

Formale Systeme II: Theorie

Dynamic Logic: Uninterpreted and Interpreted First Order DL

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich Slides partially by Prof. Dr. Peter H. Schmitt

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Roadmap

Overview – a family of logics Propositional Dynamic Logic Dynamic Logic Hybrid DL Java DL

First Order Dynamic Logic

Atomic programs are refined to assignments.

First Order Dynamic Logic

Atomic programs are refined to assignments.

Example Formula

$$x_0 = x \land y_0 = y \to [x := x + y; y := x - y; x := x - y] \varphi$$

First Order Dynamic Logic

Inherit from FOL:

- Terms over function symbols and variables
- Predicate symbols
- Quantification over variables

Inherit from PDL

- Modalities
- Composite program constructors

Refine PDL

Unspecified atomic programs replaced by assignments var := term

Syntax

Syntactical material

- $\Sigma = (F, P, \alpha) \dots$ signature
 - F ... function symbols
 - P ... predicate symbols
 - $\alpha: {\it F} \cup {\it P} \rightarrow \mathbb{N}$... arity function

Var ... set of variables

- No atomic programs like in PDL
- Same as for FOL

As abstract grammar:

term ::= *var* | $f(term_1, ..., term_{\alpha(f)})$

prog ::= var := term | var := * $| prog_1; prog_2 | prog_1 \cup prog_2 | prog^*$

for $var \in Var, f \in F, p \in P$

First Order Structure (D, I)

 $D \dots$ set of objects (domain) $I \dots$ Interpretation $I(f): D^{\alpha(f)} \to D$ for function symbol $f \in F$ $I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

First Order Structure (D, I)

 $D \dots$ set of objects (domain) $I \dots$ Interpretation $I(f): D^{\alpha(f)} \to D$ for function symbol $f \in F$ $I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

$\begin{array}{ll} \text{Kripke Frame } (S,\rho) \\ S \ ... \ \text{set of states} & \rho: \operatorname{prog} \to 2^{S \times S} \ ... \ \text{accessibility relation} \end{array}$

First Order Structure (D, I)

 $D \dots$ set of objects (domain) $I \dots$ Interpretation $I(f): D^{\alpha(f)} \to D$ for function symbol $f \in F$ $I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

Kripke Frame (S, ρ) $S \dots$ set of states $\rho : \operatorname{prog} \rightarrow 2^{S \times S} \dots$ accessibility relation

FODL: Fixed Kripke Frame $\mathcal{K}_D = (S_D, \rho_D)$

which depends on the domain D

Semantics – Kripke Structures

The set of states \mathcal{K}_D is the set of assignments of elements in the universe D to variables in *Var*:

$$S_D = Var o D$$

Semantics – Kripke Structures

The set of states \mathcal{K}_D is the set of assignments of elements in the universe D to variables in *Var*:

$$S_D = Var \rightarrow D$$

For every $t \in Term_{\Sigma}$ we denote by

 $val_{D,I,s}(t)$

the usual first-order evaluation of t in (D, I); variables are interpreted via s.

Function Update Notation

Notation: for $s \in S_D$, $x \in Var$, $a \in D$

$$s[x/a](y) = \begin{cases} a & \text{if } y = x \\ s(y) & \text{otherwise} \end{cases}$$

Binary Relation

 $ho: \operatorname{prog}
ightarrow S_D imes S_D$ assigns accessiblity to programs

Binary Relation

 $\rho: \texttt{prog} \rightarrow \textit{S}_{\textit{D}} \times \textit{S}_{\textit{D}}$ assigns accessiblity to programs

 $\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,l,s}(v)]\}$

Binary Relation

$$\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,I,s}(v)]\}$$

$$\rho(x := *) = \{(s, t) \mid \text{ex. } a \in D \text{ with } t = s[x/a]\}$$

Binary Relation

$$\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,I,s}(v)]\}$$

$$\rho(x := *) = \{(s, t) \mid ex. \ a \in D \text{ with } t = s[x/a]\}$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

Binary Relation

$$\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,l,s}(v)]\}$$

$$\rho(x := *) = \{(s, t) \mid ex. \ a \in D \text{ with } t = s[x/a]\}$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

$$\rho(\pi_1; \pi_2) = \rho(\pi_1); \rho(\pi_2) ; \text{ is forward composition}$$

Binary Relation

$$\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,I,s}(v)]\}$$

$$\rho(x := *) = \{(s, t) \mid ex. \ a \in D \text{ with } t = s[x/a]\}$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

$$\rho(\pi_1; \pi_2) = \rho(\pi_1); \rho(\pi_2) ; \text{ is forward composition}$$

$$= \{(s, t) \mid ex. \ u \in S_D \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\}$$

