
Formale Systeme II: Theorie

Dynamic Logic:
Uninterpreted and Interpreted First Order DL

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich
Slides partially by Prof. Dr. Peter H. Schmitt

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

http://www.kit.edu

Roadmap

Overview – a family of logics

Modal Logics

Propositional Dynamic Logic

Dynamic Logic

Hybrid DL Java DL

Beckert, Ulbrich – Formale Systeme II: Theorie 2/36

Motivation

First Order Dynamic Logic

Atomic programs are refined to assignments.

Example Formula

x0 = x ∧ y0 = y → [x := x + y ; y := x − y ; x := x − y]ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 3/36

Motivation

First Order Dynamic Logic

Atomic programs are refined to assignments.

Example Formula

x0 = x ∧ y0 = y → [x := x + y ; y := x − y ; x := x − y]ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 3/36

First Order Dynamic Logic

Inherit from FOL:

Terms over function symbols and variables

Predicate symbols

Quantification over variables

Inherit from PDL

Modalities

Composite program constructors

Refine PDL

Unspecified atomic programs replaced by assignments var := term

Beckert, Ulbrich – Formale Systeme II: Theorie 4/36

Syntax

Syntactical material

Σ = (F ,P, α) ... signature
F ... function symbols
P ... predicate symbols
α : F ∪ P → N ... arity function

Var ... set of variables

No atomic programs like in PDL

Same as for FOL

Beckert, Ulbrich – Formale Systeme II: Theorie 5/36

Syntax

As abstract grammar:

term ::= var | f (term1, ..., termα(f))

fml ::= true | false | p(term1, ..., termα(p)) | term1 = term2

| ¬fml | fml1 ∧ fml2 | fml1 ∨ fml2 | fml1 → fml2

| ∃var . fml | ∀var . fml

| [prog]fml | 〈prog〉fml

prog ::= var := term

| var := ∗
| prog1 ; prog2 | prog1 ∪ prog2 | prog∗

for var ∈ Var , f ∈ F , p ∈ P

Beckert, Ulbrich – Formale Systeme II: Theorie 6/36

Semantics – Kripke Structures

First Order Structure (D, I)

D ... set of objects (domain) I ... Interpretation
I (f) : Dα(f) → D for function symbol f ∈ F
I (p) ⊆ Dα(p) for predicate symbol p ∈ P

Kripke Frame (S , ρ)

S ... set of states ρ : prog→ 2S×S ... accessibility relation

FODL: Fixed Kripke Frame KD = (SD , ρD)

which depends on the domain D

Beckert, Ulbrich – Formale Systeme II: Theorie 7/36

Semantics – Kripke Structures

First Order Structure (D, I)

D ... set of objects (domain) I ... Interpretation
I (f) : Dα(f) → D for function symbol f ∈ F
I (p) ⊆ Dα(p) for predicate symbol p ∈ P

Kripke Frame (S , ρ)

S ... set of states ρ : prog→ 2S×S ... accessibility relation

FODL: Fixed Kripke Frame KD = (SD , ρD)

which depends on the domain D

Beckert, Ulbrich – Formale Systeme II: Theorie 7/36

Semantics – Kripke Structures

First Order Structure (D, I)

D ... set of objects (domain) I ... Interpretation
I (f) : Dα(f) → D for function symbol f ∈ F
I (p) ⊆ Dα(p) for predicate symbol p ∈ P

Kripke Frame (S , ρ)

S ... set of states ρ : prog→ 2S×S ... accessibility relation

FODL: Fixed Kripke Frame KD = (SD , ρD)

which depends on the domain D

Beckert, Ulbrich – Formale Systeme II: Theorie 7/36

Semantics – Kripke Structures

The set of states KD is the set of assignments of elements in the
universe D to variables in Var :

SD = Var → D

For every t ∈ TermΣ we denote by

valD,I ,s(t)

the usual first-order evaluation of t in (D, I);
variables are interpreted via s.

Beckert, Ulbrich – Formale Systeme II: Theorie 8/36

Semantics – Kripke Structures

The set of states KD is the set of assignments of elements in the
universe D to variables in Var :

SD = Var → D

For every t ∈ TermΣ we denote by

valD,I ,s(t)

the usual first-order evaluation of t in (D, I);
variables are interpreted via s.

Beckert, Ulbrich – Formale Systeme II: Theorie 8/36

Function Update Notation

Notation: for s ∈ SD , x ∈ Var , a ∈ D

s[x/a](y) =

{
a if y = x
s(y) otherwise

Beckert, Ulbrich – Formale Systeme II: Theorie 9/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Programs

Binary Relation

ρ : prog→ SD × SD assigns accessiblity to programs

ρ(x := v) = {(s, t) | t = s[x/valD,I ,s(v)]}

ρ(x := ∗) = {(s, t) | ex. a ∈ D with t = s[x/a]}

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2) ; is forward composition

= {(s, t) | ex. u ∈ SD with (s, u) ∈ ρ(π1), (u, t) ∈ ρ(π2)}

ρ(π∗) = ρ(π)∗ * is refl. transitive closure

= {(so , sn) | ex. n ≥ 0 with (si , si+1) ∈ ρ(π) f.a. i < n}

ρ(?ϕ) = {(s, s) | I , s |= ϕ}

Beckert, Ulbrich – Formale Systeme II: Theorie 10/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x ,∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x ,∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x ,∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x ,∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x , ∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Semantics of Formulae

I , s |= p(t1, . . . , tn) iff (valI ,s(t1), . . . , valI ,s(tn)) ∈ I (p)

I , s |= t1 = t2 iff valI ,s(t1) = valI ,s(t2)

I , s |= [π]F iff I , s ′ |= F for all s ′ with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉F iff I , s ′ |= F for some s ′ with (s, s ′) ∈ ρ(π)

|= is as expected for ¬,∧,∨,→,∀x , ∃x .

