Formale Systeme II: Theorie

Dynamic Logic: Uninterpreted and Interpreted First Order DL

SS 2022

Prof. Dr. Bernhard Beckert • Dr. Mattias Ulbrich Slides partially by Prof. Dr. Peter H. Schmitt

Roadmap

Overview - a family of logics

Motivation

First Order Dynamic Logic
Atomic programs are refined to assignments.

Motivation

First Order Dynamic Logic
Atomic programs are refined to assignments.

Example Formula

$$
x_{0}=x \wedge y_{0}=y \rightarrow[x:=x+y ; y:=x-y ; x:=x-y] \varphi
$$

First Order Dynamic Logic

Inherit from FOL:

- Terms over function symbols and variables
- Predicate symbols
- Quantification over variables

Inherit from PDL

- Modalities
- Composite program constructors

Refine PDL

Unspecified atomic programs replaced by assignments var := term

Syntax

Syntactical material

$\Sigma=(F, P, \alpha) \ldots$ signature
F... function symbols
P... predicate symbols
$\alpha: F \cup P \rightarrow \mathbb{N} \ldots$ arity function
Var ... set of variables

- No atomic programs like in PDL
- Same as for FOL

Syntax

As abstract grammar：

$$
\begin{aligned}
& \text { term }::=\operatorname{var} \mid f\left(\text { term }_{1}, \ldots, \text { term }_{\alpha(f)}\right) \\
& \text { fml }::=\text { true } \mid \text { false } \mid p\left(\text { term }_{1}, \ldots, \text { term }_{\alpha(p)}\right) \mid \text { term }_{1}=\text { term }_{2} \\
& \left|\quad \neg f m \|\left|f m l_{1} \wedge f m l_{2}\right| f m l_{1} \vee f m l_{2}\right| f m l_{1} \rightarrow f m l_{2} \\
& \exists \text { var. fml| } \forall \text { var. fml } \\
& \text { | [prog]fml|〈prog〉fml } \\
& \text { prog }::=\text { var }:=\text { term } \\
& \text { var :=* } \\
& \left|\quad \operatorname{prog}_{1} ; \operatorname{prog}_{2}\right| \operatorname{prog}_{1} \cup \operatorname{prog}_{2} \mid \text { prog** }^{*}
\end{aligned}
$$

for var $\in \operatorname{Var}, f \in F, p \in P$

Semantics - Kripke Structures

First Order Structure (D, I)

D... set of objects (domain) I ... Interpretation
$I(f): D^{\alpha(f)} \rightarrow D$ for function symbol $f \in F$ $I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

Semantics - Kripke Structures

First Order Structure (D, I)

$D \ldots$ set of objects (domain) I ... Interpretation
$I(f): D^{\alpha(f)} \rightarrow D$ for function symbol $f \in F$
$I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

Kripke Frame (S, ρ)
$S \ldots$ set of states $\quad \rho: \operatorname{prog} \rightarrow 2^{S \times S} \ldots$ accessibility relation

Semantics - Kripke Structures

First Order Structure (D, I)

D... set of objects (domain) I ... Interpretation
$I(f): D^{\alpha(f)} \rightarrow D$ for function symbol $f \in F$
$I(p) \subseteq D^{\alpha(p)}$ for predicate symbol $p \in P$

Kripke Frame (S, ρ)

$S \ldots$ set of states $\quad \rho: \operatorname{prog} \rightarrow 2^{S \times S} \ldots$ accessibility relation

FODL: Fixed Kripke Frame $\mathcal{K}_{D}=\left(S_{D}, \rho_{D}\right)$
which depends on the domain D

Semantics - Kripke Structures

KarIsruhe institute of Technology

The set of states \mathcal{K}_{D} is the set of assignments of elements in the universe D to variables in Var:

$$
S_{D}=\operatorname{Var} \rightarrow D
$$

Semantics - Kripke Structures

The set of states \mathcal{K}_{D} is the set of assignments of elements in the universe D to variables in Var:

$$
S_{D}=\operatorname{Var} \rightarrow D
$$

For every $t \in \operatorname{Term}_{\Sigma}$ we denote by

$$
\operatorname{val}_{D, l, s}(t)
$$

the usual first-order evaluation of t in (D, I); variables are interpreted via s.

Function Update Notation

Notation: for $s \in S_{D}, x \in \operatorname{Var}, a \in D$

$$
s[x / a](y)= \begin{cases}a & \text { if } y=x \\ s(y) & \text { otherwise }\end{cases}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\rho(x:=v)=\left\{(s, t) \mid t=s\left[x / \operatorname{val}_{D, l, s}(v)\right]\right\}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
& \rho(x:=v)=\left\{(s, t) \mid t=s\left[x / \text { val }_{D, l, s}(v)\right]\right\} \\
& \rho(x:=*)=\{(s, t) \mid \text { ex. } a \in D \text { with } t=s[x / a]\}
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / v a l_{D, l, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid e x . a \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right)
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / \text { val }_{D, l, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid e x . a \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right) \\
\rho\left(\pi_{1} ; \pi_{2}\right) & =\rho\left(\pi_{1}\right) ; \rho\left(\pi_{2}\right) \quad ; \text { is forward composition }
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / \text { val }_{D, I, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid \text { ex. } a \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right) \\
\rho\left(\pi_{1} ; \pi_{2}\right) & =\rho\left(\pi_{1}\right) ; \rho\left(\pi_{2}\right) \quad ; \text { is forward composition } \\
& =\left\{(s, t) \mid \text { ex. } u \in S_{D} \text { with }(s, u) \in \rho\left(\pi_{1}\right),(u, t) \in \rho\left(\pi_{2}\right)\right\}
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / \text { val }_{D, l, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid \text { ex. a } \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right) \\
\rho\left(\pi_{1} ; \pi_{2}\right) & =\rho\left(\pi_{1}\right) ; \rho\left(\pi_{2}\right) \quad ; \text { is forward composition } \\
& =\left\{(s, t) \mid \text { ex. } u \in S_{D} \text { with }(s, u) \in \rho\left(\pi_{1}\right),(u, t) \in \rho\left(\pi_{2}\right)\right\} \\
\rho\left(\pi^{*}\right) & =\rho(\pi)^{*} \quad * \text { is refl. transitive closure }
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / \text { val }_{D, l, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid \text { ex. a } \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right) \\
\rho\left(\pi_{1} ; \pi_{2}\right) & =\rho\left(\pi_{1}\right) ; \rho\left(\pi_{2}\right) \quad ; \text { is forward composition } \\
& =\left\{(s, t) \mid \text { ex. } u \in S_{D} \text { with }(s, u) \in \rho\left(\pi_{1}\right),(u, t) \in \rho\left(\pi_{2}\right)\right\} \\
\rho\left(\pi^{*}\right) & =\rho(\pi)^{*} \quad * \text { is refl. transitive closure } \\
& =\left\{\left(s_{o}, s_{n}\right) \mid \text { ex. } n \geq 0 \text { with }\left(s_{i}, s_{i+1}\right) \in \rho(\pi) \text { f.a. } i<n\right\}
\end{aligned}
$$

