¢ € fml.

While programs are deterministic.
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For determinstic programs:

[r]¢  means “m is partially correct with respect to postcondition ¢”

(m)e means “7 is totally correct with respect to postcondition ¢"
(i.e. 7 partially correct and 7 terminates)

Moreover:
Total correctness is partial correctness plus termination:

= (my < [rle A (m)true
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Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.
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Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Godel's Incompleteness Theorem
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Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Godel's Incompleteness Theorem

Arithmetic can be axiomatised in FODL

... we shall see how ...
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I Axiomatisation of natural arithmetic AT
Signature: Let X contain:
w constant o (the “zero")

= unary function s (the “successor")
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I Axiomatisation of natural arithmetic

Signature: Let ¥ contain:

w constant o (the “zero")

= unary function s (the “successor”)

Define a FODL formula ¢ over ¥ s.t.
D.IEen iff (D, (o), 1(s)) = (N,0,+1)
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Signature: Let ¥ contain:
m constant o (the “zero”)

= unary function s (the “successor”)

Define a FODL formula ¢ over ¥ s.t.
D.IEen iff (D, (o), 1(s)) = (N,0,+1)

Formalise: “Every element can be reached by a number of loop
iterations from zero.”
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Define a FODL formula ¢ over ¥ s.t.
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I Axiomatisation of natural arithmetic

Signature: Let ¥ contain:

w constant o (the “zero")

= unary function s (the “successor”)

Goal

Define a FODL formula ¢ over ¥ s.t.
D.IEen iff (D, (o), 1(s)) = (N,0,+1)

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

YN = Vy.(x:=o0;(x:=s(x)))x=y
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Fix the first order structure and domain.
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Fix the first order structure and domain.

In particular: consider
Ya=({0,1,-1,...,+,*}{<}) and N = (N, Iny)

s.t. Iy interprets the symbols “as expected”.
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Valid formulas:
ma3<hx<x+2,0xx=0
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Valid formulas:
ma3<hx<x+2,0xx=0

a (p(0) A ¥x.(p(x) = p(x +1))) = ¥x.p(x)
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I Examples

Valid formulas:
ma3<hx<x+2,0xx=0

a (p(0) A ¥x.(p(x) = p(x +1))) = ¥x.p(x)

s -Ix(0< xAx <1)

Beckert, Ulbrich — Formale Systeme |l: Theorie 24/36



I Examples

Valid formulas:
ma3<hx<x+2,0xx=0

@ (p(0) A ¥x.(p(x) > plx + 1))) = Vx.p(x)
s -Ix(0< xAx <1)

wy=x;(a:==x;x:=x+a)f|x>y
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I Examples T
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Valid formulas:
ma3<hx<x+2,0xx=0

@ (p(0) A Y(p(x) — p(x + 1)) = Yx.p(x)
s -Ix(0< xAx <1)
wy=x;(a:==x;x:=x+a)f|x>y

®aXg=XAYo=Y
= [xi=x4+y;y=x—yix=x—y|lx=wAy=x
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and Calculi
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Encoding sequences (Gddel, ~1930)

There exists a first-order definable function 5 : N x N — N with:
For every n € N and every sequence ci, ..., c, € N* there exists
some ¢ such that B(c,i) = ¢ for i =0,...n.
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Encoding sequences (Gddel, ~1930)

There exists a first-order definable function 5 : N x N — N with:
For every n € N and every sequence ci, ..., c, € N* there exists
some ¢ such that B(c,i) = ¢ for i =0,...n.

c is called the Gédel number for cq, ..., cp.
Notation: c ="c¢y,...,¢cp!
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Encoding sequences (Godel, ~1930)

There exists a first-order definable function 5 : N x N — N with:
For every n € N and every sequence ci, ..., c, € N* there exists
some ¢ such that B(c,i) = ¢ for i =0,...n.

c is called the Gédel number for cq, ..., cp.
Notation: c ="c¢y,...,¢cp!

Example encoding;:
TCy ..., Cp i= 20t 3t gatl L plda
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Encoding sequences (Godel, ~1930)

There exists a first-order definable function 5 : N x N — N with:
For every n € N and every sequence ci, ..., c, € N* there exists
some ¢ such that B(c,i) = ¢ for i =0,...n.

c is called the Gédel number for cq, ..., cp.
Notation: c ="c¢y,...,¢cp!

Example encoding;:
TCy ..., Cp i= 20t 3t gatl L plda

Blc,iy=k & pittlc A p? e
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Encoding sequences (Godel, ~1930)

There exists a first-order definable function 5 : N x N — N with:
For every n € N and every sequence ci, ..., c, € N* there exists
some ¢ such that B(c,i) = ¢ for i =0,...n.

c is called the Gédel number for cq, ..., cp.
Notation: c ="c¢y,...,¢cp!

Example encoding;:
TCl, ..., Ch = oa+l . 3C2+1 . 5C3+1 ... . plten

Blc,iy=k & pittlc A p? e

Example: 72,0,17 = 23 .31 . 52 = 600
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Comparing logics

u Uninterpreted FODL is more expressive than FOL.
There exists a FODL formula such that no FOL formula

has the same models.

u Is FODL over N’ more expressive than FOL over N/?
How can the compare expressiveness with a fixed inter-

pretation?
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Let L be a logic.
Let T C Fml; be a set of formulas (a theory).
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Let L be a logic.
Let T C Fml; be a set of formulas (a theory).

Oracle
Function Ot : Fml, — {true, false} with ¢ € T < O(p) = true is
called an oracle for T.
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Let L be a logic.
Let T C Fml; be a set of formulas (a theory).