Binary Relation

$$\begin{split} \rho(x := v) &= \{(s, t) \mid t = s[x/val_{D, l, s}(v)]\} \\ \rho(x := *) &= \{(s, t) \mid \text{ex. } a \in D \text{ with } t = s[x/a]\} \\ \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \rho(\pi_1; \pi_2) &= \rho(\pi_1); \rho(\pi_2) \quad ; \text{ is forward composition} \\ &= \{(s, t) \mid \text{ex. } u \in S_D \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\} \\ \rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \end{split}$$

Binary Relation

$$\begin{aligned}
\rho(x := v) &= \{(s, t) \mid t = s[x/val_{D,I,s}(v)]\} \\
\rho(x := *) &= \{(s, t) \mid ex. \ a \in D \text{ with } t = s[x/a]\} \\
\rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\
\rho(\pi_1 ; \pi_2) &= \rho(\pi_1) ; \rho(\pi_2) \quad ; \text{ is forward composition} \\
&= \{(s, t) \mid ex. \ u \in S_D \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\} \\
\rho(\pi^*) &= \rho(\pi)^* \quad * \text{ is refl. transitive closure} \\
&= \{(s_o, s_n) \mid ex. \ n \ge 0 \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ f.a. } i < n\}
\end{aligned}$$

Binary Relation

$$\rho(x := v) = \{(s, t) \mid t = s[x/val_{D,I,s}(v)]\}$$

$$\rho(x := *) = \{(s, t) \mid \text{ex. } a \in D \text{ with } t = s[x/a]\}$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

$$\rho(\pi_1; \pi_2) = \rho(\pi_1); \rho(\pi_2) \quad ; \text{ is forward composition}$$

$$= \{(s, t) \mid \text{ex. } u \in S_D \text{ with } (s, u) \in \rho(\pi_1), (u, t) \in \rho(\pi_2)\}$$

$$\rho(\pi^*) = \rho(\pi)^* \quad * \text{ is refl. transitive closure}$$

$$= \{(s_o, s_n) \mid \text{ex. } n \ge 0 \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ f.a. } i < n\}$$

$$\rho(?\varphi) = \{(s, s) \mid I, s \models \varphi\}$$

$I, s \models p(t_1, \ldots, t_n)$ iff $(val_{I,s}(t_1), \ldots, val_{I,s}(t_n)) \in I(p)$

Beckert, Ulbrich - Formale Systeme II: Theorie

$$egin{aligned} I,s &\models p(t_1,\ldots,t_n) & ext{iff} & (val_{I,s}(t_1),\ldots,val_{I,s}(t_n)) \in I(p) \ I,s &\models t_1 = t_2 & ext{iff} & val_{I,s}(t_1) = val_{I,s}(t_2) \end{aligned}$$

$$I, s \models p(t_1, \dots, t_n) \quad \text{iff} \quad (val_{I,s}(t_1), \dots, val_{I,s}(t_n)) \in I(p)$$
$$I, s \models t_1 = t_2 \qquad \text{iff} \quad val_{I,s}(t_1) = val_{I,s}(t_2)$$
$$I, s \models [\pi]F \qquad \text{iff} \quad I, s' \models F \text{ for all } s' \text{ with } (s, s') \in \rho(\pi)$$

$$I, s \models p(t_1, \dots, t_n) \quad \text{iff} \quad (val_{I,s}(t_1), \dots, val_{I,s}(t_n)) \in I(p)$$

$$I, s \models t_1 = t_2 \qquad \text{iff} \quad val_{I,s}(t_1) = val_{I,s}(t_2)$$

$$I, s \models [\pi]F \qquad \text{iff} \quad I, s' \models F \text{ for all } s' \text{ with } (s, s') \in \rho(\pi)$$

$$I, s \models \langle \pi \rangle F \qquad \text{iff} \quad I, s' \models F \text{ for some } s' \text{ with } (s, s') \in \rho(\pi)$$

- $I, s \models p(t_1, \dots, t_n) \quad \text{iff} \quad (val_{I,s}(t_1), \dots, val_{I,s}(t_n)) \in I(p)$ $I, s \models t_1 = t_2 \qquad \text{iff} \quad val_{I,s}(t_1) = val_{I,s}(t_2)$ $I, s \models [\pi]F \qquad \text{iff} \quad I, s' \models F \text{ for all } s' \text{ with } (s, s') \in \rho(\pi)$ $I, s \models \langle \pi \rangle F \qquad \text{iff} \quad I, s' \models F \text{ for some } s' \text{ with } (s, s') \in \rho(\pi)$
- $\models \text{ is as expected for } \neg, \land, \lor, \rightarrow, \forall x, \exists x.$

- $I, s \models p(t_1, \ldots, t_n)$ iff $(val_{I,s}(t_1), \ldots, val_{I,s}(t_n)) \in I(p)$
- $I, s \models t_1 = t_2 \qquad \text{iff} \quad val_{I,s}(t_1) = val_{I,s}(t_2)$
- $I, s \models [\pi]F$ iff $I, s' \models F$ for all s' with $(s, s') \in \rho(\pi)$
- $I, s \models \langle \pi
 angle F$ iff $I, s' \models F$ for some s' with $(s, s') \in \rho(\pi)$
- $\models \text{ is as expected for } \neg, \land, \lor, \rightarrow, \forall x, \exists x.$

We write
$$I \models \varphi$$
 iff $I, s \models \varphi$ for all $s \in S$.