Semantics of Programs

Binary Relation

$\rho:$ prog $\rightarrow S_{D} \times S_{D}$ assigns accessiblity to programs

$$
\begin{aligned}
\rho(x:=v) & =\left\{(s, t) \mid t=s\left[x / v a l_{D, l, s}(v)\right]\right\} \\
\rho(x:=*) & =\{(s, t) \mid \text { ex. a } \in D \text { with } t=s[x / a]\} \\
\rho\left(\pi_{1} \cup \pi_{2}\right) & =\rho\left(\pi_{1}\right) \cup \rho\left(\pi_{2}\right) \\
\rho\left(\pi_{1} ; \pi_{2}\right) & =\rho\left(\pi_{1}\right) ; \rho\left(\pi_{2}\right) \quad ; \text { is forward composition } \\
& =\left\{(s, t) \mid \text { ex. u } \in S_{D} \text { with }(s, u) \in \rho\left(\pi_{1}\right),(u, t) \in \rho\left(\pi_{2}\right)\right\} \\
\rho\left(\pi^{*}\right) & =\rho(\pi)^{*} \quad * \text { is refl. } \operatorname{transitive~closure~} \\
& =\left\{\left(s_{o}, s_{n}\right) \mid \text { ex. } n \geq 0 \text { with }\left(s_{i}, s_{i+1}\right) \in \rho(\pi) \text { f.a. } i<n\right\} \\
\rho(? \varphi) & =\{(s, s) \mid I, s \models \varphi\}
\end{aligned}
$$

Semantics of Formulae

$$
I, s \models p\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left(\operatorname{val}_{l, s}\left(t_{1}\right), \ldots, \text { val }_{l, s}\left(t_{n}\right)\right) \in I(p)
$$

Semantics of Formulae

$$
\begin{array}{ll}
I, s \models p\left(t_{1}, \ldots, t_{n}\right) & \text { iff } \quad\left(\text { val }_{l, s}\left(t_{1}\right), \ldots, \text { val }_{l, s}\left(t_{n}\right)\right) \in I(p) \\
I, s \models t_{1}=t_{2} & \text { iff } \quad \text { val }_{l, s}\left(t_{1}\right)=\operatorname{val}_{l, s}\left(t_{2}\right)
\end{array}
$$

Semantics of Formulae

$$
\begin{array}{lll}
I, s \models p\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left(\text { val }_{l, s}\left(t_{1}\right), \ldots, v a l_{l, s}\left(t_{n}\right)\right) \in I(p) \\
I, s \models t_{1}=t_{2} & \text { iff } & \text { val }_{l, s}\left(t_{1}\right)=v a l_{l, s}\left(t_{2}\right) \\
I, s \models[\pi] F & \text { iff } \quad I, s^{\prime} \models F \text { for all } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi)
\end{array}
$$

Semantics of Formulae

$$
\begin{array}{lll}
I, s \models p\left(t_{1}, \ldots, t_{n}\right) & \text { iff } \quad\left(v a l_{l, s}\left(t_{1}\right), \ldots, \text { val }_{l, s}\left(t_{n}\right)\right) \in I(p) \\
I, s \models t_{1}=t_{2} & \text { iff } \quad \text { vall } l_{, s}\left(t_{1}\right)=\text { val } l_{l, s}\left(t_{2}\right) \\
I, s \models[\pi] F & \text { iff } \quad I, s^{\prime} \models F \text { for all } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi) \\
I, s \models\langle\pi\rangle F & \text { iff } \quad I, s^{\prime} \models F \text { for some } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi)
\end{array}
$$

Semantics of Formulae

$$
\begin{array}{lll}
I, s \models p\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left(v a l_{l, s}\left(t_{1}\right), \ldots, v a l_{l, s}\left(t_{n}\right)\right) \in I(p) \\
I, s \models t_{1}=t_{2} & \text { iff } & \text { val }_{l, s}\left(t_{1}\right)=v a l_{I, s}\left(t_{2}\right) \\
I, s \models[\pi] F & \text { iff } \quad I, s^{\prime} \models F \text { for all } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi) \\
I, s \models\langle\pi\rangle F & \text { iff } \quad I, s^{\prime} \models F \text { for some } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi)
\end{array}
$$

\vDash is as expected for $\neg, \wedge, \vee, \rightarrow, \forall x, \exists x$.