We write I |= ϕ iff I , s |= ϕ for all s ∈ S .

Beckert, Ulbrich – Formale Systeme II: Theorie 11/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and

2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)

3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation

π ∈ prog a program
FV (π) = {x ∈ Var | ex. t such that x := t or x := ∗ occurs in π}
V (π) = {x ∈ Var | x occurs in π}

1 If (s, s1) ∈ ρ(π) then s(x) = s1(x) for all x 6∈ FV (π).
i.e., program π only changes variables in FV (π);

2 If (s, s1) ∈ ρ(π) then (s[x/a], s1[x/a]) ∈ ρ(π)
for a ∈ D, x 6∈ V (π).
i.e., variables outside V (π) do not influence the program π;

3 more general: If (s, s1) ∈ ρ(π) and s ′ ∈ SD such that
s ′(y) = s(y) for all y ∈ V (π) then there is s ′1 such that

1 (s ′, s ′1) ∈ ρ(π) and
2 s ′1(x) = s ′(x) for all x 6∈ V (π)
3 s ′1(y) = s1(y) for all y ∈ V (π).

Beckert, Ulbrich – Formale Systeme II: Theorie 12/36

Basic Observation
(s, s1) ∈ ρ(π) and s ′ with s ′(y) = s(y) for all y ∈ V (π)
then there is s ′1 with

(s ′, s ′1) ∈ ρ(π), s ′1(x) =

{
s ′(x) for all x 6∈ V (π)

s1(x) for all x ∈ V (π)
.

s

FV (π)

V (π)

s1
π

s ′ s ′1
π

Beckert, Ulbrich – Formale Systeme II: Theorie 13/36

Basic Observation
(s, s1) ∈ ρ(π) and s ′ with s ′(y) = s(y) for all y ∈ V (π)
then there is s ′1 with

(s ′, s ′1) ∈ ρ(π), s ′1(x) =

{
s ′(x) for all x 6∈ V (π)

s1(x) for all x ∈ V (π)
.

s

FV (π)

V (π)

s1
π

s ′

s ′1
π

Beckert, Ulbrich – Formale Systeme II: Theorie 13/36

Basic Observation
(s, s1) ∈ ρ(π) and s ′ with s ′(y) = s(y) for all y ∈ V (π)
then there is s ′1 with

(s ′, s ′1) ∈ ρ(π), s ′1(x) =

{
s ′(x) for all x 6∈ V (π)

s1(x) for all x ∈ V (π)
.

s

FV (π)

V (π)

s1
π

s ′ s ′1
π

Beckert, Ulbrich – Formale Systeme II: Theorie 13/36

Basic Observation
(s, s1) ∈ ρ(π) and s ′ with s ′(y) = s(y) for all y ∈ V (π)
then there is s ′1 with

(s ′, s ′1) ∈ ρ(π), s ′1(x) =

{
s ′(x) for all x 6∈ V (π)

s1(x) for all x ∈ V (π)
.

s

FV (π)

V (π)

s1
π

s ′ s ′1
π

Beckert, Ulbrich – Formale Systeme II: Theorie 13/36

Interesting Tautologies

All PDL tautologies
e.g. [π; τ]ϕ ↔ [π][τ]ϕ

[x := t]ϕ ↔ 〈x := t〉ϕ

[x := ∗]ϕ ↔ ∀x .ϕ

〈x := ∗〉ϕ ↔ ∃x .ϕ

ϕ a FO formula w/o quantification over x :
[x := t]ϕ ↔ ϕ[x/t]

Beckert, Ulbrich – Formale Systeme II: Theorie 14/36

Interesting Tautologies

All PDL tautologies
e.g. [π; τ]ϕ ↔ [π][τ]ϕ

[x := t]ϕ ↔ 〈x := t〉ϕ

[x := ∗]ϕ ↔ ∀x .ϕ

〈x := ∗〉ϕ ↔ ∃x .ϕ

ϕ a FO formula w/o quantification over x :
[x := t]ϕ ↔ ϕ[x/t]

Beckert, Ulbrich – Formale Systeme II: Theorie 14/36

Interesting Tautologies

All PDL tautologies
e.g. [π; τ]ϕ ↔ [π][τ]ϕ

[x := t]ϕ ↔ 〈x := t〉ϕ

[x := ∗]ϕ ↔ ∀x .ϕ

〈x := ∗〉ϕ ↔ ∃x .ϕ

ϕ a FO formula w/o quantification over x :
[x := t]ϕ ↔ ϕ[x/t]