 $\pi \in \text{prog a program}$ $FV(\pi) = \{x \in Var \mid \text{ex. } t \text{ such that } x := t \text{ or } x := * \text{ occurs in } \pi \}$ $V(\pi) = \{x \in Var \mid x \text{ occurs in } \pi \}$

If (s, s₁) ∈ ρ(π) then s(x) = s₁(x) for all x ∉ FV(π).
 i.e., program π only changes variables in FV(π);

- If $(s, s_1) \in \rho(\pi)$ then $s(x) = s_1(x)$ for all $x \notin FV(\pi)$. i.e., program π only changes variables in $FV(\pi)$;
- If (s, s₁) ∈ ρ(π) then (s[x/a], s₁[x/a]) ∈ ρ(π) for a ∈ D, x ∉ V(π).
 i.e., variables outside V(π) do not influence the program π;

- If (s, s₁) ∈ ρ(π) then s(x) = s₁(x) for all x ∉ FV(π).
 i.e., program π only changes variables in FV(π);
- If (s, s₁) ∈ ρ(π) then (s[x/a], s₁[x/a]) ∈ ρ(π) for a ∈ D, x ∉ V(π).
 i.e., variables outside V(π) do not influence the program π;
- **3** more general: If $(s, s_1) \in \rho(\pi)$ and $s' \in S_D$ such that s'(y) = s(y) for all $y \in V(\pi)$ then there is s'_1 such that

- If (s, s₁) ∈ ρ(π) then s(x) = s₁(x) for all x ∉ FV(π).
 i.e., program π only changes variables in FV(π);
- If (s, s₁) ∈ ρ(π) then (s[x/a], s₁[x/a]) ∈ ρ(π) for a ∈ D, x ∉ V(π).
 i.e., variables outside V(π) do not influence the program π;
- **3** more general: If $(s, s_1) \in \rho(\pi)$ and $s' \in S_D$ such that s'(y) = s(y) for all $y \in V(\pi)$ then there is s'_1 such that **1** $(s', s'_1) \in \rho(\pi)$ and

- If $(s, s_1) \in \rho(\pi)$ then $s(x) = s_1(x)$ for all $x \notin FV(\pi)$. i.e., program π only changes variables in $FV(\pi)$;
- If (s, s₁) ∈ ρ(π) then (s[x/a], s₁[x/a]) ∈ ρ(π) for a ∈ D, x ∉ V(π).
 i.e., variables outside V(π) do not influence the program π;
- 3 more general: If $(s, s_1) \in \rho(\pi)$ and $s' \in S_D$ such that s'(y) = s(y) for all $y \in V(\pi)$ then there is s'_1 such that a $(s', s'_1) \in \rho(\pi)$ and a $s'_1(x) = s'(x)$ for all $x \notin V(\pi)$

- If (s, s₁) ∈ ρ(π) then s(x) = s₁(x) for all x ∉ FV(π).
 i.e., program π only changes variables in FV(π);
- If (s, s₁) ∈ ρ(π) then (s[x/a], s₁[x/a]) ∈ ρ(π) for a ∈ D, x ∉ V(π).
 i.e., variables outside V(π) do not influence the program π;
- 3 more general: If $(s, s_1) \in \rho(\pi)$ and $s' \in S_D$ such that s'(y) = s(y) for all $y \in V(\pi)$ then there is s'_1 such that 1 $(s', s'_1) \in \rho(\pi)$ and 2 $s'_1(x) = s'(x)$ for all $x \notin V(\pi)$ 3 $s'_1(y) = s_1(y)$ for all $y \in V(\pi)$.

 $(s,s_1)\in
ho(\pi)$ and s' with s'(y)=s(y) for all $y\in V(\pi)$ then there is s'_1 with

$$(s',s_1')\in
ho(\pi),\qquad s_1'(x)=egin{cases} s'(x) & ext{ for all }x
ot\in V(\pi)\ s_1(x) & ext{ for all }x\in V(\pi) \end{cases}.$$

Basic Observation

 $(s,s_1)\in
ho(\pi)$ and s' with s'(y)=s(y) for all $y\in V(\pi)$ then there is s'_1 with

$$(s',s_1')\in
ho(\pi),\qquad s_1'(x)=egin{cases} s'(x) & ext{ for all }x
ot\in V(\pi)\ s_1(x) & ext{ for all }x\in V(\pi) \end{cases}.$$