Semantics of Formulae

$$
\begin{array}{lll}
I, s \models p\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left(v a l_{l, s}\left(t_{1}\right), \ldots, \text { val }_{l, s}\left(t_{n}\right)\right) \in I(p) \\
I, s \models t_{1}=t_{2} & \text { iff } & \text { val }_{l, s}\left(t_{1}\right)=v a l_{I, s}\left(t_{2}\right) \\
I, s \models[\pi] F & \text { iff } & I, s^{\prime} \models F \text { for all } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi) \\
I, s \models\langle\pi\rangle F & \text { iff } & I, s^{\prime} \models F \text { for some } s^{\prime} \text { with }\left(s, s^{\prime}\right) \in \rho(\pi)
\end{array}
$$

\models is as expected for $\neg, \wedge, \vee, \rightarrow, \forall x, \exists x$.

We write $I \models \varphi$ iff $I, s \models \varphi$ for all $s \in S$.

Basic Observation

$$
\begin{aligned}
& \pi \in \text { prog a program } \\
& F V(\pi)=\{x \in \operatorname{Var} \mid \text { ex. } t \text { such that } x:=t \text { or } x:=* \text { occurs in } \pi\} \\
& V(\pi)=\{x \in \operatorname{Var} \mid x \text { occurs in } \pi\}
\end{aligned}
$$

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;
(2) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $\left(s[x / a], s_{1}[x / a]\right) \in \rho(\pi)$ for $a \in D, x \notin V(\pi)$.
i.e., variables outside $V(\pi)$ do not influence the program π;

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;

22 If $\left(s, s_{1}\right) \in \rho(\pi)$ then $\left(s[x / a], s_{1}[x / a]\right) \in \rho(\pi)$ for $a \in D, x \notin V(\pi)$.
i.e., variables outside $V(\pi)$ do not influence the program π;
(3) more general: If $\left(s, s_{1}\right) \in \rho(\pi)$ and $s^{\prime} \in S_{D}$ such that $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} such that

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;

22 If $\left(s, s_{1}\right) \in \rho(\pi)$ then $\left(s[x / a], s_{1}[x / a]\right) \in \rho(\pi)$ for $a \in D, x \notin V(\pi)$.
i.e., variables outside $V(\pi)$ do not influence the program π;
(3) more general: If $\left(s, s_{1}\right) \in \rho(\pi)$ and $s^{\prime} \in S_{D}$ such that $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} such that
(1) $\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi)$ and

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;

22 If $\left(s, s_{1}\right) \in \rho(\pi)$ then $\left(s[x / a], s_{1}[x / a]\right) \in \rho(\pi)$ for $a \in D, x \notin V(\pi)$.
i.e., variables outside $V(\pi)$ do not influence the program π;
(3) more general: If $\left(s, s_{1}\right) \in \rho(\pi)$ and $s^{\prime} \in S_{D}$ such that $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} such that
(1) $\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi)$ and
(2) $s_{1}^{\prime}(x)=s^{\prime}(x)$ for all $x \notin V(\pi)$

Basic Observation

$\pi \in \operatorname{prog}$ a program
$F V(\pi)=\{x \in \operatorname{Var} \mid$ ex. t such that $x:=t$ or $x:=*$ occurs in $\pi\}$ $V(\pi)=\{x \in \operatorname{Var} \mid x$ occurs in $\pi\}$
(1) If $\left(s, s_{1}\right) \in \rho(\pi)$ then $s(x)=s_{1}(x)$ for all $x \notin F V(\pi)$.
i.e., program π only changes variables in $F V(\pi)$;

22 If $\left(s, s_{1}\right) \in \rho(\pi)$ then $\left(s[x / a], s_{1}[x / a]\right) \in \rho(\pi)$ for $a \in D, x \notin V(\pi)$.
i.e., variables outside $V(\pi)$ do not influence the program π;
(3) more general: If $\left(s, s_{1}\right) \in \rho(\pi)$ and $s^{\prime} \in S_{D}$ such that $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} such that
(1) $\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi)$ and
(2) $s_{1}^{\prime}(x)=s^{\prime}(x)$ for all $x \notin V(\pi)$
(3) $s_{1}^{\prime}(y)=s_{1}(y)$ for all $y \in V(\pi)$.

Basic Observation

$\left(s, s_{1}\right) \in \rho(\pi)$ and s^{\prime} with $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} with
$\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi), \quad s_{1}^{\prime}(x)=\left\{\begin{array}{ll}s^{\prime}(x) & \text { for all } x \notin V(\pi) \\ s_{1}(x) & \text { for all } x \in V(\pi)\end{array}\right.$.

Basic Observation

$\left(s, s_{1}\right) \in \rho(\pi)$ and s^{\prime} with $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} with
$\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi), \quad s_{1}^{\prime}(x)=\left\{\begin{array}{ll}s^{\prime}(x) & \text { for all } x \notin V(\pi) \\ s_{1}(x) & \text { for all } x \in V(\pi)\end{array}\right.$.

Basic Observation

$\left(s, s_{1}\right) \in \rho(\pi)$ and s^{\prime} with $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} with
$\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi), \quad s_{1}^{\prime}(x)=\left\{\begin{array}{ll}s^{\prime}(x) & \text { for all } x \notin V(\pi) \\ s_{1}(x) & \text { for all } x \in V(\pi)\end{array}\right.$.

Basic Observation

$\left(s, s_{1}\right) \in \rho(\pi)$ and s^{\prime} with $s^{\prime}(y)=s(y)$ for all $y \in V(\pi)$ then there is s_{1}^{\prime} with
$\left(s^{\prime}, s_{1}^{\prime}\right) \in \rho(\pi), \quad s_{1}^{\prime}(x)=\left\{\begin{array}{ll}s^{\prime}(x) & \text { for all } x \notin V(\pi) \\ s_{1}(x) & \text { for all } x \in V(\pi)\end{array}\right.$.