Oracle
Function Ot : Fml, — {true, false} with ¢ € T < O(p) = true is
called an oracle for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle Or.
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Let L be a logic.
Let T C Fml; be a set of formulas (a theory).

Oracle

Function Ot : Fml, — {true, false} with ¢ € T < O(p) = true is
called an oracle for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle Or.

Note: T (resp. O1) may not be computable!
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Let Tyr = {¢ | N |= ¢} be the set of valid statements over N,

FODL is complete relative to Ty .
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Programs representable

Every DL program 7 can be represented as a formula x(7) € Fmlror
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Programs representable

Every DL program 7 can be represented as a formula x(7) € Fmlror

Here: only one-variable-programs V() = {x}
(general case ~~ exercise)
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Programs representable

Every DL program 7 can be represented as a formula x(7) € Fmlror
Here: only one-variable-programs V/(m) = {x}
(general case ~~ exercise)

Predicate x(7)(x, x’) has two free variables:
@ x for the pre-state,
@ X' for the post-state.
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Programs representable

Every DL program 7 can be represented as a formula x(7) € Fmlror
Here: only one-variable-programs V/(m) = {x}
(general case ~~ exercise)

Predicate x(7)(x, x’) has two free variables:
@ x for the pre-state,
@ X' for the post-state.

Modelling goal:

siX'/s' ()] = w(m)(x,X) <= (s,5) € p(7)
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k(x = t)(x,x) = X' =t

k(m Um)(x,x") = &(m)(x,x") V k(m2)(x,x")
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k(x = t)(x,x) = X' =t
k(m Um)(x,x") = &(m)(x,x") V k(m2)(x,x")
k(m;m)(x, x") = Fu. k(m)(x, u) A k(m2)(u, x")
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K(x = t)(x,x) = x' =t

k(m Um)(x,x') = k(m)(x,x') V k(m2)(x,x")

k(m;m)(x, x") = Fu. k(m)(x, u) A k(m2)(u, x")
K(2Q)(x.x) = p(x) Ax=x
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I Programs as Formulas (I1) AT
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K(x = t)(x,x) = X =t
K(m Um)(6x) = r(m)(6x) V a(m)(xx)
k(my i m)(06x) = 3w k(m)(x, u) A k() (u, )
R(PO)(x,X) = p(x) Ax =X
K(T)06x) = InT g, x T x =X AX = xp

AVI < n. /€(7T)(X,',X,'+1)
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I Reduction of FODL ) to FOLy,

There is a function x : Fmlropy,, — FmlroL,, such that
a N E ¢+ k(p) and

m K is computable.
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I Reduction of FODL ) to FOLy,

There is a function x : Fmlropy,, — FmlroL,, such that
a N E ¢+ k(p) and

m K is computable.

Proof
by structural induction.

Interesting case:

w([rlp(x) < VX k() (x, X) = K(e(X))

(Remainder left as exercise)
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Let ¢ be a FOL formula and 7 a program with only FOL tests.

Calculus

[x:=tlp ~ olx/t]
[r1;mle ~ [m]lm2]e
[riUm]e ~ [m]eAlm]e
Yl ~ Y=o
[m*]e ~ INV
A (Vx. INV — [r]INV)
A (VX. INV — )
for an arbitrary formula INV € Fmlroy . x = FV(m)

The calculus allows reduction of FODL formulae to FOL formulae
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Let ¢ be a FOL formula and 7 a while program (with FOL tests).

[x:=tlp ~ ¢[x/t]
[11; ma]p ~ [m][m]e
[if ¢ then 71 else mo]p ~ (¥ — [mi]p) A (=Y — [m2]p)
[while ¢ do 7]y ~  INV

A (VR INV A tp — [7]INV)
A (VR INV A —1p — o)

for an arbitrary formula INV € Fmlro, . x = FV(m)

This is the weakest-precondition calculus (Dijkstra, 1975)
Notation:  wip(r,¢) = [xlp, wp(m,) = (m)p
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Let [r]p ~»* ¢ be the result of applying the calculus.
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Let [r]p ~»* ¢ be the result of applying the calculus.

@ =y — [y
1 is a precondition such that ¢ is guaranteed to hold after .
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I Properties

Let [r]p ~»* ¢ be the result of applying the calculus.

@ =y — [y
1 is a precondition such that ¢ is guaranteed to hold after .

@ There exist loop invariants such that = ¢ < [r]e
earlier defined k(-) formulates strongest loop invariants

Then ) is the weakest precondition
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I Properties A“(IT

Let [r]p ~»* ¢ be the result of applying the calculus.

@ =y — [y
1 is a precondition such that ¢ is guaranteed to hold after .

@ There exist loop invariants such that = ¢ < [r]e
earlier defined k(-) formulates strongest loop invariants

Then ) is the weakest precondition

@ If = pre — 1, then also |= pre — [r]p
Prove pre/post-condition contracts by applying calculus to program
and postcondition and then showing implication from precondition.
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I Arithmetic Completeness T

Axioms
All first-order formulas valid in A/
Axioms for PDL

(x:=thep <+ p[x/t] for all first-order ¢
Rules
L:G (modus ponens)
F F L
[]F UxE (generalisations)
Vn(F(n+ 1) — (m)F(n)) for any first-order formula F
Vn(F(n) — (7*)F(0)) (convergence)
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Axioms
All first-order formulas valid in A/
Axioms for PDL

(x:=te < ¢x/t] for all first-order ¢
Rules
L;G (modus ponens)
F F L
7 UxE (generalisations)
Vn(F(n+ 1) — (m)F(n)) for any first-order formula F
Vn(F(n) — (7*)F(0)) (convergence)
For any formula ¢ € Fmlropy : NEp <Fryop
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