Beckert, Ulbrich – Formale Systeme II: Theorie 14/36

Interesting Tautologies

All PDL tautologies
e.g. [π; τ]ϕ ↔ [π][τ]ϕ

[x := t]ϕ ↔ 〈x := t〉ϕ

[x := ∗]ϕ ↔ ∀x .ϕ

〈x := ∗〉ϕ ↔ ∃x .ϕ

ϕ a FO formula w/o quantification over x :
[x := t]ϕ ↔ ϕ[x/t]

Beckert, Ulbrich – Formale Systeme II: Theorie 14/36

Interesting Tautologies

All PDL tautologies
e.g. [π; τ]ϕ ↔ [π][τ]ϕ

[x := t]ϕ ↔ 〈x := t〉ϕ

[x := ∗]ϕ ↔ ∀x .ϕ

〈x := ∗〉ϕ ↔ ∃x .ϕ

ϕ a FO formula w/o quantification over x :
[x := t]ϕ ↔ ϕ[x/t]

Beckert, Ulbrich – Formale Systeme II: Theorie 14/36

Constant Domain Assumption

Is this a tautology?

∀x .[π]ϕ ↔ [π]∀x .ϕ if x 6∈ V (π)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[o := new]∀x .ϕ → ∀x .[o := new]ϕ

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendt et al., FM 2009]

Beckert, Ulbrich – Formale Systeme II: Theorie 15/36

Constant Domain Assumption

Is this a tautology?

∀x .[π]ϕ ↔ [π]∀x .ϕ if x 6∈ V (π)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[o := new]∀x .ϕ → ∀x .[o := new]ϕ

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendt et al., FM 2009]

Beckert, Ulbrich – Formale Systeme II: Theorie 15/36

Constant Domain Assumption

Is this a tautology?

∀x .[π]ϕ ↔ [π]∀x .ϕ if x 6∈ V (π)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[o := new]∀x .ϕ → ∀x .[o := new]ϕ

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendt et al., FM 2009]

Beckert, Ulbrich – Formale Systeme II: Theorie 15/36

Constant Domain Assumption

Is this a tautology? →”Barcan Formula”

∀x .[π]ϕ ↔ [π]∀x .ϕ if x 6∈ V (π)

Here: Yes. Every state has the same set of objects
(so-colled constant domain assumption).

But: In some languages, the set of objects can grow
(object creation via command new)

[o := new]∀x .ϕ → ∀x .[o := new]ϕ

[To Be or Not To Be Created, “Abstract Object Creation in Dynamic Logic”,
Ahrendt et al., FM 2009]

Beckert, Ulbrich – Formale Systeme II: Theorie 15/36

Example

z = y ∧ ∀x . f (g(x)) = x

→ [(y := g(y))∗]〈(y := f (y))∗〉y = z

z = y ∧ ∀x . f (g(x)) = x

→ [while p(y) do y := g(y)]〈while y 6= z do y := f (y)〉true

Beckert, Ulbrich – Formale Systeme II: Theorie 16/36

Example

z = y ∧ ∀x . f (g(x)) = x

→ [(y := g(y))∗]〈(y := f (y))∗〉y = z

z = y ∧ ∀x . f (g(x)) = x

→ [while p(y) do y := g(y)]〈while y 6= z do y := f (y)〉true

Beckert, Ulbrich – Formale Systeme II: Theorie 16/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪
Non-deterministic iteration ∗
Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪

Non-deterministic iteration ∗
Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪
Non-deterministic iteration ∗

Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪
Non-deterministic iteration ∗
Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪
Non-deterministic iteration ∗
Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Indeterminism

DL programs can be indeterminstic

Sources of indeterminsm

Non-deterministic choice ∪
Non-deterministic iteration ∗
Non-deterministic assignment v := ∗

Example for v := ∗:

choose x such that p(x) :↔ x := ∗ ; ?p(x)

Beckert, Ulbrich – Formale Systeme II: Theorie 17/36

Deterministic programs

Definition

A DL program π ∈ prog is called a while-program if:

1 ∪ occurs only within the patterns of if,

2 ∗ occurs only within the patterns of while,

3 var := ∗ does not occur for any variable var ∈ Var

Reminder

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 18/36

Deterministic programs

Definition

A DL program π ∈ prog is called a while-program if:

1 ∪ occurs only within the patterns of if,

2 ∗ occurs only within the patterns of while,

3 var := ∗ does not occur for any variable var ∈ Var

Reminder

if ϕ then α else β

:=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 18/36

Deterministic programs

Definition

A DL program π ∈ prog is called a while-program if:

1 ∪ occurs only within the patterns of if,

2 ∗ occurs only within the patterns of while,

3 var := ∗ does not occur for any variable var ∈ Var

Reminder

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)

while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 18/36

Deterministic programs

Definition

A DL program π ∈ prog is called a while-program if:

1 ∪ occurs only within the patterns of if,

2 ∗ occurs only within the patterns of while,

3 var := ∗ does not occur for any variable var ∈ Var

Reminder

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α

:= (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 18/36

Deterministic programs

Definition

A DL program π ∈ prog is called a while-program if:

1 ∪ occurs only within the patterns of if,

2 ∗ occurs only within the patterns of while,

3 var := ∗ does not occur for any variable var ∈ Var

Reminder

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 18/36

Deterministic programs

Semantic Definition

A program π ∈ prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (s, t1), (s, t2) ∈ ρ(π) =⇒ t1 = t2

Characterisation of deterministic programs

A program π ∈ prog is deterministic iff 〈π〉ϕ→ [π]ϕ is a
tautology for every formula ϕ ∈ fml.