Interesting Tautologies

$$
\begin{aligned}
& \text { All PDL tautologies } \\
& \text { e.g. }[\pi ; \tau] \varphi \leftrightarrow[\pi][\tau] \varphi
\end{aligned}
$$

Interesting Tautologies

$$
\begin{aligned}
& \text { All PDL tautologies } \\
& \text { e.g. }[\pi ; \tau] \varphi \leftrightarrow[\pi][\tau] \varphi \\
& {[x:=t] \varphi \leftrightarrow\langle x:=t\rangle \varphi}
\end{aligned}
$$

Interesting Tautologies

$$
\begin{gathered}
\text { All PDL tautologies } \\
\text { e.g. }[\pi ; \tau] \varphi \leftrightarrow[\pi][\tau] \varphi \\
{[x:=t] \varphi \leftrightarrow\langle x:=t\rangle \varphi} \\
{[x:=*] \varphi \leftrightarrow \forall x . \varphi}
\end{gathered}
$$

Interesting Tautologies

$$
\begin{aligned}
& \text { All PDL tautologies } \\
& \text { e.g. }[\pi ; \tau] \varphi \leftrightarrow[\pi][\tau] \varphi \\
& {[x:=t] \varphi \leftrightarrow\langle x:=t\rangle \varphi} \\
& {[x:=*] \varphi \leftrightarrow \forall x . \varphi} \\
& \langle x:=*\rangle \varphi \leftrightarrow \exists x . \varphi
\end{aligned}
$$

Interesting Tautologies

$$
\begin{gathered}
\text { All PDL tautologies } \\
\text { e.g. }[\pi ; \tau] \varphi \leftrightarrow[\pi][\tau] \varphi \\
{[x:=t] \varphi \leftrightarrow\langle x:=t\rangle \varphi} \\
{[x:=*] \varphi \leftrightarrow \forall x . \varphi} \\
\langle x:=*\rangle \varphi \leftrightarrow \exists x . \varphi
\end{gathered}
$$

φ a FO formula w/o quantification over x :
$[x:=t] \varphi \leftrightarrow \varphi[x / t]$

Constant Domain Assumption

Is this a tautology?

$$
\forall x .[\pi] \varphi \leftrightarrow[\pi] \forall x . \varphi \quad \text { if } x \notin V(\pi)
$$

Constant Domain Assumption

Is this a tautology?

$$
\forall x .[\pi] \varphi \leftrightarrow[\pi] \forall x . \varphi \quad \text { if } x \notin V(\pi)
$$

Here: Yes. Every state has the same set of objects (so-colled constant domain assumption).

Constant Domain Assumption

Is this a tautology?

$$
\forall x .[\pi] \varphi \leftrightarrow[\pi] \forall x . \varphi \quad \text { if } x \notin V(\pi)
$$

Here: Yes. Every state has the same set of objects (so-colled constant domain assumption).

But: In some languages, the set of objects can grow (object creation via command new)

$$
[0:=\text { new }] \forall x \cdot \varphi \rightarrow \forall x \cdot[0:=\text { new }] \varphi
$$

[To Be or Not To Be Created, "Abstract Object Creation in Dynamic Logic", Ahrendt et al., FM 2009]

Constant Domain Assumption

Is this a tautology?

$$
\forall x .[\pi] \varphi \leftrightarrow[\pi] \forall x . \varphi \quad \text { if } x \notin V(\pi)
$$

Here: Yes. Every state has the same set of objects (so-colled constant domain assumption).

But: In some languages, the set of objects can grow (object creation via command new)

$$
[0:=\text { new }] \forall x \cdot \varphi \rightarrow \forall x \cdot[0:=\text { new }] \varphi
$$

[To Be or Not To Be Created, "Abstract Object Creation in Dynamic Logic", Ahrendt et al., FM 2009]

Example

$$
\begin{aligned}
& z=y \wedge \forall x . f(g(x))=x \\
& \rightarrow \quad\left[(y:=g(y))^{*}\right]\left\langle(y:=f(y))^{*}\right\rangle y=z
\end{aligned}
$$

Example

$$
\begin{aligned}
z=y \wedge \forall x . & f(g(x))=x \\
& \rightarrow\left[(y:=g(y))^{*}\right]\left\langle(y:=f(y))^{*}\right\rangle y=z
\end{aligned}
$$

$$
z=y \wedge \forall x . f(g(x))=x
$$

$\rightarrow \quad[$ while $p(y)$ do $y:=g(y)]\langle$ while $y \neq z$ do $y:=f(y)\rangle$ true

Indeterminism

DL programs can be indeterminstic

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment $v:=*$

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment $v:=*$

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

- Non-deterministic choice \cup
- Non-deterministic iteration *
- Non-deterministic assignment $v:=*$

Example for $v:=*$:
choose x such that $p(x) \quad: \leftrightarrow \quad x:=* ; p(x)$

Deterministic programs

Definition

A DL program $\pi \in$ prog is called a while-program if:
(1) \cup occurs only within the patterns of if,
(2) * occurs only within the patterns of while,
(3) var $:=*$ does not occur for any variable var $\in \operatorname{Var}$

Deterministic programs

Definition

A DL program $\pi \in$ prog is called a while-program if:
(1) \cup occurs only within the patterns of if,
(2) * occurs only within the patterns of while,
(3) var $:=*$ does not occur for any variable var $\in \operatorname{Var}$

Reminder

$$
\text { if } \varphi \text { then } \alpha \text { else } \beta
$$

Deterministic programs

Definition

A DL program $\pi \in$ prog is called a while-program if:
(1) \cup occurs only within the patterns of if,
(2) * occurs only within the patterns of while,
(3) var $:=*$ does not occur for any variable var $\in \operatorname{Var}$