Basic Observation

 $(s,s_1)\in
ho(\pi)$ and s' with s'(y)=s(y) for all $y\in V(\pi)$ then there is s'_1 with

$$(s',s_1')\in
ho(\pi),\qquad s_1'(x)=egin{cases} s'(x) & ext{ for all }x
ot\in V(\pi)\ s_1(x) & ext{ for all }x\in V(\pi) \end{cases}.$$

Basic Observation

 $(s,s_1)\in
ho(\pi)$ and s' with s'(y)=s(y) for all $y\in V(\pi)$ then there is s'_1 with

$$(s',s_1')\in
ho(\pi),\qquad s_1'(x)=egin{cases} s'(x) & ext{ for all }x
ot\in V(\pi)\ s_1(x) & ext{ for all }x\in V(\pi) \end{cases}.$$

All PDL tautologies e.g. $[\pi; \tau] \varphi \leftrightarrow [\pi] [\tau] \varphi$

Beckert, Ulbrich - Formale Systeme II: Theorie

$$[x := t] \varphi \; \leftrightarrow \; \langle x := t \rangle \varphi$$

$$[x := t] \varphi \; \leftrightarrow \; \langle x := t \rangle \varphi$$

$$[x := *]\varphi \; \leftrightarrow \; \forall x.\varphi$$

$$[x := t] \varphi \; \leftrightarrow \; \langle x := t \rangle \varphi$$

$$[x := *]\varphi \; \leftrightarrow \; \forall x.\varphi$$

$$\langle x := * \rangle \varphi \; \leftrightarrow \; \exists x. \varphi$$

$$[x := t] \varphi \; \leftrightarrow \; \langle x := t \rangle \varphi$$

$$[x := *]\varphi \; \leftrightarrow \; \forall x.\varphi$$

$$\langle x := * \rangle \varphi \; \leftrightarrow \; \exists x. \varphi$$

 φ a FO formula w/o quantification over x: [x := t] $\varphi \leftrightarrow \varphi[x/t]$

Is this a tautology?

$\forall x.[\pi]\varphi \iff [\pi]\forall x.\varphi \qquad \text{if } x \notin V(\pi)$

Is this a tautology?

$\forall x.[\pi]\varphi \; \leftrightarrow \; [\pi]\forall x.\varphi \qquad \text{if } x \notin V(\pi)$

Here: Yes. Every state has the same set of objects (so-colled **constant domain assumption**).

Is this a tautology?

$\forall x.[\pi]\varphi \leftrightarrow [\pi]\forall x.\varphi \qquad \text{if } x \notin V(\pi)$

Here: Yes. Every state has the same set of objects (so-colled **constant domain assumption**).

But: In some languages, the set of objects can grow (object creation via command **new**)

$$[o := \operatorname{new}] \forall x. \varphi \rightarrow \forall x. [o := \operatorname{new}] \varphi$$

[To Be or Not To Be Created, "Abstract Object Creation in Dynamic Logic", Ahrendt et al., FM 2009]

Is this a tautology?

 \rightarrow " Barcan Formula"

 $\forall x.[\pi] \varphi \leftrightarrow [\pi] \forall x.\varphi \qquad \text{if } x \notin V(\pi)$

Here: Yes. Every state has the same set of objects (so-colled **constant domain assumption**).

But: In some languages, the set of objects can grow (object creation via command **new**)

$$[o := \operatorname{new}] \forall x. \varphi \rightarrow \forall x. [o := \operatorname{new}] \varphi$$

[To Be or Not To Be Created, "Abstract Object Creation in Dynamic Logic", Ahrendt et al., FM 2009]

Example

$$z = y \land \forall x. f(g(x)) = x$$

$$\rightarrow [(y := g(y))^*] \langle (y := f(y))^* \rangle y = z$$

Example

$$z = y \land \forall x. f(g(x)) = x$$

$$\rightarrow [(y := g(y))^*] \langle (y := f(y))^* \rangle y = z$$

$$z = y \land \forall x. \ f(g(x)) = x$$

$$\rightarrow \quad [\text{while } p(y) \text{ do } y := g(y)] \langle \text{while } y \neq z \text{ do } y := f(y) \rangle true$$

DL programs can be indeterminstic

DL programs can be indeterminstic

Sources of indeterminsm

 \blacksquare Non-deterministic choice \cup

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment v := *

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment v := *

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment v := *

Example for v := ***:**

choose x such that $p(x) :\leftrightarrow x := *$; p(x)

Definition

A DL program $\pi \in \text{prog}$ is called a while-program if:

- $\textcircled{0} \cup occurs only within the patterns of if,$
- * occurs only within the patterns of while,
- 3 var := * does not occur for any variable $var \in Var$

Definition

A DL program $\pi \in$ prog is called a while-program if:

- **(**) \cup occurs only within the patterns of **if**,
- * occurs only within the patterns of while,
- 3 var := * does not occur for any variable $var \in Var$