Observation

While programs are deterministic.

Beckert, Ulbrich – Formale Systeme II: Theorie 19/36

Deterministic programs

Semantic Definition

A program π ∈ prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (s, t1), (s, t2) ∈ ρ(π) =⇒ t1 = t2

Characterisation of deterministic programs

A program π ∈ prog is deterministic iff 〈π〉ϕ→ [π]ϕ is a
tautology for every formula ϕ ∈ fml.

Observation

While programs are deterministic.

Beckert, Ulbrich – Formale Systeme II: Theorie 19/36

Deterministic programs

Semantic Definition

A program π ∈ prog is called deterministic if its accessibility
relation is a partial function.

i.e., if (s, t1), (s, t2) ∈ ρ(π) =⇒ t1 = t2

Characterisation of deterministic programs

A program π ∈ prog is deterministic iff 〈π〉ϕ→ [π]ϕ is a
tautology for every formula ϕ ∈ fml.

Observation

While programs are deterministic.

Beckert, Ulbrich – Formale Systeme II: Theorie 19/36

Deterministic programs

For determinstic programs:

[π]ϕ means “π is partially correct with respect to postcondition ϕ”

〈π〉ϕ means “π is totally correct with respect to postcondition ϕ”
(i.e. π partially correct and π terminates)

Moreover:
Total correctness is partial correctness plus termination:

|= 〈π〉ϕ ↔ [π]ϕ ∧ 〈π〉true

Beckert, Ulbrich – Formale Systeme II: Theorie 20/36

Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Gödel’s Incompleteness Theorem

Arithmetic can be axiomatised in FODL

... we shall see how ...

Beckert, Ulbrich – Formale Systeme II: Theorie 21/36

Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Gödel’s Incompleteness Theorem

Arithmetic can be axiomatised in FODL

... we shall see how ...

Beckert, Ulbrich – Formale Systeme II: Theorie 21/36

Expressiveness

Expressiveness of uninterpreted FODL

First order dynamic logic is more expressive than first order logic.

Arithmetic cannot be axiomatised in FOL

a direct implication of Gödel’s Incompleteness Theorem

Arithmetic can be axiomatised in FODL

... we shall see how ...

Beckert, Ulbrich – Formale Systeme II: Theorie 21/36

Axiomatisation of natural arithmetic
Signature: Let Σ contain:

constant o (the “zero”)

unary function s (the “successor”)

Goal

Define a FODL formula ϕN over Σ s.t.
D, I |= ϕN iff (D, I (o), I (s))

∼
= (N, 0,+1)

Idea:

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

Solution:

ϕN := ∀y .〈x := o; (x := s(x))∗〉x = y
∧ ∀x , y . ((s(x) = s(y)→ x = y) ∧ ¬s(x) = o)

Beckert, Ulbrich – Formale Systeme II: Theorie 22/36

Axiomatisation of natural arithmetic
Signature: Let Σ contain:

constant o (the “zero”)

unary function s (the “successor”)

Goal

Define a FODL formula ϕN over Σ s.t.
D, I |= ϕN iff (D, I (o), I (s))

∼
= (N, 0,+1)

Idea:

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

Solution:

ϕN := ∀y .〈x := o; (x := s(x))∗〉x = y
∧ ∀x , y . ((s(x) = s(y)→ x = y) ∧ ¬s(x) = o)

Beckert, Ulbrich – Formale Systeme II: Theorie 22/36

Axiomatisation of natural arithmetic
Signature: Let Σ contain:

constant o (the “zero”)

unary function s (the “successor”)

Goal

Define a FODL formula ϕN over Σ s.t.
D, I |= ϕN iff (D, I (o), I (s))

∼
= (N, 0,+1)

Idea:

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

Solution:

ϕN := ∀y .〈x := o; (x := s(x))∗〉x = y
∧ ∀x , y . ((s(x) = s(y)→ x = y) ∧ ¬s(x) = o)

Beckert, Ulbrich – Formale Systeme II: Theorie 22/36

Axiomatisation of natural arithmetic
Signature: Let Σ contain:

constant o (the “zero”)

unary function s (the “successor”)

Goal

Define a FODL formula ϕN over Σ s.t.
D, I |= ϕN iff (D, I (o), I (s))

∼
= (N, 0,+1)

Idea:

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

Solution:

ϕN := ∀y .〈x := o; (x := s(x))∗〉x = y
∧ ∀x , y . ((s(x) = s(y)→ x = y) ∧ ¬s(x) = o)

Beckert, Ulbrich – Formale Systeme II: Theorie 22/36

Axiomatisation of natural arithmetic
Signature: Let Σ contain:

constant o (the “zero”)

unary function s (the “successor”)

Goal

Define a FODL formula ϕN over Σ s.t.
D, I |= ϕN iff (D, I (o), I (s))

∼
= (N, 0,+1)

Idea:

Formalise: “Every element can be reached by a number of loop
iterations from zero.”