Reminder

$$
\text { if } \varphi \text { then } \alpha \text { else } \beta:=(\boldsymbol{?} \varphi ; \alpha) \cup(\boldsymbol{?} \neg \varphi ; \beta)
$$

Deterministic programs

Definition

A DL program $\pi \in$ prog is called a while-program if:
(1) \cup occurs only within the patterns of if,
(2) * occurs only within the patterns of while,
(3) var $:=*$ does not occur for any variable var $\in \operatorname{Var}$

Reminder

$$
\begin{aligned}
& \text { if } \varphi \text { then } \alpha \text { else } \beta:=(\boldsymbol{?} \varphi ; \alpha) \cup(\boldsymbol{?} \neg \varphi ; \beta) \\
& \text { while } \varphi \text { do } \alpha
\end{aligned}
$$

Deterministic programs

Definition

A DL program $\pi \in$ prog is called a while-program if:
(1) \cup occurs only within the patterns of if,
(2) * occurs only within the patterns of while,
(3) var $:=*$ does not occur for any variable var $\in \operatorname{Var}$

Reminder

$$
\begin{aligned}
\text { if } \varphi \text { then } \alpha \text { else } \beta & :=(\mathbf{?} \varphi ; \alpha) \cup(\mathbf{?} \neg \varphi ; \beta) \\
\text { while } \varphi \text { do } \alpha & :=(? \varphi ; \alpha)^{*} ; ? \neg \varphi
\end{aligned}
$$

Deterministic programs

Semantic Definition

A program $\pi \in$ prog is called deterministic if its accessibility relation is a partial function.

$$
\text { i.e., if } \quad\left(s, t_{1}\right),\left(s, t_{2}\right) \in \rho(\pi) \Longrightarrow t_{1}=t_{2}
$$

Deterministic programs

Semantic Definition

A program $\pi \in$ prog is called deterministic if its accessibility relation is a partial function.

$$
\text { i.e., if } \quad\left(s, t_{1}\right),\left(s, t_{2}\right) \in \rho(\pi) \Longrightarrow t_{1}=t_{2}
$$

Characterisation of deterministic programs

A program $\pi \in \operatorname{prog}$ is deterministic iff $\langle\pi\rangle \varphi \rightarrow[\pi] \varphi$ is a tautology for every formula $\varphi \in \mathrm{fml}$.

Deterministic programs

Semantic Definition

A program $\pi \in$ prog is called deterministic if its accessibility relation is a partial function.

$$
\text { i.e., if }\left(s, t_{1}\right),\left(s, t_{2}\right) \in \rho(\pi) \Longrightarrow t_{1}=t_{2}
$$

Characterisation of deterministic programs

A program $\pi \in \operatorname{prog}$ is deterministic iff $\langle\pi\rangle \varphi \rightarrow[\pi] \varphi$ is a tautology for every formula $\varphi \in \mathrm{fml}$.

Observation

While programs are deterministic.

Deterministic programs

For determinstic programs:
$[\pi] \varphi$ means " π is partially correct with respect to postcondition φ "
$\langle\pi\rangle \varphi$ means " π is totally correct with respect to postcondition φ " (i.e. π partially correct and π terminates)

Moreover:
Total correctness is partial correctness plus termination:

$$
\models\langle\pi\rangle \varphi \leftrightarrow[\pi] \varphi \wedge\langle\pi\rangle \text { true }
$$

Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

 a direct implication of Gödel's Incompleteness Theorem
Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.
Arithmetic cannot be axiomatised in FOL a direct implication of Gödel's Incompleteness Theorem

Arithmetic can be axiomatised in FODL
... we shall see how ...

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t.
$D, I \models \varphi_{\mathbb{N}} \quad$ iff $\quad(D, I(o), I(s)) \cong(\mathbb{N}, 0,+1)$

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t.
$D, I \models \varphi_{\mathbb{N}} \quad$ iff $\quad(D, I(o), I(s)) \cong(\mathbb{N}, 0,+1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t.
$D, I \models \varphi_{\mathbb{N}} \quad$ iff $\quad(D, I(o), I(s)) \cong(\mathbb{N}, 0,+1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Solution:

Axiomatisation of natural arithmetic

Signature: Let Σ contain:

- constant o (the "zero")
- unary function s (the "successor")

Goal

Define a FODL formula $\varphi_{\mathbb{N}}$ over Σ s.t.
$D, I \models \varphi_{\mathbb{N}} \quad$ iff $\quad(D, I(o), I(s)) \cong(\mathbb{N}, 0,+1)$

Idea:

Formalise: "Every element can be reached by a number of loop iterations from zero."

Solution:

$$
\begin{aligned}
\varphi_{\mathbb{N}}:= & \forall y \cdot\left\langle x:=0 ;(x:=s(x))^{*}\right\rangle x=y \\
& \wedge \forall x, y \cdot((s(x)=s(y) \rightarrow x=y) \wedge \neg s(x)=0)
\end{aligned}
$$

Interpreted Dynamic Logic

Fix the first order structure and domain.

Interpreted Dynamic Logic

Fix the first order structure and domain.

In particular: consider

$$
\Sigma_{\mathcal{N}}=(\{0,1,-1, \ldots,+, *\},\{<\}) \text { and } \mathcal{N}=\left(\mathbb{N}, I_{\mathcal{N}}\right)
$$

s.t. $I_{\mathcal{N}}$ interprets the symbols "as expected".