Reminder

if φ then α else β

Definition

A DL program $\pi \in \text{prog}$ is called a while-program if:

- $\textcircled{0} \cup occurs only within the patterns of if,$
- 2 * occurs only within the patterns of while,
- 3 var := * does not occur for any variable $var \in Var$

Reminder

$$\text{ if } \varphi \text{ then } \alpha \text{ else } \beta \quad := \quad \big(\mathbf{?} \varphi \text{ ; } \alpha \big) \cup \big(\mathbf{?} \neg \varphi \text{ ; } \beta \big) \\ \\$$

Definition

A DL program $\pi \in \text{prog}$ is called a while-program if:

- **(**) \cup occurs only within the patterns of **if**,
- * occurs only within the patterns of while,
- 3 var := * does not occur for any variable $var \in Var$

Reminder

$$\begin{array}{rcl} \text{if } \varphi \text{ then } \alpha \text{ else } \beta & := & \left(\mathbf{?}\varphi \text{ ; } \alpha \right) \cup \left(\mathbf{?}\neg\varphi \text{ ; } \beta \right) \\ & \text{while } \varphi \text{ do } \alpha \end{array}$$

Definition

A DL program $\pi \in \text{prog}$ is called a while-program if:

- **(**) \cup occurs only within the patterns of **if**,
- * occurs only within the patterns of while,
- 3 var := * does not occur for any variable $var \in Var$

Reminder

$$\begin{array}{rcl} \text{if } \varphi \text{ then } \alpha \text{ else } \beta & := & \left(\mathbf{?}\varphi \, ; \, \alpha \right) \cup \left(\mathbf{?}\neg \varphi \, ; \, \beta \right) \\ & \text{while } \varphi \text{ do } \alpha & := & \left(\mathbf{?}\varphi \, ; \, \alpha \right)^* ; \, \mathbf{?}\neg \varphi \end{array}$$

Semantic Definition

A program $\pi \in prog$ is called deterministic if its accessibility relation is a partial function.

i.e., if $(s, t_1), (s, t_2) \in \rho(\pi) \implies t_1 = t_2$

Semantic Definition

A program $\pi \in prog$ is called deterministic if its accessibility relation is a partial function.

i.e., if $(s, t_1), (s, t_2) \in \rho(\pi) \implies t_1 = t_2$

Characterisation of deterministic programs

A program $\pi \in \text{prog}$ is deterministic iff $\langle \pi \rangle \varphi \to [\pi] \varphi$ is a tautology for every formula $\varphi \in \text{fml}$.

Semantic Definition

A program $\pi \in prog$ is called deterministic if its accessibility relation is a partial function.

i.e., if $(s, t_1), (s, t_2) \in \rho(\pi) \implies t_1 = t_2$

Characterisation of deterministic programs

A program $\pi \in \text{prog}$ is deterministic iff $\langle \pi \rangle \varphi \to [\pi] \varphi$ is a tautology for every formula $\varphi \in \text{fml}$.

Observation

While programs are deterministic.

For determinstic programs:

 $[\pi]\varphi$ means " π is **partially** correct with respect to postcondition φ "

 $\langle \pi \rangle \varphi$ means " π is **totally** correct with respect to postcondition φ " (i.e. π partially correct **and** π terminates)

Moreover:

Total correctness is partial correctness plus termination:

$$\models \langle \pi \rangle \varphi \ \leftrightarrow \ [\pi] \varphi \wedge \langle \pi \rangle \textit{true}$$

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Gödel's Incompleteness Theorem

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Gödel's Incompleteness Theorem

Arithmetic can be axiomatised in FODL

... we shall see how ...

Karlsruhe Institute of Technology

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t. $D, I \models \varphi_{\mathbb{N}}$ iff $(D, I(o), I(s)) \cong (\mathbb{N}, 0, +1)$

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t. $D, I \models \varphi_{\mathbb{N}}$ iff $(D, I(o), I(s)) \cong (\mathbb{N}, 0, +1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t. $D, I \models \varphi_{\mathbb{N}}$ iff $(D, I(o), I(s)) \cong (\mathbb{N}, 0, +1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Solution:
Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t. $D, I \models \varphi_{\mathbb{N}}$ iff $(D, I(o), I(s)) \cong (\mathbb{N}, 0, +1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Solution:

$$arphi_{\mathbb{N}} := orall orall y. \langle x := o; (x := s(x))^*
angle x = y$$

 $\land \quad orall x, y. ((s(x) = s(y) \rightarrow x = y) \land \neg s(x) = o)$

Interpreted Dynamic Logic

Fix the first order structure and domain.

Interpreted Dynamic Logic

Fix the first order structure and domain.

In particular: consider

$$\Sigma_\mathcal{N} = (\{0,1,-1,...,+,*\},\{<\}) \text{ and } \mathcal{N} = (\mathbb{N},\mathit{I}_\mathcal{N})$$

s.t. $I_{\mathcal{N}}$ interprets the symbols "as expected".