Solution:

ϕN := ∀y .〈x := o; (x := s(x))∗〉x = y
∧ ∀x , y . ((s(x) = s(y)→ x = y) ∧ ¬s(x) = o)

Beckert, Ulbrich – Formale Systeme II: Theorie 22/36

Interpreted Dynamic Logic

Fix the first order structure and domain.

In particular: consider

ΣN = ({0, 1,−1, ...,+, ∗}, {<}) and N = (N, IN)

s.t. IN interprets the symbols “as expected”.

Beckert, Ulbrich – Formale Systeme II: Theorie 23/36

Interpreted Dynamic Logic

Fix the first order structure and domain.

In particular: consider

ΣN = ({0, 1,−1, ...,+, ∗}, {<}) and N = (N, IN)

s.t. IN interprets the symbols “as expected”.

Beckert, Ulbrich – Formale Systeme II: Theorie 23/36

Examples

Valid formulas:

3 < 5, x < x + 2, 0 ∗ x = 0

(p(0) ∧ ∀x .(p(x)→ p(x + 1)))→ ∀x .p(x)

¬∃x(0 < x ∧ x < 1)

[y := x ; (a := ∗ ; x := x + a)∗]x ≥ y

x0 = x ∧ y0 = y
→ [x := x + y ; y := x − y ; x := x − y]

x = y0 ∧ y = x0

Beckert, Ulbrich – Formale Systeme II: Theorie 24/36

Examples

Valid formulas:

3 < 5, x < x + 2, 0 ∗ x = 0

(p(0) ∧ ∀x .(p(x)→ p(x + 1)))→ ∀x .p(x)

¬∃x(0 < x ∧ x < 1)

[y := x ; (a := ∗ ; x := x + a)∗]x ≥ y

x0 = x ∧ y0 = y
→ [x := x + y ; y := x − y ; x := x − y]

x = y0 ∧ y = x0

Beckert, Ulbrich – Formale Systeme II: Theorie 24/36

Examples

Valid formulas:

3 < 5, x < x + 2, 0 ∗ x = 0

(p(0) ∧ ∀x .(p(x)→ p(x + 1)))→ ∀x .p(x)

¬∃x(0 < x ∧ x < 1)

[y := x ; (a := ∗ ; x := x + a)∗]x ≥ y

x0 = x ∧ y0 = y
→ [x := x + y ; y := x − y ; x := x − y]

x = y0 ∧ y = x0

Beckert, Ulbrich – Formale Systeme II: Theorie 24/36

Examples

Valid formulas:

3 < 5, x < x + 2, 0 ∗ x = 0

(p(0) ∧ ∀x .(p(x)→ p(x + 1)))→ ∀x .p(x)

¬∃x(0 < x ∧ x < 1)

[y := x ; (a := ∗ ; x := x + a)∗]x ≥ y

x0 = x ∧ y0 = y
→ [x := x + y ; y := x − y ; x := x − y]

x = y0 ∧ y = x0

Beckert, Ulbrich – Formale Systeme II: Theorie 24/36

Examples

Valid formulas:

3 < 5, x < x + 2, 0 ∗ x = 0

(p(0) ∧ ∀x .(p(x)→ p(x + 1)))→ ∀x .p(x)

¬∃x(0 < x ∧ x < 1)

[y := x ; (a := ∗ ; x := x + a)∗]x ≥ y

x0 = x ∧ y0 = y
→ [x := x + y ; y := x − y ; x := x − y] x = y0 ∧ y = x0

Beckert, Ulbrich – Formale Systeme II: Theorie 24/36

Relative Completeness
and Calculi

Beckert, Ulbrich – Formale Systeme II: Theorie 25/36

Preliminaries

Encoding sequences (Gödel, ∼1930)

There exists a first-order definable function β : N× N→ N with:
For every n ∈ N and every sequence c1, . . . , cn ∈ N∗ there exists
some c such that β(c , i) = ci for i = 0, . . . n.

c is called the Gödel number for c1, . . . , cn.
Notation: c = pc1, . . . , cnq

Example encoding:
pc1, . . . , cnq := 2c1+1 · 3c2+1 · 5c3+1 · . . . · p1+cn

n

β(c , i) = k ⇔ pk+1
i | c ∧ pk+2

i 6 | c

Example: p2, 0, 1q = 23 · 31 · 52 = 600

Beckert, Ulbrich – Formale Systeme II: Theorie 26/36

Preliminaries

Encoding sequences (Gödel, ∼1930)

There exists a first-order definable function β : N× N→ N with:
For every n ∈ N and every sequence c1, . . . , cn ∈ N∗ there exists
some c such that β(c , i) = ci for i = 0, . . . n.