Examples

Valid formulas:

- $3<5, x<x+2,0 * x=0$

Examples

Valid formulas:

- $3<5, x<x+2,0 * x=0$
- $(p(0) \wedge \forall x .(p(x) \rightarrow p(x+1))) \rightarrow \forall x \cdot p(x)$

Examples

Valid formulas:

- $3<5, x<x+2,0 * x=0$
- $(p(0) \wedge \forall x .(p(x) \rightarrow p(x+1))) \rightarrow \forall x \cdot p(x)$
- $\neg \exists x(0<x \wedge x<1)$

Examples

Valid formulas:

- $3<5, x<x+2,0 * x=0$
- $(p(0) \wedge \forall x .(p(x) \rightarrow p(x+1))) \rightarrow \forall x \cdot p(x)$
- $\neg \exists x(0<x \wedge x<1)$
- $\left[y:=x ;(a:=* ; x:=x+a)^{*}\right] x \geq y$

Examples

Valid formulas:

- $3<5, x<x+2,0 * x=0$
- $(p(0) \wedge \forall x .(p(x) \rightarrow p(x+1))) \rightarrow \forall x \cdot p(x)$
- $\neg \exists x(0<x \wedge x<1)$
- $\left[y:=x ;(a:=* ; x:=x+a)^{*}\right] x \geq y$
- $x_{0}=x \wedge y_{0}=y$

$$
\rightarrow[x:=x+y ; y:=x-y ; x:=x-y] x=y_{0} \wedge y=x_{0}
$$

Relative Completeness and Calculi

Preliminaries

Encoding sequences (Gödel, ~1930)
There exists a first-order definable function $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_{1}, \ldots, c_{n} \in \mathbb{N}^{*}$ there exists some c such that $\beta(c, i)=c_{i}$ for $i=0, \ldots n$.

Preliminaries

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_{1}, \ldots, c_{n} \in \mathbb{N}^{*}$ there exists some c such that $\beta(c, i)=c_{i}$ for $i=0, \ldots n$.
c is called the Gödel number for c_{1}, \ldots, c_{n}.
Notation: $c=\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner$

Preliminaries

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_{1}, \ldots, c_{n} \in \mathbb{N}^{*}$ there exists some c such that $\beta(c, i)=c_{i}$ for $i=0, \ldots n$.
c is called the Gödel number for c_{1}, \ldots, c_{n}.
Notation: $c=\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner$
Example encoding:

$$
\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner:=2^{c_{1}+1} \cdot 3^{c_{2}+1} \cdot 5^{c_{3}+1} \cdot \ldots \cdot p_{n}^{1+c_{n}}
$$

Preliminaries

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_{1}, \ldots, c_{n} \in \mathbb{N}^{*}$ there exists some c such that $\beta(c, i)=c_{i}$ for $i=0, \ldots n$.
c is called the Gödel number for c_{1}, \ldots, c_{n}.
Notation: $c=\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner$
Example encoding:

$$
\begin{aligned}
& \left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner:=2^{c_{1}+1} \cdot 3^{c_{2}+1} \cdot 5^{c_{3}+1} \cdot \ldots \cdot p_{n}^{1+c_{n}} \\
& \beta(c, i)=k \Leftrightarrow p_{i}^{k+1} \mid c \wedge p_{i}^{k+2} \nmid c
\end{aligned}
$$

Preliminaries

Encoding sequences (Gödel, ~1930)

There exists a first-order definable function $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with: For every $n \in \mathbb{N}$ and every sequence $c_{1}, \ldots, c_{n} \in \mathbb{N}^{*}$ there exists some c such that $\beta(c, i)=c_{i}$ for $i=0, \ldots n$.
c is called the Gödel number for c_{1}, \ldots, c_{n}.
Notation: $c=\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner$
Example encoding:
$\left\ulcorner c_{1}, \ldots, c_{n}\right\urcorner:=2^{c_{1}+1} \cdot 3^{c_{2}+1} \cdot 5^{c_{3}+1} \cdot \ldots \cdot p_{n}^{1+c_{n}}$
$\beta(c, i)=k \Leftrightarrow p_{i}^{k+1} \mid c \wedge p_{i}^{k+2} \nmid c$
Example: $\ulcorner 2,0,1\urcorner=2^{3} \cdot 3^{1} \cdot 5^{2}=600$

Comparing logics

- Uninterpreted FODL is more expressive than FOL. There exists a FODL formula such that no FOL formula has the same models.
- Is FODL over \mathcal{N} more expressive than FOL over \mathcal{N} ? How can the compare expressiveness with a fixed interpretation?

Relative Completeness

Let L be a logic.
Let $T \subseteq F m I_{L}$ be a set of formulas (a theory).

Relative Completeness

Let L be a logic.
Let $T \subseteq F m I_{L}$ be a set of formulas (a theory).

Oracle
Function $O_{T}:$ Fml $_{L} \rightarrow\{$ true, false $\}$ with $\varphi \in T \Leftrightarrow O(\varphi)=$ true is called an oracle for T.

Relative Completeness

Let L be a logic.
Let $T \subseteq F m I_{L}$ be a set of formulas (a theory).

Oracle

Function $O_{T}:$ Fml $_{L} \rightarrow\{$ true, false $\}$ with $\varphi \in T \Leftrightarrow O(\varphi)=$ true is called an oracle for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and complete calculus which may make use of oracle O_{T}.

Relative Completeness

Let L be a logic.
Let $T \subseteq F m I_{L}$ be a set of formulas (a theory).

Oracle

Function $O_{T}:$ Fml $_{L} \rightarrow\{$ true, false $\}$ with $\varphi \in T \Leftrightarrow O(\varphi)=$ true is called an oracle for T.

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and complete calculus which may make use of oracle O_{T}.

Note: T (resp. O_{T}) may not be computable!

Relative Completeness of FODL

Let $T_{\mathcal{N}}=\{\varphi|\mathcal{N}|=\varphi\}$ be the set of valid statements over \mathbb{N}.
Theorem
FODL is complete relative to $T_{\mathcal{N}}$.