Valid formulas:

■ 3 < 5, *x* < *x* + 2, 0 * *x* = 0

Valid formulas:

- 3 < 5, *x* < *x* + 2, 0 * *x* = 0
- $(p(0) \land \forall x.(p(x) \rightarrow p(x+1))) \rightarrow \forall x.p(x)$

Valid formulas:

■ 3 < 5, *x* < *x* + 2, 0 * *x* = 0

•
$$(p(0) \land \forall x.(p(x) \rightarrow p(x+1))) \rightarrow \forall x.p(x)$$

$$\neg \exists x (0 < x \land x < 1)$$

Valid formulas:

•
$$(p(0) \land \forall x.(p(x) \rightarrow p(x+1))) \rightarrow \forall x.p(x)$$

$$\neg \exists x (0 < x \land x < 1)$$

•
$$[y := x; (a := *; x := x + a)^*] x \ge y$$

Valid formulas:

•
$$(p(0) \land \forall x.(p(x) \rightarrow p(x+1))) \rightarrow \forall x.p(x)$$

$$\neg \exists x (0 < x \land x < 1)$$

•
$$[y := x; (a := *; x := x + a)^*] x \ge y$$

•
$$x_0 = x \land y_0 = y$$

 $\rightarrow [x := x + y; y := x - y; x := x - y] x = y_0 \land y = x_0$

Relative Completeness and Calculi

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_1, \ldots, c_n \in \mathbb{N}^*$ there exists some c such that $\beta(c, i) = c_i$ for $i = 0, \ldots n$.

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_1, \ldots, c_n \in \mathbb{N}^*$ there exists some c such that $\beta(c, i) = c_i$ for $i = 0, \ldots n$.

c is called the *Gödel number* for c_1, \ldots, c_n . Notation: $c = \lceil c_1, \ldots, c_n \rceil$

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_1, \ldots, c_n \in \mathbb{N}^*$ there exists some c such that $\beta(c, i) = c_i$ for $i = 0, \ldots n$.

c is called the *Gödel number* for c_1, \ldots, c_n . Notation: $c = \ulcorner c_1, \ldots, c_n \urcorner$

Example encoding: $\lceil c_1, \ldots, c_n \rceil := 2^{c_1+1} \cdot 3^{c_2+1} \cdot 5^{c_3+1} \cdot \ldots \cdot p_n^{1+c_n}$

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_1, \ldots, c_n \in \mathbb{N}^*$ there exists some c such that $\beta(c, i) = c_i$ for $i = 0, \ldots n$.

c is called the *Gödel number* for c_1, \ldots, c_n . Notation: $c = \lceil c_1, \ldots, c_n \rceil$

Example encoding: $\lceil c_1, \dots, c_n \rceil := 2^{c_1+1} \cdot 3^{c_2+1} \cdot 5^{c_3+1} \cdot \dots \cdot p_n^{1+c_n}$ $\beta(c,i) = k \iff p_i^{k+1} \mid c \land p_i^{k+2} \not\mid c$

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_1, \ldots, c_n \in \mathbb{N}^*$ there exists some c such that $\beta(c, i) = c_i$ for $i = 0, \ldots n$.

c is called the *Gödel number* for
$$c_1, \ldots, c_n$$
.
Notation: $c = \lceil c_1, \ldots, c_n \rceil$

Example encoding: $\lceil c_1, \dots, c_n \rceil := 2^{c_1+1} \cdot 3^{c_2+1} \cdot 5^{c_3+1} \cdot \dots \cdot p_n^{1+c_n}$ $\beta(c, i) = k \iff p_i^{k+1} \mid c \land p_i^{k+2} \not\mid c$ Example: $\lceil 2, 0, 1 \rceil = 2^3 \cdot 3^1 \cdot 5^2 = 600$

• Uninterpreted FODL is more expressive than FOL.

There exists a FODL formula such that no FOL formula has the same models.

Is FODL over N more expressive than FOL over N? How can the compare expressiveness with a fixed interpretation?

Let *L* be a logic. Let $T \subseteq Fml_L$ be a set of formulas (a *theory*).

Let *L* be a logic. Let $T \subseteq Fml_L$ be a set of formulas (a *theory*).

Oracle

Function $O_T : Fml_L \to \{true, false\}$ with $\varphi \in T \Leftrightarrow O(\varphi) = true$ is called an **oracle** for T.

Let *L* be a logic. Let $T \subseteq Fml_L$ be a set of formulas (a *theory*).

Oracle

Function $O_T : Fml_L \to \{true, false\}$ with $\varphi \in T \Leftrightarrow O(\varphi) = true$ is called an **oracle** for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and complete calculus which may make use of oracle O_T .

Let *L* be a logic. Let $T \subseteq Fml_L$ be a set of formulas (a *theory*).