c is called the Gödel number for c1, . . . , cn.
Notation: c = pc1, . . . , cnq

Example encoding:
pc1, . . . , cnq := 2c1+1 · 3c2+1 · 5c3+1 · . . . · p1+cn

n

β(c , i) = k ⇔ pk+1
i | c ∧ pk+2

i 6 | c

Example: p2, 0, 1q = 23 · 31 · 52 = 600

Beckert, Ulbrich – Formale Systeme II: Theorie 26/36

Preliminaries

Encoding sequences (Gödel, ∼1930)

There exists a first-order definable function β : N× N→ N with:
For every n ∈ N and every sequence c1, . . . , cn ∈ N∗ there exists
some c such that β(c , i) = ci for i = 0, . . . n.

c is called the Gödel number for c1, . . . , cn.
Notation: c = pc1, . . . , cnq

Example encoding:
pc1, . . . , cnq := 2c1+1 · 3c2+1 · 5c3+1 · . . . · p1+cn

n

β(c , i) = k ⇔ pk+1
i | c ∧ pk+2

i 6 | c

Example: p2, 0, 1q = 23 · 31 · 52 = 600

Beckert, Ulbrich – Formale Systeme II: Theorie 26/36

Preliminaries

Encoding sequences (Gödel, ∼1930)

There exists a first-order definable function β : N× N→ N with:
For every n ∈ N and every sequence c1, . . . , cn ∈ N∗ there exists
some c such that β(c , i) = ci for i = 0, . . . n.

c is called the Gödel number for c1, . . . , cn.
Notation: c = pc1, . . . , cnq

Example encoding:
pc1, . . . , cnq := 2c1+1 · 3c2+1 · 5c3+1 · . . . · p1+cn

n

β(c , i) = k ⇔ pk+1
i | c ∧ pk+2

i 6 | c

Example: p2, 0, 1q = 23 · 31 · 52 = 600

Beckert, Ulbrich – Formale Systeme II: Theorie 26/36

Preliminaries

Encoding sequences (Gödel, ∼1930)

There exists a first-order definable function β : N× N→ N with:
For every n ∈ N and every sequence c1, . . . , cn ∈ N∗ there exists
some c such that β(c , i) = ci for i = 0, . . . n.

c is called the Gödel number for c1, . . . , cn.
Notation: c = pc1, . . . , cnq

Example encoding:
pc1, . . . , cnq := 2c1+1 · 3c2+1 · 5c3+1 · . . . · p1+cn

n

β(c , i) = k ⇔ pk+1
i | c ∧ pk+2

i 6 | c

Example: p2, 0, 1q = 23 · 31 · 52 = 600

Beckert, Ulbrich – Formale Systeme II: Theorie 26/36

Comparing logics

Uninterpreted FODL is more expressive than FOL.
There exists a FODL formula such that no FOL formula
has the same models.

Is FODL over N more expressive than FOL over N?
How can the compare expressiveness with a fixed inter-
pretation?

Beckert, Ulbrich – Formale Systeme II: Theorie 27/36

Relative Completeness

Let L be a logic.
Let T ⊆ FmlL be a set of formulas (a theory).

Oracle

Function OT : FmlL → {true, false} with ϕ ∈ T ⇔ O(ϕ) = true is
called an oracle for T .

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle OT .

Note: T (resp. OT) may not be computable!

Beckert, Ulbrich – Formale Systeme II: Theorie 28/36

Relative Completeness

Let L be a logic.
Let T ⊆ FmlL be a set of formulas (a theory).

Oracle

Function OT : FmlL → {true, false} with ϕ ∈ T ⇔ O(ϕ) = true is
called an oracle for T .

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle OT .

Note: T (resp. OT) may not be computable!

Beckert, Ulbrich – Formale Systeme II: Theorie 28/36

Relative Completeness

Let L be a logic.
Let T ⊆ FmlL be a set of formulas (a theory).

Oracle

Function OT : FmlL → {true, false} with ϕ ∈ T ⇔ O(ϕ) = true is
called an oracle for T .

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle OT .

Note: T (resp. OT) may not be computable!

Beckert, Ulbrich – Formale Systeme II: Theorie 28/36

Relative Completeness

Let L be a logic.
Let T ⊆ FmlL be a set of formulas (a theory).

Oracle

Function OT : FmlL → {true, false} with ϕ ∈ T ⇔ O(ϕ) = true is
called an oracle for T .

Relative Completeness (Cook, 1978)

A logic is called complete relative to T if there exists a correct and
complete calculus which may make use of oracle OT .

Note: T (resp. OT) may not be computable!

Beckert, Ulbrich – Formale Systeme II: Theorie 28/36

Relative Completeness of FODL

Let TN = {ϕ | N |= ϕ} be the set of valid statements over N.

Theorem

FODL is complete relative to TN .

Beckert, Ulbrich – Formale Systeme II: Theorie 29/36

Programs as Formulas

Programs representable

Every DL program π can be represented as a formula κ(π) ∈ FmlFOLN

Here: only one-variable-programs V (π) = {x}
(general case exercise)

Predicate κ(π)(x , x ′) has two free variables:

1 x for the pre-state,

2 x ′ for the post-state.