Programs as Formulas

Programs representable
Every DL program π can be represented as a formula $\kappa(\pi) \in F m I_{F O L_{\mathcal{N}}}$

Programs as Formulas

Programs representable
Every DL program π can be represented as a formula $\kappa(\pi) \in F m I_{F O L_{\mathcal{N}}}$

Here: only one-variable-programs $V(\pi)=\{x\}$
(general case \rightsquigarrow exercise)

Programs as Formulas

Programs representable
Every DL program π can be represented as a formula $\kappa(\pi) \in F m I_{F O L_{\mathcal{N}}}$

Here: only one-variable-programs $V(\pi)=\{x\}$
(general case \rightsquigarrow exercise)
Predicate $\kappa(\pi)\left(x, x^{\prime}\right)$ has two free variables:
(1) x for the pre-state,
(2) x^{\prime} for the post-state.

Programs as Formulas

Programs representable

Every DL program π can be represented as a formula $\kappa(\pi) \in F m I_{F O L_{\mathcal{N}}}$

Here: only one-variable-programs $V(\pi)=\{x\}$
(general case \rightsquigarrow exercise)
Predicate $\kappa(\pi)\left(x, x^{\prime}\right)$ has two free variables:
(1) x for the pre-state,
(2) x^{\prime} for the post-state.

Modelling goal:

$$
s\left[x^{\prime} / s^{\prime}(x)\right] \models \kappa(\pi)\left(x, x^{\prime}\right) \Longleftrightarrow\left(s, s^{\prime}\right) \in \rho(\pi)
$$

Programs as Formulas (II)

$$
\kappa(x:=t)\left(x, x^{\prime}\right):=x^{\prime}=t
$$

Programs as Formulas (II)

$$
\begin{aligned}
\kappa(x:=t)\left(x, x^{\prime}\right) & :=x^{\prime}=t \\
\kappa\left(\pi_{1} \cup \pi_{2}\right)\left(x, x^{\prime}\right) & :=\kappa\left(\pi_{1}\right)\left(x, x^{\prime}\right) \vee \kappa\left(\pi_{2}\right)\left(x, x^{\prime}\right)
\end{aligned}
$$

Programs as Formulas (II)

$$
\begin{aligned}
\kappa(x:=t)\left(x, x^{\prime}\right) & :=x^{\prime}=t \\
\kappa\left(\pi_{1} \cup \pi_{2}\right)\left(x, x^{\prime}\right) & :=\kappa\left(\pi_{1}\right)\left(x, x^{\prime}\right) \vee \kappa\left(\pi_{2}\right)\left(x, x^{\prime}\right) \\
\kappa\left(\pi_{1} ; \pi_{2}\right)\left(x, x^{\prime}\right) & :=\exists u . \kappa\left(\pi_{1}\right)(x, u) \wedge \kappa\left(\pi_{2}\right)\left(u, x^{\prime}\right)
\end{aligned}
$$

Programs as Formulas (II)

$$
\begin{aligned}
\kappa(x:=t)\left(x, x^{\prime}\right) & :=x^{\prime}=t \\
\kappa\left(\pi_{1} \cup \pi_{2}\right)\left(x, x^{\prime}\right) & :=\kappa\left(\pi_{1}\right)\left(x, x^{\prime}\right) \vee \kappa\left(\pi_{2}\right)\left(x, x^{\prime}\right) \\
\kappa\left(\pi_{1} ; \pi_{2}\right)\left(x, x^{\prime}\right) & :=\exists u \cdot \kappa\left(\pi_{1}\right)(x, u) \wedge \kappa\left(\pi_{2}\right)\left(u, x^{\prime}\right) \\
\kappa(? \varphi)\left(x, x^{\prime}\right) & :=\varphi(x) \wedge x=x^{\prime}
\end{aligned}
$$

Programs as Formulas (II)

$$
\begin{aligned}
& \kappa(x:=t)\left(x, x^{\prime}\right):=x^{\prime}=t \\
& \kappa\left(\pi_{1} \cup \pi_{2}\right)\left(x, x^{\prime}\right):=\kappa\left(\pi_{1}\right)\left(x, x^{\prime}\right) \vee \kappa\left(\pi_{2}\right)\left(x, x^{\prime}\right) \\
& \kappa\left(\pi_{1} ; \pi_{2}\right)\left(x, x^{\prime}\right):=\exists u \cdot \kappa\left(\pi_{1}\right)(x, u) \wedge \kappa\left(\pi_{2}\right)\left(u, x^{\prime}\right) \\
& \kappa(? \varphi)\left(x, x^{\prime}\right):= \varphi(x) \wedge x=x^{\prime} \\
& \kappa\left(\pi^{*}\right)\left(x, x^{\prime}\right):=\exists n . \exists\left\ulcorner x_{1}, \ldots, x_{n}\right\urcorner \cdot x=x_{1} \wedge x^{\prime}=x_{n} \\
& \wedge \forall i<n \cdot \kappa(\pi)\left(x_{i}, x_{i+1}\right)
\end{aligned}
$$

Reduction of $\mathrm{FODL}_{\mathcal{N}}$ to $F O L_{\mathcal{N}}$

Theorem

There is a function $\kappa:\left.F m\right|_{F O D L_{\mathcal{N}}} \rightarrow F m I_{F O L_{\mathcal{N}}}$ such that

- $\mathcal{N} \models \varphi \leftrightarrow \kappa(\varphi)$ and
- κ is computable.

Reduction of $\mathrm{FODL}_{\mathcal{N}}$ to $F O L_{\mathcal{N}}$

Theorem

There is a function $\kappa:\left.F m\right|_{F O D L_{\mathcal{N}}} \rightarrow F m I_{F O L_{\mathcal{N}}}$ such that

- $\mathcal{N} \models \varphi \leftrightarrow \kappa(\varphi)$ and
- κ is computable.

Proof

by structural induction.