Oracle

Function $O_T : Fml_L \to \{true, false\}$ with $\varphi \in T \Leftrightarrow O(\varphi) = true$ is called an **oracle** for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and complete calculus which may make use of oracle O_T .

Note: T (resp. O_T) may not be computable!

Relative Completeness of FODL

Let $T_{\mathcal{N}} = \{ \varphi \mid \mathcal{N} \models \varphi \}$ be the set of valid statements over \mathbb{N} .

Theorem

FODL is complete relative to $T_{\mathcal{N}}$.

Programs representable

Every DL program π can be represented as a formula $\kappa(\pi) \in Fml_{FOL_{\mathcal{N}}}$

Programs representable

Every DL program π can be represented as a formula $\kappa(\pi) \in Fml_{FOL_N}$

Here: only one-variable-programs $V(\pi) = \{x\}$ (general case \rightsquigarrow exercise)

Programs representable

Every DL program π can be represented as a formula $\kappa(\pi) \in Fml_{FOL_{\mathcal{N}}}$

Here: only one-variable-programs $V(\pi) = \{x\}$ (general case \rightsquigarrow exercise)

Predicate $\kappa(\pi)(x, x')$ has two free variables:

- (1) x for the pre-state,
- **2** x' for the post-state.

Programs representable

Every DL program π can be represented as a formula $\kappa(\pi) \in Fml_{FOL_{\mathcal{N}}}$

Here: only one-variable-programs $V(\pi) = \{x\}$ (general case \rightsquigarrow exercise)

Predicate $\kappa(\pi)(x, x')$ has two free variables:

- (1) x for the pre-state,
- **2** x' for the post-state.

Modelling goal:

$$s[x'/s'(x)] \models \kappa(\pi)(x,x') \iff (s,s') \in \rho(\pi)$$

$$\kappa(x := t)(x, x') \quad := \quad x' = t$$

$$\kappa(x := t)(x, x') \quad := \quad x' = t$$

$$\kappa(\pi_1\cup\pi_2)(x,x')$$
 := $\kappa(\pi_1)(x,x')$ \lor $\kappa(\pi_2)(x,x')$

$$\begin{split} \kappa(x := t)(x, x') &:= x' = t \\ \kappa(\pi_1 \cup \pi_2)(x, x') &:= \kappa(\pi_1)(x, x') \lor \kappa(\pi_2)(x, x') \\ \kappa(\pi_1 ; \pi_2)(x, x') &:= \exists u. \ \kappa(\pi_1)(x, u) \land \kappa(\pi_2)(u, x') \end{split}$$

$$\begin{split} \kappa(x := t)(x, x') &:= x' = t \\ \kappa(\pi_1 \cup \pi_2)(x, x') &:= \kappa(\pi_1)(x, x') \lor \kappa(\pi_2)(x, x') \\ \kappa(\pi_1 ; \pi_2)(x, x') &:= \exists u. \ \kappa(\pi_1)(x, u) \land \kappa(\pi_2)(u, x') \\ \kappa(?\varphi)(x, x') &:= \varphi(x) \land x = x' \end{split}$$

$$\begin{split} \kappa(x := t)(x, x') &:= x' = t \\ \kappa(\pi_1 \cup \pi_2)(x, x') &:= \kappa(\pi_1)(x, x') \lor \kappa(\pi_2)(x, x') \\ \kappa(\pi_1 ; \pi_2)(x, x') &:= \exists u. \ \kappa(\pi_1)(x, u) \land \kappa(\pi_2)(u, x') \\ \kappa(?\varphi)(x, x') &:= \varphi(x) \land x = x' \\ \kappa(\pi^*)(x, x') &:= \exists n. \exists^{\Gamma} x_1, \dots, x_n^{\neg}. \ x = x_1 \land x' = x_n \\ \land \forall i < n. \ \kappa(\pi)(x_i, x_{i+1}) \end{split}$$

Reduction of $\textbf{FODL}_{\mathcal{N}}$ to $\textit{FOL}_{\mathcal{N}}$

Theorem

There is a function $\kappa: Fml_{FODL_{\mathcal{N}}} \rightarrow Fml_{FOL_{\mathcal{N}}}$ such that

- $\mathcal{N} \models \varphi \leftrightarrow \kappa(\varphi)$ and
- κ is computable.

Reduction of $\textbf{FODL}_{\mathcal{N}}$ to $\textit{FOL}_{\mathcal{N}}$

Theorem

There is a function $\kappa:\mathit{Fml}_{\mathit{FODL}_{\mathcal{N}}} \to \mathit{Fml}_{\mathit{FOL}_{\mathcal{N}}}$ such that

- $\mathcal{N} \models \varphi \leftrightarrow \kappa(\varphi)$ and
- κ is computable.

Proof

by structural induction.