Modelling goal:

s[x ′/s ′(x)] |= κ(π)(x , x ′) ⇐⇒ (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 30/36

Programs as Formulas

Programs representable

Every DL program π can be represented as a formula κ(π) ∈ FmlFOLN

Here: only one-variable-programs V (π) = {x}
(general case exercise)

Predicate κ(π)(x , x ′) has two free variables:

1 x for the pre-state,

2 x ′ for the post-state.

Modelling goal:

s[x ′/s ′(x)] |= κ(π)(x , x ′) ⇐⇒ (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 30/36

Programs as Formulas

Programs representable

Every DL program π can be represented as a formula κ(π) ∈ FmlFOLN

Here: only one-variable-programs V (π) = {x}
(general case exercise)

Predicate κ(π)(x , x ′) has two free variables:

1 x for the pre-state,

2 x ′ for the post-state.

Modelling goal:

s[x ′/s ′(x)] |= κ(π)(x , x ′) ⇐⇒ (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 30/36

Programs as Formulas

Programs representable

Every DL program π can be represented as a formula κ(π) ∈ FmlFOLN

Here: only one-variable-programs V (π) = {x}
(general case exercise)

Predicate κ(π)(x , x ′) has two free variables:

1 x for the pre-state,

2 x ′ for the post-state.

Modelling goal:

s[x ′/s ′(x)] |= κ(π)(x , x ′) ⇐⇒ (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 30/36

Programs as Formulas (II)

κ(x := t)(x , x ′) := x ′ = t

κ(π1 ∪ π2)(x , x ′) := κ(π1)(x , x ′) ∨ κ(π2)(x , x ′)

κ(π1 ; π2)(x , x ′) := ∃u. κ(π1)(x , u) ∧ κ(π2)(u, x ′)

κ(?ϕ)(x , x ′) := ϕ(x) ∧ x = x ′

κ(π∗)(x , x ′) := ∃n.∃px1, . . . , xnq. x = x1 ∧ x ′ = xn

∧ ∀i < n. κ(π)(xi , xi+1)

Beckert, Ulbrich – Formale Systeme II: Theorie 31/36

Programs as Formulas (II)

κ(x := t)(x , x ′) := x ′ = t

κ(π1 ∪ π2)(x , x ′) := κ(π1)(x , x ′) ∨ κ(π2)(x , x ′)

κ(π1 ; π2)(x , x ′) := ∃u. κ(π1)(x , u) ∧ κ(π2)(u, x ′)

κ(?ϕ)(x , x ′) := ϕ(x) ∧ x = x ′

κ(π∗)(x , x ′) := ∃n.∃px1, . . . , xnq. x = x1 ∧ x ′ = xn

∧ ∀i < n. κ(π)(xi , xi+1)

Beckert, Ulbrich – Formale Systeme II: Theorie 31/36

Programs as Formulas (II)

κ(x := t)(x , x ′) := x ′ = t

κ(π1 ∪ π2)(x , x ′) := κ(π1)(x , x ′) ∨ κ(π2)(x , x ′)

κ(π1 ; π2)(x , x ′) := ∃u. κ(π1)(x , u) ∧ κ(π2)(u, x ′)

κ(?ϕ)(x , x ′) := ϕ(x) ∧ x = x ′

κ(π∗)(x , x ′) := ∃n.∃px1, . . . , xnq. x = x1 ∧ x ′ = xn

∧ ∀i < n. κ(π)(xi , xi+1)

Beckert, Ulbrich – Formale Systeme II: Theorie 31/36

Programs as Formulas (II)

κ(x := t)(x , x ′) := x ′ = t

κ(π1 ∪ π2)(x , x ′) := κ(π1)(x , x ′) ∨ κ(π2)(x , x ′)

κ(π1 ; π2)(x , x ′) := ∃u. κ(π1)(x , u) ∧ κ(π2)(u, x ′)

κ(?ϕ)(x , x ′) := ϕ(x) ∧ x = x ′

κ(π∗)(x , x ′) := ∃n.∃px1, . . . , xnq. x = x1 ∧ x ′ = xn

∧ ∀i < n. κ(π)(xi , xi+1)

Beckert, Ulbrich – Formale Systeme II: Theorie 31/36

Programs as Formulas (II)

κ(x := t)(x , x ′) := x ′ = t

κ(π1 ∪ π2)(x , x ′) := κ(π1)(x , x ′) ∨ κ(π2)(x , x ′)

κ(π1 ; π2)(x , x ′) := ∃u. κ(π1)(x , u) ∧ κ(π2)(u, x ′)

κ(?ϕ)(x , x ′) := ϕ(x) ∧ x = x ′

κ(π∗)(x , x ′) := ∃n.∃px1, . . . , xnq. x = x1 ∧ x ′ = xn

∧ ∀i < n. κ(π)(xi , xi+1)

Beckert, Ulbrich – Formale Systeme II: Theorie 31/36

Reduction of FODLN to FOLN

Theorem

There is a function κ : FmlFODLN → FmlFOLN such that

N |= ϕ↔ κ(ϕ) and

κ is computable.

Proof
by structural induction.