Interesting case:

$$
\kappa([\pi] \varphi(x)) \leftrightarrow \forall x^{\prime} . \kappa(\pi)\left(x, x^{\prime}\right) \rightarrow \kappa\left(\varphi\left(x^{\prime}\right)\right)
$$

(Remainder left as exercise)

A practical calculus

Let φ be a FOL formula and π a program with only FOL tests.

Calculus

$$
\begin{array}{rlrl}
{[x:=t] \varphi} & \rightsquigarrow & \varphi[x / t] \\
{\left[\pi_{1} ; \pi_{2}\right] \varphi} & \rightsquigarrow & {\left[\pi_{1}\right]\left[\pi_{2}\right] \varphi} \\
{\left[\pi_{1} \cup \pi_{2}\right] \varphi} & \rightsquigarrow & {\left[\pi_{1}\right] \varphi \wedge\left[\pi_{2}\right] \varphi} \\
{[? \psi] \varphi \rightsquigarrow} & \psi \rightarrow \varphi \\
{\left[\pi^{*}\right] \varphi \rightsquigarrow} & & I N V \\
& \wedge(\forall \bar{x} . I N V \rightarrow[\pi] I N V) \\
& \wedge(\forall \bar{x} . I N V \rightarrow \varphi)
\end{array}
$$

for an arbitrary formula INV \in FmI $_{\text {FOL }}$.

$$
\bar{x}=F V(\pi)
$$

The calculus allows reduction of FODL formulae to FOL formulae

Weakest Precondition Calculus

Let φ be a FOL formula and π a while program (with FOL tests).
Calculus

$$
\begin{array}{lll}
{[x:=t] \varphi} & \rightsquigarrow & \varphi[x / t] \\
{\left[\pi_{1} ; \pi_{2}\right] \varphi} & \rightsquigarrow & {\left[\pi_{1}\right]\left[\pi_{2}\right] \varphi}
\end{array}
$$

[if ψ then π_{1} else $\left.\pi_{2}\right] \varphi \leadsto\left(\psi \rightarrow\left[\pi_{1}\right] \varphi\right) \wedge\left(\neg \psi \rightarrow\left[\pi_{2}\right] \varphi\right)$ [while ψ do $\pi] \varphi \quad$ INV

$$
\begin{aligned}
& \wedge(\forall \bar{x} . I N V \wedge \quad \psi \rightarrow[\pi] I N V) \\
& \wedge(\forall \bar{x} . I N V \wedge \neg \psi \rightarrow \varphi)
\end{aligned}
$$

for an arbitrary formula $I N V \in F m I_{\text {FOL }}$.

$$
\bar{x}=F V(\pi)
$$

This is the weakest-precondition calculus (Dijkstra, 1975)
Notation: $\quad w / p(\pi, \varphi)=[\pi] \varphi, \quad w p(\pi, \varphi)=\langle\pi\rangle \varphi$

Properties

Let $[\pi] \varphi \rightsquigarrow^{*} \psi$ be the result of applying the calculus.

Properties

Let $[\pi] \varphi \rightsquigarrow^{*} \psi$ be the result of applying the calculus.
(1) $\models \psi \rightarrow[\pi] \varphi$
ψ is a precondition such that φ is guaranteed to hold after π.

Properties

Let $[\pi] \varphi \rightsquigarrow^{*} \psi$ be the result of applying the calculus.
(1) $\models \psi \rightarrow[\pi] \varphi$
ψ is a precondition such that φ is guaranteed to hold after π.
(2) There exist loop invariants such that $\models \psi \leftrightarrow[\pi] \varphi$ earlier defined $\kappa(\cdot)$ formulates strongest loop invariants Then ψ is the weakest precondition

Properties

Let $[\pi] \varphi \rightsquigarrow^{*} \psi$ be the result of applying the calculus.
(1) $\models \psi \rightarrow[\pi] \varphi$
ψ is a precondition such that φ is guaranteed to hold after π.
(2) There exist loop invariants such that $\models \psi \leftrightarrow[\pi] \varphi$ earlier defined $\kappa(\cdot)$ formulates strongest loop invariants Then ψ is the weakest precondition
(3) If \models pre $\rightarrow \psi$, then also \models pre $\rightarrow[\pi] \varphi$

Prove pre/post-condition contracts by applying calculus to program and postcondition and then showing implication from precondition.

Arithmetic Completeness

Axioms

All first-order formulas valid in \mathcal{N}
Axioms for PDL

$$
\langle x:=t\rangle \varphi \quad \leftrightarrow \quad \varphi[x / t]
$$

for all first-order φ

Rules

$$
\frac{F, F \rightarrow G}{G}
$$

(modus ponens)

$$
\begin{aligned}
& \frac{F}{[\pi] F} \quad \frac{F}{\forall x F} \\
& \frac{\forall n(F(n+1) \rightarrow\langle\pi\rangle F(n))}{\forall n\left(F(n) \rightarrow\left\langle\pi^{*}\right\rangle F(0)\right)}
\end{aligned}
$$

for any first-order formula F (convergence)

Arithmetic Completeness

Axioms

All first-order formulas valid in \mathcal{N}
Axioms for PDL

$$
\langle x:=t\rangle \varphi \quad \leftrightarrow \quad \varphi[x / t]
$$

for all first-order φ
Rules

$$
\frac{F, F \rightarrow G}{G}
$$

(modus ponens)
$\begin{array}{cc}F & F \\ {[\pi] F} & \\ \forall x F\end{array}$
$\frac{\forall n(F(n+1) \rightarrow\langle\pi\rangle F(n))}{\forall n\left(F(n) \rightarrow\left\langle\pi^{*}\right\rangle F(0)\right)}$
(generalisations)
for any first-order formula F
(convergence)

Theorem

For any formula $\varphi \in F m I_{F O D L}$:
$\mathbb{N} \models \varphi \Longleftrightarrow \vdash_{\mathbb{N}} \varphi$