Interesting case:

$$\kappa([\pi]\varphi(x)) \; \leftrightarrow \; orall x'. \; \kappa(\pi)(x,x') o \kappa(arphi(x'))$$

(Remainder left as exercise)

A practical calculus

Let φ be a FOL formula and π a program with only FOL tests.

Calculus

$$\begin{split} & [x := t] \varphi \quad \rightsquigarrow \quad \varphi[x/t] \\ & [\pi_1 ; \pi_2] \varphi \quad \rightsquigarrow \quad [\pi_1][\pi_2] \varphi \\ & [\pi_1 \cup \pi_2] \varphi \quad \rightsquigarrow \quad [\pi_1] \varphi \wedge [\pi_2] \varphi \\ & [?\psi] \varphi \quad \rightsquigarrow \quad \psi \to \varphi \\ & [\pi^*] \varphi \quad \rightsquigarrow \quad INV \\ & \wedge (\forall \bar{x}. \ INV \to [\pi] INV) \\ & \wedge (\forall \bar{x}. \ INV \to \varphi) \end{split}$$

for an arbitrary formula $INV \in Fml_{FOL}$. $\bar{x} = FV(\pi)$

The calculus allows reduction of FODL formulae to FOL formulae

Weakest Precondition Calculus

Let φ be a FOL formula and π a **while** program (with FOL tests).

Calculus

$$\begin{aligned} [x := t]\varphi & \rightsquigarrow & \varphi[x/t] \\ [\pi_1; \pi_2]\varphi & \rightsquigarrow & [\pi_1][\pi_2]\varphi \\ \text{if } \psi \text{ then } \pi_1 \text{ else } \pi_2]\varphi & \rightsquigarrow & (\psi \to [\pi_1]\varphi) \land (\neg \psi \to [\pi_2]\varphi) \\ \text{[while } \psi \text{ do } \pi]\varphi & \rightsquigarrow & INV \\ & \land (\forall \bar{x}. \ INV \land \ \psi \to [\pi]INV) \\ & \land (\forall \bar{x}. \ INV \land \neg \psi \to \varphi) \end{aligned}$$

for an arbitrary formula $INV \in FmI_{FOL}$. $ar{x} = FV(\pi)$

This is the weakest-precondition calculus (*Dijkstra*, 1975) **Notation:** $wlp(\pi, \varphi) = [\pi]\varphi, \quad wp(\pi, \varphi) = \langle \pi \rangle \varphi$

Properties

Let $[\pi]\varphi \rightsquigarrow^* \psi$ be the result of applying the calculus.

Properties

Let $[\pi]\varphi \leadsto^* \psi$ be the result of applying the calculus.

$\textcircled{1} \models \psi \rightarrow [\pi] \varphi$

 ψ is a precondition such that φ is guaranteed to hold after $\pi.$

Properties

Let $[\pi]\varphi \leadsto^* \psi$ be the result of applying the calculus.

 ψ is a precondition such that φ is guaranteed to hold after $\pi.$

2 There exist loop invariants such that $\models \psi \leftrightarrow [\pi]\varphi$ earlier defined $\kappa(\cdot)$ formulates strongest loop invariants Then ψ is the weakest precondition
Properties

Let $[\pi]\varphi \leadsto^* \psi$ be the result of applying the calculus.

- $$\label{eq:product} \begin{split} \bullet &\models \psi \to [\pi] \varphi \\ \psi \text{ is a precondition such that } \varphi \text{ is guaranteed to hold after } \pi. \end{split}$$
- **2** There exist loop invariants such that $\models \psi \leftrightarrow [\pi]\varphi$ earlier defined $\kappa(\cdot)$ formulates strongest loop invariants Then ψ is the weakest precondition
- $If \models pre \rightarrow \psi, \text{ then also } \models pre \rightarrow [\pi]\varphi$

Prove pre/post-condition contracts by applying calculus to program and postcondition and then showing implication from precondition.

Arithmetic Completeness

Axioms

All first-order formulas valid in \mathcal{N} Axioms for PDL

 $\langle x := t \rangle \varphi \quad \leftrightarrow \quad \varphi[x/t]$

Rules

for all first-order φ

(modus ponens)

(generalisations)

for any first-order formula *F* (convergence)

Arithmetic Completeness

Axioms

All first-order formulas valid in \mathcal{N} Axioms for PDL

 $\langle x := t \rangle \varphi \quad \leftrightarrow \quad \varphi[x/t]$

Rules

$$\frac{F, F \to G}{G} \\
\frac{F}{[\pi]F} \quad \frac{F}{\forall xF} \\
\frac{\forall n(F(n+1) \to \langle \pi \rangle F(n))}{\forall n(F(n) \to \langle \pi^* \rangle F(0))}$$

for all first-order φ

(modus ponens)

(generalisations)

for any first-order formula *F* (convergence)

Theorem

For **any** formula $\varphi \in Fml_{FODL}$:

$$\mathbb{N}\models\varphi\iff\vdash_{\mathbb{N}}\varphi$$