Interesting case:

κ([π]ϕ(x)) ↔ ∀x ′. κ(π)(x , x ′)→ κ(ϕ(x ′))

(Remainder left as exercise)

Beckert, Ulbrich – Formale Systeme II: Theorie 32/36

Reduction of FODLN to FOLN

Theorem

There is a function κ : FmlFODLN → FmlFOLN such that

N |= ϕ↔ κ(ϕ) and

κ is computable.

Proof
by structural induction.

Interesting case:

κ([π]ϕ(x)) ↔ ∀x ′. κ(π)(x , x ′)→ κ(ϕ(x ′))

(Remainder left as exercise)

Beckert, Ulbrich – Formale Systeme II: Theorie 32/36

A practical calculus

Let ϕ be a FOL formula and π a program with only FOL tests.

Calculus

[x := t]ϕ ϕ[x/t]

[π1 ; π2]ϕ [π1][π2]ϕ

[π1 ∪ π2]ϕ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ψ → ϕ

[π∗]ϕ INV

∧ (∀x̄ . INV → [π]INV)

∧ (∀x̄ . INV → ϕ)

for an arbitrary formula INV ∈ FmlFOL. x̄ = FV (π)

The calculus allows reduction of FODL formulae to FOL formulae

Beckert, Ulbrich – Formale Systeme II: Theorie 33/36

Weakest Precondition Calculus

Let ϕ be a FOL formula and π a while program (with FOL tests).

Calculus

[x := t]ϕ ϕ[x/t]

[π1 ; π2]ϕ [π1][π2]ϕ

[if ψ then π1 else π2]ϕ (ψ → [π1]ϕ) ∧ (¬ψ → [π2]ϕ)

[while ψ do π]ϕ INV

∧ (∀x̄ . INV ∧ ψ → [π]INV)

∧ (∀x̄ . INV ∧ ¬ψ → ϕ)

for an arbitrary formula INV ∈ FmlFOL. x̄ = FV (π)

This is the weakest-precondition calculus (Dijkstra, 1975)

Notation: wlp(π, ϕ) = [π]ϕ, wp(π, ϕ) = 〈π〉ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 34/36

Properties

Let [π]ϕ ∗ ψ be the result of applying the calculus.

1 |= ψ → [π]ϕ
ψ is a precondition such that ϕ is guaranteed to hold after π.

2 There exist loop invariants such that |= ψ ↔ [π]ϕ
earlier defined κ(·) formulates strongest loop invariants

Then ψ is the weakest precondition

3 If |= pre → ψ, then also |= pre → [π]ϕ
Prove pre/post-condition contracts by applying calculus to program

and postcondition and then showing implication from precondition.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/36

Properties

Let [π]ϕ ∗ ψ be the result of applying the calculus.

1 |= ψ → [π]ϕ
ψ is a precondition such that ϕ is guaranteed to hold after π.

2 There exist loop invariants such that |= ψ ↔ [π]ϕ
earlier defined κ(·) formulates strongest loop invariants

Then ψ is the weakest precondition

3 If |= pre → ψ, then also |= pre → [π]ϕ
Prove pre/post-condition contracts by applying calculus to program

and postcondition and then showing implication from precondition.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/36

Properties

Let [π]ϕ ∗ ψ be the result of applying the calculus.

1 |= ψ → [π]ϕ
ψ is a precondition such that ϕ is guaranteed to hold after π.

2 There exist loop invariants such that |= ψ ↔ [π]ϕ
earlier defined κ(·) formulates strongest loop invariants

Then ψ is the weakest precondition

3 If |= pre → ψ, then also |= pre → [π]ϕ
Prove pre/post-condition contracts by applying calculus to program

and postcondition and then showing implication from precondition.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/36

Properties

Let [π]ϕ ∗ ψ be the result of applying the calculus.

1 |= ψ → [π]ϕ
ψ is a precondition such that ϕ is guaranteed to hold after π.

2 There exist loop invariants such that |= ψ ↔ [π]ϕ
earlier defined κ(·) formulates strongest loop invariants

Then ψ is the weakest precondition

3 If |= pre → ψ, then also |= pre → [π]ϕ
Prove pre/post-condition contracts by applying calculus to program

and postcondition and then showing implication from precondition.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/36

Arithmetic Completeness

Axioms
All first-order formulas valid in N
Axioms for PDL
〈x := t〉ϕ ↔ ϕ[x/t] for all first-order ϕ

Rules
F , F → G

G
(modus ponens)

F

[π]F

F

∀xF (generalisations)

∀n(F (n + 1)→ 〈π〉F (n))

∀n(F (n)→ 〈π∗〉F (0))
for any first-order formula F

(convergence)

Theorem

For any formula ϕ ∈ FmlFODL : N |= ϕ ⇐⇒ `N ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 36/36

Arithmetic Completeness

Axioms
All first-order formulas valid in N
Axioms for PDL
〈x := t〉ϕ ↔ ϕ[x/t] for all first-order ϕ

Rules
F , F → G

G
(modus ponens)

F

[π]F

F

∀xF (generalisations)

∀n(F (n + 1)→ 〈π〉F (n))

∀n(F (n)→ 〈π∗〉F (0))
for any first-order formula F

(convergence)

Theorem

For any formula ϕ ∈ FmlFODL : N |= ϕ ⇐⇒ `N ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 36/36

